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Information-Theoretic Evidence for Predictive Coding in the
Face-Processing System
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Predictive coding suggests that the brain infers the causes of its sensations by combining sensory evidence with internal predictions based on
available prior knowledge. However, the neurophysiological correlates of (pre)activated prior knowledge serving these predictions are still
unknown. Based on the idea that such preactivated prior knowledge must be maintained until needed, we measured the amount of maintained
information in neural signals via the active information storage (AIS) measure. AIS was calculated on whole-brain beamformer-reconstructed
source time courses from MEG recordings of 52 human subjects during the baseline of a Mooney face/house detection task. Preactivation of
prior knowledge for faces showed as a-band-related and (3-band-related AIS increases in content-specific areas; these AIS increases were
behaviorally relevant in the brain’s fusiform face area. Further, AIS allowed decoding of the cued category on a trial-by-trial basis. Our results
support accounts indicating that activated prior knowledge and the corresponding predictions are signaled in low-frequency activity (<30 Hz).
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ignificance Statement

Our perceptionis not only determined by the information our eyes/retina and other sensory organs receive from the outside world,
but strongly depends also on information already present in our brains, such as prior knowledge about specific situations or
objects. A currently popular theory in neuroscience, predictive coding theory, suggests that this prior knowledge is used by the
brain to form internal predictions about upcoming sensory information. However, neurophysiological evidence for this hypoth-
esis is rare, mostly because this kind of evidence requires strong a priori assumptions about the specific predictions the brain
makes and the brain areas involved. Using a novel, assumption-free approach, we find that face-related prior knowledge and the
derived predictions are represented in low-frequency brain activity.
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Introduction

In the last decade, predictive coding theory has become a domi-
nant paradigm to organize behavioral and neurophysiological
findings into a coherent theory of brain function (George and
Hawkins, 2009; Friston, 2010; Huang and Rao, 2011; Clark, 2013;
Hohwy, 2013). Predictive coding theory proposes that the brain
constantly makes inferences about the state of the outside world.
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This is supposed to be accomplished using prior knowledge to
build hierarchical internal predictions, which are compared with
incoming information to continuously adapt these internal mod-
els (Mumford, 1992; Rao and Ballard, 1999; Friston, 2005, 2010).

The postulated use of predictions for inference requires sev-
eral preparatory steps. First, task-relevant prior knowledge pas-
sively stored in synaptic weights needs to be transferred into
activated prior knowledge, i.e., information stored in neural ac-
tivity (for an explanation of the distinction between active and
passive storage, see Zipser et al., 1993). Subsequently, (pre)acti-
vated prior knowledge needs to be maintained until needed and
transferred as a prediction in a top-down direction to a lower
cortical area, where it will be matched with incoming informa-
tion (Mumford, 1992; Friston, 2005, 2010).

With respect to the neural correlates of activated prior knowl-
edge and predictions, we know that the prediction of specific
features or object categories increases fMRI BOLD activity in the
brain region where the feature or category is usually processed
(Puri et al., 2009; Esterman and Yantis, 2010; Kok et al., 2014).
However, little is known about how the maintenance of preacti-
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vated prior knowledge and the corresponding transfer of predic-
tions are actually implemented in neural activity proper.

As a first step toward resolving this issue, a microcircuit theory
of predictive coding has been put forward. According to this
theory, internal predictions are processed in deep cortical layers,
where they are maintained and then retrieved via low-frequency
neural activity (<30 Hz) along descending fiber systems (Bastos
etal., 2012).

This theory is in line with findings showing a spectral predom-
inance of low-frequency neural activity in deep cortical layers
(Buffalo et al., 2011), as well as physiological findings linking
feedback connections to a/B-frequency channels in monkeys
(Bastos et al., 2015) and humans (Michalareas et al., 2016).

Recently, neurophysiological studies have supported this mi-
crocircuit theory of predictive coding by showing the predictabil-
ity of events to be associated with neural power in « (Bauer et al.,
2014; Sedley et al., 2016) or B frequencies (van Pelt et al., 2016).

However, representation and signaling of preactivated prior
knowledge serving predictions has been difficult to investigate with
classical analysis methods. One reason is that classical analysis meth-
ods require a priori assumptions about which predictions specific
brain areas are going to make, assumptions that might be very chal-
lenging to make beyond early sensory cortices and for complex ex-
perimental designs (Wibral et al., 2014). Moreover, classical analysis
methods do not allow to reliably quantify the amount of preacti-
vated prior knowledge for predictions. For example, diminished
neural activity measured by fMRI or MEG/EEG may still come with
less or more information being maintained in these signals. To over-
come these problems, we studied the maintenance and signaling of
preactivated prior knowledge for predictions using the information-
theoretic measures of active information storage (AIS; Lizier et al.,
2012; Gomez et al., 2014) and transfer entropy (TE; Schreiber, 20005
Vicente et al., 2011). AIS measures the amount of information in the
future of a process predicted by its past (predictable information),
while TE measures the amount of directed information transfer be-
tween two processes (see Materials and Methods).

