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Place cells in the hippocampus and grid cells in the medial entorhinal cortex have different codes for space. However, how one code relates
to the other is ill understood. Based on the anatomy of the entorhinal-hippocampal circuitry, we constructed a model of place and grid
cells organized in a loop to investigate their mutual influence in the establishment of their codes for space. Using computer simulations,
we first replicated experiments in rats that measured place and grid cell activity in different environments, and then assessed which
features of the model account for different phenomena observed in neurophysiological data, such as pattern completion and pattern
separation, global and rate remapping of place cells, and realignment of grid cells. We found that (1) the interaction between grid and
place cells converges quickly; (2) the spatial code of place cells does not require, but is altered by, grid cell input; (3) plasticity in sensory
inputs to place cells is key for pattern completion but not pattern separation; (4) grid realignment can be explained in terms of place cell
remapping as opposed to the other way around; (5) the switch between global and rate remapping is self-organized; and (6) grid cell input
to place cells helps stabilize their code under noisy and/or inconsistent sensory input. We conclude that the hippocampus-entorhinal
circuit uses the mutual interaction of place and grid cells to encode the surrounding environment and propose a theory on how such
interdependence underlies the formation and use of the cognitive map.
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Introduction
Place cells in the hippocampus (O’Keefe and Dostrovsky, 1971)
and grid cells in the medial entorhinal cortex (MEC; Hafting et
al., 2005) differentially encode the current position of the animal.
Place cells are only active when the animal is in a restricted part of
the environment, known as place field. Although small environ-
ment changes have no or little effect on place fields (pattern com-

pletion), larger changes may lead to pattern separation in which
place fields either move to unpredictable new positions (global
remapping; Muller and Kubie, 1987; Quirk et al., 1990; Leutgeb et
al., 2004, 2005b; Wills et al., 2005) or remain at the same position
but with altered firing rate (rate remapping; Leutgeb et al., 2005b,
2007; Leutgeb and Leutgeb, 2007). On the other hand, grid cells
have many place fields organized in a regular triangular pattern
that covers the whole environment. The distance between place
fields of the same grid cell is constant across different environ-
ments, but their specific locations change (grid realignment;
Fyhn et al., 2007; Leutgeb et al., 2007). The spatial codes of place
and grid cells are interdependent; for instance, grid realignment
co-occurs with global remapping but not rate remapping (Fyhn
et al., 2007; Colgin et al., 2010). However, how the spatial codes of
place and grid cells relate to each other is not fully understood.

Available anatomical and neurophysiological data may pro-
vide the necessary pieces for completing the puzzle of how place
and grid cell codes interact: the hippocampus and the entorhinal
cortex are organized in a loop (Tamamaki and Nojyo, 1995;
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Significance Statement

The mammalian brain implements a positional system with two key pieces: place and grid cells. To gain insight into the dynamics
of place and grid cell interaction, we built a computational model with the two cell types organized in a loop. The proposed model
accounts for differences in how place and grid cells represent different environments and provides a new interpretation in which
place and grid cells mutually interact to form a coupled code for space.
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Tamamaki, 1997; Johnston and Amaral, 1998; Witter et al.,
2014); place cells develop before grid cells (Langston et al., 2010;
Wills et al., 2010) and do not require grid cells to form place fields
(Koenig et al., 2011; Hales et al., 2014); place cells increase firing
stability with age much more gradually than the abrupt time
course of grid cell maturation, and peak place field stability coin-
cides with the maturation of grid cells (Muessig et al., 2015); place
cells can globally remap when grid cells are impaired by septal
inactivation (Brandon et al., 2014); and exhibit pattern comple-
tion and separation even before grid cells have matured (Muessig
et al., 2016); the triangular regularity of grid cells vanishes if
inputs from place cell are removed (Bonnevie et al., 2013). Alto-
gether, the evidence suggests that the spatial code of place and
grid cells are complementary (Bush et al., 2014).

In this study, we sought to understand how all these pieces
come together with a model with place and grid cells organized in
a loop. To that end, we used the model to simulate experiments in
which animals were trained and tested in different environments
(Leutgeb et al., 2005a, 2007; Wills et al., 2005; Leutgeb and
Leutgeb, 2007; Colgin et al., 2010; Lu et al., 2013). In these exper-
iments, the animals are first familiarized to two environment
setups with a controllable number of shared landmarks (training
sessions); later, electrophysiological data are recorded as the an-
imals revisit the initial setups (test sessions). Depending on
whether the initial setups are slightly or very different (Fig. 1a),
one can observe, respectively, rate remapping without grid re-
alignment or global remapping with grid realignment (Fig. 1b).
During the test sessions of some experiments, the environment
can be configured in intermediate setups (Fig. 1c) to probe for
pattern completion and separation (Fig. 1d).

The questions we intended to answer are as follows: (1) Does
a model with grid and place cells organized in a loop support
multiple memory-related phenomena such as representation ac-
curacy, pattern completion, pattern separation, rate and global
remapping and grid realignment? (2) Which features are essential
for any/all these processes? (3) How does grid realignment relate
to place cell remapping and what determines whether rate or
global remapping occurs? (4) What is the role of grid cells in the
representation of different environments? By answering these

questions, our work provides insight into the computational
principles governing the spatial codes of place and grid cells.

Materials and Methods
All codes were written in Python and can be obtained on request from the
authors.

Virtual environment. An environment is defined by a discrete Carte-
sian subspace (a set of 4 � 4 bins) and a context value (s, 0 � s � 1). The
granularity of the representation was selected such that each spatial bin,
also referred to as “position” or “location”, corresponds to an area of
400 cm 2 in the original morphing experiment (arena size of 80 � 80 cm),
which is smaller than the average place field size (�900 cm 2; Leutgeb et
al., 2007; average size computed by de Almeida et al., 2009a). The use of
a coarse grain dramatically reduces the computational cost of the simu-
lations but still allows the use of standard rate map analyses. The context
value encodes the environment setup used in the experiment. For exam-
ple, in the morphing experiment, we define s � 0.0 for the circle envi-
ronment, s � 1.0 for the square environment, and s � 0.5 for the
environment in-between. Thus, although we mention square and round
environments in the text to use the same nomenclature as the experimen-
tal reference, all environments are implemented as a square grid of bins.

Emulation of experiments with environmental modifications. Simulated
experiments mimicry actual protocols applied to rats. We define an ex-
periment as a sequence of sessions simulated in order. Each session cor-
responds to the trial in which a rat can freely explore one environment.
For each session, we define a context value (s) that encodes the environ-
ment setup and a sequence of visited positions (a “trajectory”). Each set
of seven gamma cycles (1 theta cycle, see below) is associated with one
fixed position. The trajectories are implemented as random permuta-
tions of all possible positions, such that each spatial bin is visited at least
once. Thus, the animal can move from one position to any other in the
arena in the next theta cycle; the instantaneous velocity (v) is the resultant
vector from the subtraction between the current and the previous posi-
tions. Context values in different sessions emulate environment modifi-
cations in studies with rats. The synaptic weights are randomly initialized
before the experiment as described below (naive network). In the train-
ing sessions of the experiment, multiple sessions are simulated with al-
ternating context values (s � 0 or 1). During the training sessions, the
synaptic weight can be modified (see learning rules in the Grid cells and
Place cells subsections). The synaptic weights are maintained from one
session to the other. During the test sessions, the synaptic weights are
fixed. The analysis was performed on data acquired during test sessions.
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Figure 1. Place cell remapping and grid cell realignment. a, In experiments that evoke remapping, animals are familiarized to slightly different or very different environment setups (Leutgeb et
al., 2005b). b, Schematic of place and grid cell rate maps for conditions with rate and global remapping of place cells. Grid cell realignment only occurs in conditions leading to place cell global
remapping (Fyhn et al., 2007). c, Protocol for morphing experiments. During training sessions, the animals explore the two extreme setups in alternated sessions. Later, during test sessions, the
animals explore variable setups in a random order. d, PV correlation curve for hippocampal ensemble activity for rate (red) and global remapping (black) experiments, shown as reference to round
(solid line) and square shaped wall (dashed line). Adapted from Colgin et al., (2010). PV correlation measures the similarity in ensemble neuronal activity between different experimental conditions.
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In experiments designed to study the dynamics of model convergence
(Figs. 3, 4), all training and test sessions used the same fixed position.
Training and test sessions were intercalated to evaluate the effect of learn-
ing on network activity. In these experiments, the network was trained
with either one (s � 0; Figs. 3, 4a) or two context values (s � 0 and s � 1;
Fig. 4b) and tested with the full range of values (s � 0 to 1). In exploration
experiments (Figs. 5–9), 12 training sessions of different trajectories with
five visits to each position and with alternate context values (s � 0 and s �
1) were simulated before the test sessions. In the network of Figure 8a, 60
training sessions of trajectories with one visit to each position were sim-
ulated. In morphing experiments, intermediate context values (0 � s �
1) were used to emulate the modification of the walls in test sessions.

Simulation of ensemble neural activity. Input, place, and grid cells are
modeled as rate-based neurons. The set of firing rates (i.e., the ensemble
activity) is computed iteratively. Each iteration cycle t is assumed to
correspond to one gamma cycle; the assumption of a time resolution of
one gamma period (10 –25 ms) was motivated by the use of a competitive
10%-max winner-take-all mechanism to select which cells fire (see be-
low), which was postulated to occur within a gamma cycle (de Almeida et
al., 2009b). A theta cycle is defined as a sequence of seven gamma cycles to
reflect the ratio between theta and gamma frequencies (�8 Hz and �40 –
100 Hz, respectively); however, using a lower number of gamma cycles
per theta leads to similar results because network convergence occurs
within two to four gamma cycles (see Fig. 3). The ensemble neural activ-
ity computed in a gamma cycle is used as input in the computation of the
ensemble activity in the next gamma cycle. In brief, the ensemble activity
of input cells is defined based on the current position and context; the
ensemble activity of grid and place cells is computed applying a
population-wide competition over the integrated input (de Almeida et
al., 2009b).

Input cells. Input cells (ninput � 500 cells) are informative about the
current position and context and are the only source of context informa-
tion in the model. The firing rate of each cell i, Ainput (i, r, s), is set at the
beginning of each theta cycle and remains constant in all nested gamma
cycles within the theta cycle. Ainput (i, r, 0) and Ainput (i, r, 1) are inde-
pendently defined for each cell and position as the product of two uni-
form random variables on (0,1) to produce a left-skewed distribution of
firing rate values (for a discussion about the non-Gaussian distribution
of firing rates, see Roxin et al., 2011); Ainput (i, r, s) � Ainput (i, r, 0) if s � c(i),
otherwise Ainput (i, r, s) � Ainput (i, r, 1), where the context transition
value (c(i)) is randomly defined for each cell from a uniform distribution
on (0, 1). A subset of the input cells is made uninformative about the
context by setting Ainput (i, r, 0) � Ainput (i, r, 1) at every position. The
percentage of input cells that are informative about context is a free
parameter in the simulations. The ensemble activity vector of the input
cells at a given gamma cycle is also referred to as the input pattern.

Grid cells. To implement the observed discretization of the entorhinal
grid map, in which cells are clustered into modules of the same grid
spacing (Stensola et al., 2012), we simulated eight modules of grid cells
organized in an N � N square lattice. Each module is implemented as an
independent continuous attractor network with recurrent connections
(see below) such that the grid spacing of its grid cells is fixed and deter-
mined by the number of cells in the module (Guanella et al., 2007). To
achieve the observed grid scaling of ��2 between modules (Stensola et
al., 2012), the side of the square lattice is increased by two cells; namely,
the eight modules respectively have 2 � 2, 4 � 4, 6 � 6, 8 � 8, 10 � 10,
12 � 12, 14 � 14, and 16 � 16 cells, totaling ngrid � 816 cells.

The activity of grid cells Agrid(i, t) at each gamma cycle t is computed
from the integrated input following a competitive 10%-max winner-
take-all mechanism (de Almeida et al., 2009a,b) effective over each
module:

Agrid�i, t� � 10 � �Igrid�i, t� � 0.9 � max
j�module_of_i

Igrid� j, t�� � H�Igrid�i, t�

� 0.9 � max
j�module_of_i

Igrid� j, t��,

where Igrid(i, t) is the integrated input of grid cell i at cycle t and H(.) is a
Heaviside function. Igrid(i, t) is determined by a convex sum of the feed-

back drive from the place cells, Igrid
place, and the recurrent drive from the

module of grid cells, Igrid
grid:

Igrid�i, t� � �Igrid
grid�i, t� � �1 � ��Igrid

place�i, t�,

where the free parameter � balances the influence from recurrent and
feedback inputs. Igrid

place�i, t� at gamma cycle t is computed as follows:

Îgrid
place�i, t� � �

j�1

nplace

Aplace� j, t � 1� � Wgrid
place�i, j, t�,

Igrid
place�i, t� �

Îgrid
place�i, t�

max
j�module_of_i

Îgrid
place� j, t�

,

where nplace is the number of place cells and Aplace( j, t 	 1) is the activity
of place cell j at gamma cycle t 	 1 (see below), and Wgrid

place�i, j, t� is the
synaptic weight from place cell j to grid cell i at t. Igrid

grid�i, t� at gamma cycle
t is computed as follows:

Îgrid
grid�i, t� � �

j�1

ngrid

Agrid� j, t � 1� � Wgrid
grid�i, j, v�,

Igrid
grid�i, t� �

Îgrid
grid�i, t�

max
j�module_of_i

Îgrid
grid� j, t�

.