Using these information-theoretic measures, we investigated
the preactivation of prior knowledge for face predictions in neu-
ral source activity reconstructed from MEG recordings of 52 hu-
man subjects. To induce the preactivation of face-related prior
knowledge, subjects were instructed to detect faces in two-tone
stimuli (Mooney and Ferguson, 1951; Cavanagh, 1991).

Materials and Methods

Basic concept and testable hypotheses. To study the neural correlates of
preactivated prior knowledge for face predictions, we used the infor-
mation-theoretic measures AIS and TE, measuring predictable informa-
tion (Lizier et al.,, 2012) and information transfer (Schreiber, 2000;
Vicente et al., 2011), respectively.

The use of AIS and TE in our study is based on the following rationale.
Since the brain will usually not know exactly when a prediction will be
needed, it will maintain activated prior knowledge related to the content
of the prediction. If there is a reliable neural code that maps between
content and neural activity, maintained activated prior knowledge must
be represented as maintained information content in neural signals,
measurable by AIS (Fig. 1A).

Importantly, we do not suggest that predictable information in neural
signals as measured by AIS measures the predictability of external events.
Rather, we suggest that AIS can be used as a measure to detect increased
predictable information in specific brain areas. This predictable informa-
tionis bound to rise (Fig. 1A) when prior knowledge is preactivated based
on perceptual demands and thereby becomes available for predictions.

Further, predictions based on prior knowledge are supposed to be trans-
ferred to hierarchically lower brain areas, where they can be matched with
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incoming information. This information transfer thus must be measurable
via TE.

From this basic concept we derived five testable hypotheses about AIS
and TE in the predictive coding framework. First, when activated prior
knowledge is maintained, predictable information as measured by AIS is
supposed to be high in brain areas specific to the content of the predic-
tions. Second, if the microcircuit theory of predictive coding is correct,
maintenance of preactivated prior knowledge should be reflected in /3
frequencies, i.e., predictable information and o/ power should corre-
late. Third, if maintenance of relevant prior knowledge is reflected by
predictable information on a trial-by-trial basis, the content of predic-
tions should also be decodable from AIS information on a trial-by-trial
basis. Fourth, information transfer related to predictions (i.e., signaling
of preactivated prior knowledge measured by TE) should occur in a
top-down direction from brain areas showing increased predictable infor-
mation, and should be reflected in «/B-band Granger causality. Fifth, as
predictions based on preactivated prior knowledge are known to facilitate
performance, predictable information is supposed to correlate with behav-
ioral parameters, if it reflects the relevant preactivated prior knowledge.

Subjects. Fifty-seven subjects participated in the MEG experiment.
Five of these subjects had to be excluded due to excessive movements,
technical problems, or unavailability of anatomical scans. Fifty-two sub-
jects remained for the analysis (average age: 24.8 years; SD, 2.8 years; 23
males). Each subject gave written informed consent before the beginning
of the experiment and was paid €10 per hour for participation. The local
ethics committee (Johann Wolfgang Goethe University clinics, Frank-
furt, Germany) approved of the experimental procedure. All subjects had
normal or corrected-to-normal visual acuity and were right-handed ac-
cording to the Edinburgh Handedness Inventory scale (Oldfield, 1971).
The large sample size was chosen to reduce the risk of false positives, as
suggested by Button et al. (2013).

Stimuli and stimulus presentation. Photographs of faces and houses were
transformed into two-tone (black and white) images known as Mooney
stimuli (Mooney and Ferguson, 1951). Mooney stimuli were used based on
the rationale that recognition of two-tone stimuli cannot be accomplished
without relying on prior knowledge from previous experience, as is evident,
for example, from the late onset of two-tone image recognition capabilities
during development (>4 years of age; Mooney, 1957) and from theoretical
considerations (Kemelmacher-Shlizerman et al., 2008).

To increase task difficulty, in addition to Mooney faces and houses,
scrambled stimuli (SCR) were created from each of the resulting Mooney
faces and Mooney houses by displacing the white or black patches within
the given background. Thereby all low-level information was maintained
but the configuration of the face or house was destroyed. Examples of the
stimuli can be seen in Figure 1B.

All stimuli were resized to a resolution of 591 X 754 pixels. Stimulus
manipulations were performed with the program GIMP (GNU Image
Manipulation Program, 2.4, Free Software Foundation).

A projector with a refresh rate of 60 Hz (resolution, 1024 X 768 pixels)
was used to display the stimuli at the center of a translucent screen
(background set to gray, 145 cd/m?). Stimulus presentation during the
experiment was controlled using the Presentation software package
(Version 9.90, Neurobehavioral Systems).

The experiment consisted of eight blocks of 7 min each. In each block,
120 stimuli were presented (30 Mooney faces, 30 Mooney houses, 30 SCR
faces, 30 SCR houses) in a randomized order. Stimuli were presented for
150 ms with a vertical visual angle of 24.1° and a horizontal visual angle of
18.8°. The intertrial interval between stimulus presentations was ran-
domly jittered from 3 to 4 s (in steps of 100 ms).