Where Wgrid
grid�i, j, v� is the synaptic weight from grid cell j to grid cell i at

velocity v.
The synaptic weight matrix, Wgrid

place, is initialized with random values
from a log-normal distribution with mean � 0.0 and � � 1.0. These
synapses are plastic and their weights change every gamma cycle with a
learning rate �fb (0.5, if not mentioned):

Ŵgrid
place�i, j, t� � � fb �

Agrid�i, t � 1�

max
l

Agrid�l, t � 1�
�

Aplace� j, t � 1�

max
l

Aplace�l, t � 1�

� Wgrid
place�i, j, t � 1�,

Wgrid
place�i, j, t� �

Ŵgrid
place�i, j, t�

1

nplace
�l�1

nplace

Ŵgrid
place�i, l, t�

.

The synaptic weight matrix, Wgrid
grid, is fixed for each velocity v and set in

such a way that the connectivity within modules of grid cells has a
twisted torus topology, as described by Guanella et al. (2007). In brief,
Wgrid

grid�i, j, v� � 1 if cell i is connected with cell j for the velocity v and
Wgrid

grid�i, j, 0� � 0 otherwise. Cells from the same module are organized
in an N � N square lattice such that neighboring cells code for neighbor-
ing positions. Cells in one boundary of the lattice relate with cells in the
other boundary as if the lattice was tiled.

Place cells (original model). The activity of place cells (nplace � 5000
cells) at a gamma cycle t is first computed from the integrated input
following a competitive 10%-max winner-take-all mechanism over the
pool of cells:

Âplace�i, t� � 10 � �Iplace�i, t� � 0.9 � max
j

Iplace� j, t�� � H�Iplace�i, t�

� 0.9 � max
j

Iplace� j, t��,

where Iplace(i, t) is the integrated input of place cell i at cycle t and H(.) is
a Heaviside function. Thus, according to this rule, a place cell is active in
a given gamma cycle if its integrated input is within 10% of the integrated
input of the place cell with maximal input (de Almeida et al., 2009b).
Next, a pattern completion procedure adapted from Rennó-Costa et al.
(2014) is used to compare the current ensemble activity with previously
stored patterns. Thus, we do not explicitly model the connectivity among
place cells, but we model an equivalent stereotyped pattern completion
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mechanism. If the highest correlation between the vector Âplace�t� �

Âplace�1, t�, . . . , Âplace�nplace, t�� and the previously stored patterns of
activity is below a threshold value 	 (0.8, if not mentioned), then Âplace�t�
is incorporated into the memory as a new pattern. Otherwise, Aplace(t) is
set as follows:

Aplace�i, t� � max�Âplace�i, t�, Amemory�i��,

where Amemory is the pattern with the highest correlation with Âplace�t�.
The integrated input of place cells, Iplace, is determined by a convex sum of

the feedforward drive from grid cells, Iplace
grid , and from input cells, Iplace

input:

Iplace�i, t� � 
Iplace
grid �i, t� � �1 � 
�Iplace

input�i, t�,

where the free parameter 
 balances the influence from grid and input
cells. Iplace

grid �i, t� and Iplace
input�i, t� at every gamma cycle t is computed as

follows:

Îplace
grid �i, t� � �

j�1

ngrid

Agrid� j, t � 1� � Wplace
grid �i, j, t�,

Iplace
grid �i, t� �

Îplace
grid �i, t�

max
j

Îplace
grid � j, t�

,

Îplace
input�i, t� � �

j�1

ninput

Ainput� j, t� � Wplace
input�i, j, t�,

Iplace
input�i, t� �

Îplace
input�i, t�

max
j

Îplace
input� j, t�

,

where Wplace
grid �i, j, t� is the synaptic weight from grid cell j to place cell i at t,

and Wplace
input�i, j, t� is the synaptic weight for input cell j to place cell i at t.

The synaptic weight matrices Wplace
grid �i, j, t� and Wplace

input�i, j, t� are initial-
ized with random values from a log-normal distribution with mean � 0.0
and � � 1.0. These synapses are plastic and their weights change every
gamma cycle with learning rate �ff (0.01, if not mentioned):

Ŵplace
grid �i, j, t� � � ff �

Aplace�i, t � 1�

max
l

Aplace�l, t � 1�
�

Agrid� j, t � 1�

max
l

Agrid�l, t � 1�

� Wplace
grid �i, j, t � 1�,

Wplace
grid �i, j, t� �

Ŵplace
grid �i, j, t�

1

ngrid
�l�1

ngrid

Ŵplace
grid �i, l, t�

,

Ŵplace
input�i, j, t� � � ff �

Aplace�i, t � 1�

max
l

Aplace�l, t � 1�
�

Ainput� j, t � 1�

max
l

Ainput�l, t � 1�

� Wplace
input�i, j, t � 1�,

Wplace
input�i, j, t� �

Ŵplace
input�i, j, t�

1

ninput
�l�1

ninput

Ŵplace
input�i, l, t�

.

Place cells (alternative model). To determine whether the results of the
original model could be due to the different implementations of the
recurrent connections within the place and the grid cell networks, we also
run simulations in an alternative model in which the recurrent input
from place cells, Iplace

place, takes part in their integrated input, Iplace:

Iplace�i, t� � �Iplace
place�i, t� � �1 � ���
Iplace

grid �i, t�

� �1 � 
�Iplace
input�i, t��,

where the free parameter � balances the influence from the recurrent
inputs and has the same value as the one used for the grid cell network.

The activity of place cells (nplace � 5000 cells) at a gamma cycle t is
computed as in the original model:

Aplace�i, t� � 10 � �Iplace�i, t� � 0.9 � max
j

Iplace� j, t�� � H�Iplace�i, t�

� 0.9 � max
j

Iplace� j, t��,

and, also as in the original model, if the maximum correlation between
the population vector of the computed activity of place cells, Aplace(t),
and all stored patterns is below a threshold value (0.8, if not mentioned),
Aplace(t) is incorporated into the memory as a new pattern.

The recurrent input Iplace
place�i, t� is defined based on the population vec-

tor of place cell activity in the previous gamma cycle, Aplace(t 	 1), such
that Aplace�t � 1�, such that Iplace

place�i, t� � 0 for every place cell if Aplace(t 	 1)
was not stored in memory; otherwise, Iplace

place�i, t� � max�Aplace�i, t � 1�,
Amemory�i��, where Amemory is the stored pattern with the highest correla-
tion with Aplace(t 	 1).

Experimental design and statistical analysis. The correlation of the pop-
ulation vectors (PVs) in different conditions was used to assess the level
of change in the ensemble activity (Leutgeb et al., 2007). In Figure 3, we
computed the PV correlation between two subsequent gamma cycles. In
this case, network convergence is defined as PV correlation �0.99. In
other figures, we computed the PV correlation of the last gamma cycle
in the same position (r) between different contexts (s). To assess whether
the hexagonal grid pattern is present in the rate map of grid cells, we
measured the maximum PV correlation between the grid cell rate map
and all possible hexagonal templates of the same scale of the grid cell
module under analysis. A PV correlation �0.95 indicated a match be-
tween the grid cell rate map and a precise hexagonal pattern. The grid
firing pattern was considered present if all grid cells had a match with a
precise hexagonal pattern. Place cells were considered active if their firing
rate was non-zero positive in at least one spatial bin. For each cell, the
number of place fields is the number of spatial bins with non-zero posi-
tive rate values. The population of place cells was considered to have a
regular number of place fields if the average number of place fields of
active cells was between 1 and 1.5.

Motivated by the fact that the spatial stability of place cell firing de-
pends on age and specific location (Muessig et al., 2015), we evaluated
how the amount of noise in the sensory input may influence place cell
stability. The noise level of a spatial position refers to a specific percentage
of input cells that have activity values randomly defined at each visit to
the position. We performed three kinds of experiments to evaluate place
cell stability: (1) variations in “input consistency” (see Fig. 9a): in these
simulations, the noise level was either 0% or 100% at each position, and
we varied the ratio of noisy/non-noisy positions (the first position of the
trajectory was always non-noisy); (2) variations in “input noise” (see Fig.
9b): in these simulations, the noise level was uniform across all positions
and varied from 0% to 100%; and (3) variations in “age” (see Fig. 9c): in
these simulations, the noise levels linearly decreased with age, from 40%
to 20% at the edge of the arena, and from 50% to 30% at the center. We
assessed the stability of place cell activity across multiple simulations
(n � 64) of trained networks under the same experimental condition.
For each position, we first computed the average PV correlation over
all pairwise combinations of the different simulations. Place cell sta-
bility was then measured as the average PV correlation over either
all positions (see Fig. 9a,b) or restricted to edge/center positions (see
Fig. 9c).

Results
We incorporated a feedback loop to a hippocampal-entorhinal
circuitry model (Fig. 2a; see Material and Methods) and investi-
gated with computer simulations whether the resulting dynamics
accounts for changes in spatial firing patterns of grid and place
cells upon environmental modifications (Leutgeb et al., 2005b,
2007; Wills et al., 2005; Fyhn et al., 2007; Colgin et al., 2010; Fig.
1). The simulations mimicked the experimental protocols, thus
allowing for direct comparisons. These experiments had training
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sessions in which animals were familiarized to two environment
setups, and test sessions in which neurophysiological data were
recorded. In the simulation, an exploratory session was imple-
mented by establishing a trajectory (a sequence of positions) and
a context value related to the environment setup (Fig. 2b). Posi-
tion and context were encoded in the activity of input cells [i.e.,
cells that provide input to place cells such as lateral entorhinal
cortex (LEC) and MEC non-grid cells], and the ensemble activity
of place and grid cells was computed for the specific location
defined in the trajectory. We implemented both training and test
sessions. The initial network with the synaptic weights initialized
randomly is denoted as a naive network. Training sessions in-
clude multiple experimental sessions with alternated context val-
ues and synapses modeled as plastic. The network after the
training sessions is denoted as a trained network. As in experi-
mental studies (Leutgeb et al., 2007), the similarity of the ensem-
ble activity of grid and place cells was analyzed using the
correlation of population vectors (PV, an array of firing rates
indexed by cell number) across conditions. Simulated data used
in the analysis were collected during the test sessions.

Ensemble activity of grid and place cells was computed as
follows: place cells compete to determine which cells fire (de
Almeida et al., 2009b) based on the rapid integration of the pro-
jections from input and grid cells. Importantly, the dynamics of
local competition is assumed to occur at every gamma cycle (de
Almeida et al., 2009b), which delimits the time resolution of the
simulation (�20 ms). Place cells are subject to a pattern comple-
tion process emulating the effect imposed by the recurrent
collaterals that is equivalent to a nearest neighbor algorithm
(Rennó-Costa et al., 2014). Place cells’ recurrent collaterals are
not modeled explicitly and are separated from the competition
process. This model choice was motivated by the fact that they
have transmission time much shorter than a gamma period
(Miles, 1990; Guzman et al., 2016); moreover, given the fast
monosynaptic transmission among recurrent place cells, in the
model the hippocampal pattern completion process was assumed
to be effective within the same gamma cycle. Grid cells compete
with similar mechanisms of the place cells but based on the rapid
integration of the projections from place cells and recurrent con-
nections from other grid cells. Recurrent grid cell connections are
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(2007; n � 816 neurons). Input cell population as by Rennó-Costa et al. (2010; n � 500 neurons). b, The experiment comprises the simulation of sequential sessions divided into training and test
sessions. Each session has a characteristic context value (s) and a trajectory of position values (r). The rat stays at a position for a theta cycle (or 7 gamma cycles). The activity of input cells is determined
in each gamma cycle based on the position and context values. The naive network is the network prior the training sessions whereas the trained network is the network after the training sessions.
Analyses are performed on data collected during the test sessions. c, Model parameters. 
 denotes connection strength from grid to place cells normalized by the overall feedforward connection

strength reaching the place cells �
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GC ¡ GC � PC ¡ GC�. �fb and �ff denote learning rate for the feedback and feedforward synapses, respectively. NGC, Non-grid

cells (input cells); PC, place cells; GC, grid cells. Default parameters: 
 � 0.1; � � 0.7; �fb � 0.5; �ff � 0.01.
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hardwired to form independent modules of velocity-driven con-
tinuous attractor networks (Guanella et al., 2007). Contrarily to
the place cells recurrent network, we chose to model the grid cell
attractor network explicitly and effective in the next gamma cycle.
This model choice was based on the assumption of disynaptic com-
munication between grid cells (Couey et al., 2013; Pastoll et al.,
2013), but we note that the experimental evidence for this is contro-
versial (Fuchs et al., 2016).

Synapses connecting different neuronal groups (grid cells,
place cells, and input cells) are subject to Hebbian-like plasticity.
The main parameters of the model (Fig. 2c) are the relative input
strength from grid cells and input cells to place cells, the relative
input strength from recurrent grid cells and place cells to grid
cells, whether the incoming synapses of place cells or grid cells are
plastic, and the threshold for intrahippocampal pattern comple-
tion. As default values, we consider plasticity enabled in all syn-
apses and stronger recurrence input than place cell input to grid
cells, a condition necessary for the emergence of grid firing pat-
tern in our model. Grid to place cell input corresponded to 10%
of all place cell input because grid cells are �20% of MEC cells
(Zhang et al., 2013) and MEC and LEC projection targets at hip-
pocampal dendrites are about the same size (Hama et al., 1989).

Of note, to check whether the results could be due to different
choices of the time scale of hippocampal and entorhinal recur-
rence, we also simulated an alternative model in which the recur-

rent place cell activity is fed back in the
next gamma cycle, as implemented for the
grid cells (see Material and Methods).

Network dynamics within a theta cycle
Before simulating the exploration ses-
sions, we evaluated whether the rapid dy-
namics of the model is compatible with
the time characteristic of the hippocampal
neurophysiology. Compatibility cannot
be taken as granted because the feedback
loop from place to grid cells leads to in-
trinsic iterative dynamics, i.e., the activity
pattern at a given time depends on its past,
contrasting with feedforward models
where the activity pattern is completely
determined by the concurrent input. For
this reason, feedback models can produce
complex and unpredictable behavior; it is
therefore important to evaluate whether
model dynamics is bounded. Specifically,
because the representation of the current
position happens within a theta cycle
(Sanders et al., 2015), the ensemble activ-
ity of place and grid cells should stabilize
in a few gamma cycles (in our model a
theta cycle is defined to occur every 7
gamma cycles). We thus analyzed how the
ensemble activity of grid and place cells
evolves in the first gamma cycles of envi-
ronment exploration. We observed that
the ensemble activity converges to a
steady pattern within a few gamma cycles,
after which the same subset of neurons is
active in subsequent cycles (Fig. 3a). This
occurs for naive and trained networks
(naive networks use the initial synaptic
weights before training session whereas

trained networks had the synaptic weights modified by learning
in previous explorations; see Material and Methods), although
convergence is faster for the trained network (average of 2.7
gamma cycles for naive and 1 gamma cycle for trained network).
We also evaluated whether using a different input pattern from
the one used during training (reference pattern) affects network
convergence. In trained networks, the time for convergence is
only affected when the input pattern substantially differs from
the reference pattern (PV correlation �0.3; Fig. 3b). As PV cor-
relation between input patterns decreases to zero, convergence
time increases but stays well within a theta cycle, approaching the
time required for the naive network (�2.7 gamma cycles). Simi-
lar results were obtained with the alternative model (Fig. 3c).
Thus, the network is capable of rapidly achieving stable activity
states upon changes in the input pattern, which is to say that the
network promptly codes for changes in episodic variables such as
the current position.

Rapid pattern completion and attractor dynamics in place
and grid cell network
We next asked whether the changes in the input pattern not only
affect convergence time but also influence the steady-state pat-
tern of grid and place cell activity within a theta cycle. Given that
the switch between neural representations is theta-frequency
paced (Jezek et al., 2011), the converged pattern of grid and place
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cell activity within a theta cycle should already reflect properties
observed in remapping experiments. First, when trained with
different environments, for mild changes in the environment, the
activity of place and grid cells is unaffected (Wills et al., 2005;
Colgin et al., 2010). Second, for extensive changes in the environ-
ment, place cells globally remap and grid cells realign. Third,
when morphing from one environment to another, actual place
cells may abruptly shift between representations (Wills et al.,
2005; Colgin et al., 2010).

In our simulations, although the naive network exhibits dras-
tic changes of the grid and place cell patterns for small variations
in the input, they are invariant in the trained network (Fig. 4),
which is in accordance with the first property above. Moreover,
consistent with the second property, the grid and place cell pat-
terns of the trained network are only affected when the input
pattern markedly differs from the reference pattern (Fig. 4a).
This effect, known as pattern completion, shows that after train-
ing the mapping of the input pattern into a pattern of grid cell
activity follows attractor dynamics. Thus, long-term plasticity in
the feedforward synapses from the entorhinal cortex to the hip-
pocampus and in the feedback synapses from place cells to grid
cells seem to be sufficient for the development of attractor dy-
namics in both place and grid cells. Finally, to test for the third
property, we trained the network with two different reference

patterns (A and B) and then tested intermediate input patterns.
Consistent with experimental results (Wills et al., 2005; Colgin et
al., 2010), we observed an abrupt switch of the grid and place cell
patterns when the input pattern was an even mixture of the two
reference patterns (Fig. 4b). The same observation holds for the
alternative model (Fig. 4c).

Rate remapping, global remapping, and grid realignment
The results above indicate that the converged pattern of grid and
place cell activity already reflects properties of remapping exper-
iments at the very first theta cycle. It remains to be shown whether
ensemble activity of place and grid cells quantitatively accounts
for experimental data (Fig. 1) across a full environment explora-
tion (i.e., across several theta cycles). We constructed rate maps
from the ensemble activity obtained with the emulation of exper-
iments that induce hippocampal remapping (Leutgeb et al.,
2005b, 2007; Wills et al., 2005; Fyhn et al., 2007; Colgin et al.,
2010). The simulated grid and place cells exhibited characteristic
features prior and after learning, such as limited number of place
fields (�96% of active place cells had 1 place field, and �4% had
2 place fields; after learning, active place cells at each environment
corresponded to �5% of hippocampal neurons) as well as pres-
ence of a triangular firing pattern for grid cells. However, with the
naive network, the alignment of grid cells changed depending on
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Figure 4. Rapid pattern completion and attractor dynamics in place and grid cell network. a, b, PV correlation (median and interquartile range) of converged grid (top) and place cell (bottom)
patterns within the first theta cycle as a function of the similarity between input patterns. Right, Color-coded PVs for a sample of input and grid/place cells with varying input patterns. a, Network
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50 training sessions) networks. c, as in a and b, but for simulations performed with the alternative model.
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the initial position of the trajectory (average PV correlation of
0.17 considering 64 trajectories). With the trained network, the
alignment of grid cells was stable.

Notably, a key variable determining grid realignment and
global remapping was the amount of environment information
in the input cells, defined as the percentage of cells that exhibit
differential firing depending on the environment (Fig. 5a). We
defined rate remapping as a drop in the PV correlation (to �0.95)
of the place cells (Fig. 5b) but not in the PV correlation of the grid
cells (Leutgeb et al., 2005b, 2007). Global remapping and grid
realignment were characterized by a reduction of the PV cor-
relation for both place and grid cells. We observed rate or
global remapping depending on the percentage of environment-
informative input cells (Fig. 5c,d). Rate remapping occurs for
conditions with low to moderate percentage of environment-
informative input cells, whereas global remapping takes place
when the percentage of input cells informative about the envi-
ronment is higher than a threshold (�65%; Fig. 5e). The thresh-
old varied depending on initial conditions (i.e., input patterns
and synaptic weights), which is in accordance with the fact that
global remapping is not consistently evoked by subtle changes in
the environment (Wills et al., 2005; Fyhn et al., 2007; Leutgeb et
al., 2007; Colgin et al., 2010), whereas it is reliably induced by
extensive changes in the environment (Leutgeb et al., 2005b;
Fyhn et al., 2007; Colgin et al., 2010).

Sharp transition of hippocampal ensemble activity in the
morphing experiment
We also analyzed ensemble activity in protocols involving full
exploration of intermediate configurations of the reference envi-
ronments through morphing of the arena (Wills et al., 2005;
Leutgeb et al., 2007; Colgin et al., 2010). These experiments were
designed to verify whether hippocampal-entorhinal network ac-
tivity exhibits attractor dynamics identified in auto-associative
memory systems (Hopfield, 1982; McNaughton and Morris,
1987; de Almeida et al., 2007). As in experimental data (Colgin et
al., 2010), when morphing through environments, we observed a
sharp transition in the place cell PV correlation curve in condi-
tions that induced global remapping (�60% of informative input
cells) or a smooth transition otherwise (Fig. 5f). Importantly, the
sharp transition in the pattern of place cell activity co-occurs with
a sharp transition in the pattern of grid cell activity (Fig. 5g). Of
note, for all simulation protocols we found no qualitative differ-
ence with the alternative model (Fig. 5h).

We next evaluated which features of the model were determi-
nant for the appearance of the sharp transition of hippocampal
ensemble activity in the morphing experiment. We first consid-
ered the hypothetical experiment in which hippocampal plastic-
ity is impaired (both for synapses from the entorhinal cortex and
for its recurrent collaterals; the latter is equivalent to having no
intrahippocampal pattern completion). Depending on the per-

Figure 5. Global remapping and grid realignment in a bidirectional place and grid cell network. a, Representation of the activity of input cells in different environments (left and right, color-coded
vectors). Input cells informative about the environment change their firing rates (top), whereas noninformative input cells do not (bottom). b, Scheme showing two PVs built from the tiling of rate
maps. c, Sample rate maps from input, place, and grid cells in two environment conditions (square and round) and different percentages (50% and 90%) of input cells that are informative about the
environment. d, Average PV correlation of place (dashed red), grid (solid blue), and input cells (dashed gray) between the two environments as a function of the number of input cells which are
environment-informative. Line represents median, shaded area is the interdecile range of values for 64 runs. e, Percentage of simulations that resulted in no remapping, rate remapping, or global
remapping depending on how environment-informative the input was. f, g, PV correlation curves of place (f ) and grid cells (g) in the morphing experiment. Results shown as a function of the PV
correlation of informative input cells. Different colors depict results for varying percentage of input cells which are informative about the environment (coded from red, high informative, to blue, low
informative). Line represents median; shaded area is the interdecile range of values for 64 runs shown for 60% and 100% informative inputs. Network parameters are 
� 0.1, �� 0.7, �fb � 0.5,
�ff � 0.01. h, as in d–g, but for simulations performed with the alternative model.
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centage of informative input cells, global remapping with grid
realignment could still be observed, but the sharp transition in
the morphing experiment vanished (Fig. 6a). We next evaluated
the effect of plasticity on each pathway separately. With plasticity
in the input synapses and without intrahippocampal pattern
completion, the sharp transition in the morphing experiment
became once again apparent (Fig. 6b). On the other hand, the
network still exhibited a smooth transition when programmed
without plasticity in the input synapses but with the pattern com-
pletion algorithm effective in place cells (data not shown). Inter-
estingly, enhancing the strength of intrahippocampal pattern
completion (by reducing its threshold to 	 � 0.4) led to a change
in the place cell PV correlation curve that did not match the sharp
transition seen in the standard network but resembled the CA3
PV correlation curve observed experimentally (Fig. 6c; Leutgeb et
al., 2007; Rennó-Costa et al., 2014).

Place cells do not require grid cells to remap
We next evaluated whether the model captures the observation
that place cells do not require grid cell input to remap and display
pattern completion (Brandon et al., 2014; Muessig et al., 2016).
We reran the previous simulations but without the synapses from
the grid cells to the place cells (Fig. 7a). The removal of the grid
cell input did not alter the basic characteristics of the place cells
such as the number of place fields and invariability of the ensem-
ble activity to the trajectory. Global remapping and grid realign-
ment with a sharp transition in the morphing experiment was
also observed without grid cell input (Fig. 7a, second to fifth
panels). Moreover, for the experimental conditions in which the
input was less informative about the environment, place cells
remapped with a smooth transition but grid cells did not realign,

which is characteristic of rate remapping. Despite exhibiting
qualitatively similar results without grid cell inputs, however, the
PV correlation curves of place cells were quantitatively different
from those of the control network, indicating that the grid cell
input influences associative properties of place cells.

LEC impairment reduces rate remapping
LEC lesions have been previously shown to reduce rate remap-
ping (Lu et al., 2013). In our model, removing the LEC input is
equivalent to reducing the strength of the non-grid cell input to
place cells. In such a scenario, which in the model is equivalent to
enhancing the relative input strength from grid cells to place cells,
we found that place cell rate remapping occurred in most of the
simulations in a narrower range of informative input cells, from
20 to 90% (Fig. 5d) to 40 –90% (Fig. 7b, third panel). Thus, al-
though rate remapping could still be observed, our model pre-
dicts that it would be more difficult to induce experimentally
because for a wide range of input changes (20 – 40%) rate remap-
ping occurred in control networks but not in networks lacking
LEC inputs.

Session length influences grid realignment
Different studies have found that the same level of place cell PV
correlation (�0.2) can be observed along with either rate
(Leutgeb et al., 2005a) or global remapping (Colgin et al., 2010).
We evaluated if the length of exploration sessions affects whether
the network displays rate or global remapping. To that end, we
reduced the length of the trajectory in training sessions by a factor
of five while keeping the total training time unchanged by run-
ning five times more sessions. We found that such modification
had little effect on place cell PV correlations but strongly affected
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how grid cells encoded different environments (Fig. 8a, second
panel). Namely, the minimal percentage of informative input
cells leading to grid realignment as the most likely outcome de-
creased from �70% in the control network to �50% in the modi-
fied network (Fig. 8a, third panel). These results indicate that
either global or rate remapping can be observed for the same
level of place cell PV correlation depending on session length
during training. For instance, note that at 60% informative
input cells, place cell PV correlation is �0.3 both in the control
and in the modified network, which respectively exhibit rate
and global remapping (Fig. 8a, fourth and fifth panels). Of
note, reducing the learning rate of the feedback connection
from place to grid cells by a factor of five leads to similar
results (Fig. 8b).

Grid cells enhance robustness of place cell representation
of space
Having shown that place cells do not need grid cells to represent
different environments, we next sought to understand the func-

tional role of these incoming connections to the place cells. Grid
cells have already been implicated in other phenomena such as
path planning (Kubie and Fenton, 2012; Bush et al., 2015) and
mind-travel (Hasselmo, 2009; Sanders et al., 2015). For this pur-
pose, the theoretical ability of grid cells to implement path inte-
gration (McNaughton et al., 2006) might be the means for place
cells to deal with incomplete, ambiguous, and noisy sensory in-
put. The few models that considered both pathways that inter-
connect grid and place cells focused on the possible role of the
loop in the stabilization of the grid cells (Guanella et al., 2007;
Samu et al., 2009), but they provide little insight into the impli-
cations of the loop in the activity of place cells regarding features
such as pattern completion and remapping. We studied how
robust is the place cell representation upon changes in the infor-
mation content of the sensory input. Specifically, we tested con-
ditions in which the positional information in sensory inputs was
either inconsistent or noisy. Sensory information at a given posi-
tion was considered consistent when the same set of input cells
was active/inactive in different explorations of the same environ-
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ment. Input consistency refers to the percentage of positions with
consistent sensory information (Fig. 9a); input noise refers to the
percentage of input cells that exhibit random activity regardless
of the position (Fig. 9b).

Without grid cell inputs, we found that the place cell representa-
tion is highly susceptible to a reduction in the percentage of positions
with consistent sensory information; on the other hand, increasing
the strength of the input from grid cells allowed for stable place cell
representation even when the input consistency was as low as 20%
(Fig. 9ai). This result suggests that preweanling pups have lower
place field stability in the center than in the border of the arena
(Muessig et al., 2015) due to lower sensorial information in the cen-
ter compared with the border (Solstad et al., 2008) along with the
lack of mature grid cells. We also found that grid cells enhanced the
robustness of place cell representation to noisy inputs (Fig. 9bi),
modeled as random activity in a percentage of input cells. Therefore,
a mechanism by which the relative strength of the inputs to place
cells varies depending on the reliability of the sensory input can
enhance the stability of the spatial representation. Finally, we found
that the pattern completion algorithm acting on the place cells did

not prevent the reduction in place cell stability upon changes in
input consistency (Fig. 9aii), but slightly increased robustness to
noisy inputs (Fig. 9bii).

In face of these results, we next sought to simulate the obser-
vations that (1) the spatial stability of the place cell representation
gradually increases with age and is initially higher at the edge of
the arena, and (2) that the maturation of grid cells coincides with
the age in which the representation of the center and the edge
of the arena are similarly stable (Muessig et al., 2015). As shown
in Figure 9c, these findings could be replicated by assuming that
the input noise decreases with development (Verschure et al.,
2006), and is always higher in the center of the arena where bor-
der cell information is not available (Solstad et al., 2008; Bjerknes
et al., 2014). We found that the enhancement of place cell stability
promoted by grid cell inputs (Fig. 9a) can compensate for the
edge-center difference in input noise (Fig. 9c).

Discussion
Here we show that a model with place and grid cells organized in
a loop can account for rate and global remapping of place cells
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and realignment of grid cells. Contrary to the previous notion
that grid realignment causes global remapping, in our model the
place cell input to grid cells induces grid realignment during
global remapping, and not the other way around. This is some-
what expected from model design because the grid cell input to
place cells is weak when compared with the non-grid cell input
(10% vs 90% of inputs, respectively). Indeed, in our model, place
cells can natively represent different environments without the
need of grid cell input, as in models devised before grid cells were
discovered (Burgess and O’Keefe, 1996; Redish, 1999; Hartley et
al., 2000; Arleo et al., 2001). Although grid cells do not seem to be
necessary for the remapping phenomena, they influence the as-
sociative properties of place cells, as inferred by the changes in
place cell PV correlation curves in the morphing experiment (Fig.
7). Moreover, the grid cells seem to stabilize the place cell code
upon noise/inconsistent inputs (Fig. 9). In all, our work suggests
that place cells do not inherit positional information from grid
cells, but instead interact with them to build a unified
representation.

Our model provides a detailed picture of how the hippocampus-
entorhinal circuit could establish the cognitive map (Fig. 10). In
brief, the flow of information originates in neurons of the ento-
rhinal cortex other than grid cells that are informative about the
environment (Fig. 10a). The sensory inputs reverberate through
the place and grid cell loop, converging into a stable network state

with a specific grid cell alignment. This state is memorized
through Hebbian plasticity in the bidirectional connections be-
tween the hippocampus and the entorhinal cortex in two steps:
(1) the development of a place cell representation through plas-
ticity in the feedforward synapses from non-grid cells to place
cells; and (2) the formation of an integrated code through plas-
ticity in the place-to-grid and grid-to-place cell synapses. The
network can switch to another activity state by using either allo-
thetic information such as environmental cues from the non-grid
cells or idiothetic information such as velocity signals that im-
pinge on the grid cell modules (Fig. 10b; McNaughton et al., 2006;
Kropff et al., 2015). The link between different stored represen-
tations indexed by the idiothetic information implements a map
that could underlie navigational computation such as path inte-
gration and trajectory planning (Kubie and Fenton, 2012; Bush et
al., 2015). In this sense, although place cells appear before grid
cells during development (Langston et al., 2010), it would only be
after grid cells mature (Muessig et al., 2015) that the animal
should be able to use the map to navigate. The map is reloaded
from the recall of any of its positions through the perception of
sensory anchors such as visual landmarks (Pérez-Escobar et
al., 2016). Once the start point of path integration is set (and
thus, the grid alignment), all positions are reachable through the
modulation of grid cells by idiothetic information (Fig. 10c),
and/or through changes in allothetic inputs from non-grid cells.
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and grid cells. bii, As before, grid and place cell activity converges and plasticity links sensory landmarks to place cells and couples active place and grid cells. c, If the animal returns to a known position
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As similar positions from different environments are stored with
uncorrelated patterns of grid cell activity, multiple maps can be
stored without interference (Fig. 10d; Redish, 1999).

The formation of the cognitive map as described above has
two core mechanisms. One is the emergence of neural represen-
tations that are episode specific, where an episode is regarded as a
position in each context. The second is the anchoring of the in-
ternal navigation framework to the neural representations of the
same context. Our simulations indicate that grid cells are essen-
tial for the latter but not the former. Indeed, place cells form place
fields in the absence of grid cell input (Brandon et al., 2014), a fact
reproduced by our model. Also, global remapping is observed
even in the absence of grid cell input (Brandon et al., 2014; Mues-
sig et al., 2016), another fact reproduced by our model (Fig. 7a).
Thus, the role of grid cells in establishing the cognitive map
would not be the formation of place fields, but to provide a com-
putational scheme that rapidly aligns the place fields to a naviga-
tion framework. Such functionality also has an impact on the
robustness of the spatial representation, as indicated by the in-
crease in place field stability after the grid cell network has ma-
tured (Fig. 9; Muessig et al., 2015).

In our simulations, plasticity in the synaptic inputs to the
hippocampus and in its recurrent collaterals is not required for
establishing different maps in different environments. However,

blocking plasticity in the synaptic inputs to the hippocampus
leads to no sharp transition in place cell activity during the mor-
phing experiment (Fig. 6). In this case, as the network does not
form stable representations, there is no attractor dynamics. Con-
sistently, long-term stabilization of CA1 place fields requires
protein synthesis in the hippocampus (Agnihotri et al., 2004;
Renaudineau et al., 2009). Importantly, in our model, strong
intrahippocampal pattern completion alters the representation
transition in the morphing experiment, which becomes more
similar to the one observed during rate than global remapping
(Rennó-Costa et al., 2014; Solstad et al., 2014).

Thus, our model predicts that impairing plasticity in the re-
current CA3 synapses should have no effect in the morphing
experiment under conditions that promote global remapping,
but may affect the PV correlation curve under rate remapping
protocols. However, it should be noted that such prediction may
be a consequence of our model design. Namely, the implemen-
tation of the intrahippocampal pattern completion algorithm in
our model is assumed to occur within a gamma cycle and was not
explicitly modeled. It is possible that explicitly modeling the CA3
recurrent synapses leads to different results. Moreover, we cannot
discard a possible role of pattern completion in other intrahip-
pocampal loops such as the CA3 backprojection to the DG
(Scharfman, 2007), which were not considered in this model. In
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Figure 11. Mechanisms of rate and global remapping. Illustrations as Figure 10. a, For a first environment, after exploration the cognitive map is set as described in Figure 10. b, In a new and
slightly different environment, sensory inputs for the same position are similar and encoded by the same cells (pattern completion). Once the animal is in this new environment, the same place and
grid cells are activated as in the first environment. The construction of the map will follow the procedure described in Figure 10, leading to overlapping maps. Once both maps as established, the same
set of place and grid cells will be active at the same position regardless of the environment. In this case, rate remapping will be observed since small variations of sensory inputs are reflected in the
spike rate of the place cells. c, In a new and very different environment, sensory inputs for the same position are different and encoded by different cells (pattern separation). Once the animal is in
this new environment, a different set of place and grid cells is activated in relation to the first environment. The construction of the map will follow the procedure described in Figure 10, leading to
orthogonal maps. Once both maps are established, different sets of place and grid cells will be active depending on the environment. In this case, global remapping and grid realignment will be
observed.
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any case, our results shed light on the discussion of whether the
origin of attractor dynamics in the morphing paradigm is due to
auto-associative properties of the CA3 region or resides in the
path integrator system (Colgin et al., 2010). Here we show that
the bidirectional connection between the hippocampus and the
entorhinal cortex is able to implement an attractor dynamics that
leads to a sharp transition in simulated morphing experiments
without the need of CA3 recurrent collaterals (implemented in
our model as pattern completion algorithm in the hippocampus;
Fig. 7).

There are, thus, two concurrent sites for attractor dynamics in
the hippocampal formation: although the broad memory system
of the entorhinal-hippocampal loop can encode different spatial
contexts (such as different environments), as revealed by the
sharp transition during global remapping, the narrow memory
system in the CA3 can encode different non-spatial aspects
within the same spatial context, as revealed by the smooth non-
linear transition during rate remapping (Leutgeb et al., 2007).
Therefore, our results add the notion that the brain may imple-
ment attractor networks in multiple scales, allowing the con-
struction of stable memories with different levels of detail, from
general contexts (in the hippocampal-entorhinal loop) to specific
episodes (in the CA3 recurrent collaterals). The timescale of at-
tractor convergence is compatible with theta oscillations organiz-
ing local computation in gamma cycles (Mizuseki et al., 2009).
The retrieval of stored grid and place cell patterns take a few
gamma cycles (Figs. 3, 4); thus a map can be recalled in the broad
attractor as rapidly as a theta cycle (Jezek et al., 2011). Yet, con-
vergence in the narrow attractor in the CA3 is even faster, occur-
ring in the time scale of a single gamma cycle (Rennó-Costa et al.,
2014).

The results of remapping and morphing experiments can be
understood with the notion of two attractor networks. When
changes in the environment are mild (Leutgeb et al., 2007), the
pattern of activity in the entorhinal-hippocampal loop converges
to the same broad attractor. In this case, there is no grid realign-
ment as the grid cells converge to the same pattern (Fig. 11b). Yet,
the activity of hippocampal neurons in the narrow attractor net-
work converges to a different state and rate remapping is ob-
served. No sharp transition is expected for mild changes due to
the characteristics of the narrow attractor network in the CA3
(Rennó-Costa et al., 2014). For substantial changes in the environment
(Wills et al., 2005), activity in the entorhinal-hippocampal loop con-
verges to a different broad attractor depending on which envi-
ronment the animal is placed in, and a sharp transition in
network activity is expected as the environment is morphed. In
this case, grid realignment and global remapping occur (Fig. 11c).
As attractors are self-organized, the interaction between sensory
inputs and the initial state of the network determines how two
environments are classified, with no requirement for an explicit
external signal.

In summary, our model suggests that the loop between grid
and place cells accounts for important phenomena of pattern
completion and separation, global remapping and grid realign-
ment, rate remapping, and spatial representation accuracy. These
results help to bridge the gap between the roles of sensory stimuli
and path integration in the establishment of a compromise rep-
resentation of the environment. Our results imply that place cells
do not necessarily inherit positional information from grid cells,
as place cells can display global and rate remapping considering
only inputs from non-grid cells in the entorhinal cortex. How-
ever, our model indicates that the grid cell input organizes the
place cell space code in a predefined grid space that gives support

to general computations applied over positional information
such as path integration (McNaughton et al., 2006), path com-
pletion and disambiguation (Brown et al., 2010), and trajectory
planning during mental simulation (Bellmund et al., 2016).
Therefore, although grid cells are not necessary to build basic
representations of the space, they help to establish robust spatial
representations aligned to a computational framework that un-
derlies the operation of the cognitive map.
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