Task and instructions. Subjects performed a detection task for faces or
houses (Fig. 1B). Each of the eight experimental blocks started with the
presentation of a written instruction; four of the experimental blocks
started with the instruction “Face or not?” while the other four experi-
mental blocks started with the instruction “House or not?”. The former
are referred to as “Face blocks” and the latter as “House blocks”. Face and
House blocks were presented in alternating order. The same blocks of
stimuli were presented as Face blocks for half of the subjects, while for the
other half of the subjects these experimental blocks appeared as House
blocks and vice versa. This way, the initial block was alternated between
subjects (i.e., half of the subjects started with Face blocks and the other
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Figure1.

SCR House
0.150 s

Centralidea of the study and experimental design. 4, Typically, preactivated prior knowledge related to the content of a prediction must be maintained as the brain will not know exactly

when it will be needed. If there is a reliable neural code that maps between content and neural activity, maintained activated prior knowledge should lead to brain signals that are themselves
predictable over time (here the brain signals are depicted as identical, although the relation between past and future will almost certainly be much more complicated). B, Exemplary stimulus
presentation in Face blocks (top) and in House blocks (bottom). Face and House icons on the left indicate Face and House blocks, respectively. Middle, Depiction of stimulus categories and timing.
The beginning of the response time window is indicated by the hand icon. Red horizontal bars mark the analysis interval. Figure elements obtained from OpenCliparts Library (http://www.

openclipart.org) and modified.

half with House blocks). Importantly, as the blocks contained the same
face, house, SCR face, and SCR house stimuli, the only difference be-
tween Face and House blocks was in the subjects’ instruction.

To avoid accidental serial effects, the order of blocks was reversed for
half of the subjects. Subjects responded by pressing one of two buttons
directly after stimulus presentation. The button assignment for a “Face”
or “No-Face” response in Face blocks and “House” or “No-House” in
House blocks was counterbalanced across subjects (1 = 26 right index
finger for Face response).

Between stimulus presentations, subjects were instructed to fixate a white
cross on the center of the gray screen. Further, they were instructed to main-
tain fixation during the whole block and to avoid any movement during the
acquisition session. Before data acquisition, subjects performed Face and
House test blocks of 2 min with stimuli not used during the actual task.
During the test blocks, subjects received feedback on whether their response
was correct or not. No feedback was provided during the actual task.

Data acquisition. MEG data acquisition was performed in line with
recently published guidelines for MEG recordings (Gross et al., 2013).
MEG signals were recorded using a whole-head system (Omega 2005,
VSM MedTech.) with 275 channels. The signals were recorded continu-
ously ata sampling rate of 1200 Hz in a synthetic third-order gradiometer
configuration and were filtered on-line with 300 Hz low-pass and 0.1 Hz
high-pass fourth-order Butterworth filters.

Each subject’s head position relative to the gradiometer array was
recorded continuously using three localization coils, one at the nasion
and the other two located 1 cm anterior to the left and right tragus on the

nasion—tragus plane for 43 of the subjects and at the left and right ear
canal for nine of the subjects.

For artifact detection, the horizontal and vertical electrooculogram
(EOG) was recorded via four electrodes; two were placed distal to the
outer canthi of the left and right eye (for horizontal eye movements) and
the other two were placed above and below the right eye (for vertical eye
movements and blinks). In addition, an electrocardiogram (ECG) was
recorded with two electrodes placed at the left and right collar bones of
the subject. The impedance of each electrode was kept <15 k().

Structural magnetic resonance (MR) images were obtained with either a
3T Siemens Allegra or a Trio scanner (Siemens Medical Solutions) using a
standard T1 sequence (3-D magnetization-prepared rapid-acquisition gra-
dient echo sequence, 176 slices, 1 X 1 X 1 mm voxel size). For the structural
scans, vitamin E pills were placed at the former positions of the MEG local-
ization coils for coregistration of MEG data and MR images.

Behavioral responses were recorded using a fiberoptic response pad
(Lumitouch Control Response System, Photon Control) in combination
with the Presentation software (Version 9.90, Neurobehavioral Systems).

Statistical analysis of behavioral data. Responses were classified as cor-
rect or incorrect based on the subject’s first answer. For hit-rate analysis,
the accuracy for each condition was calculated. For reaction-time analy-
sis, only correct responses were considered.

Post hoc Wilcoxon signed-rank tests were performed on hit rates as
well as reaction times. To account for multiple testing, Bonferroni’s cor-
rection was applied (uncorrected a = 0.05).
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MEG data preprocessing. MEG data analysis was performed with Mat-
lab (RRID:nlx_153890; Matlab 2012b, Mathworks) using the open-
source Matlab toolbox Fieldtrip (Version 2013 11-11; RRID:nlx_143928;
Oostenveld et al., 2011) and custom Matlab scripts.

Only trials with correct behavioral responses were taken into account for
MEG data analysis. The focus of data analysis was on the prestimulus inter-
vals from 1 to 0.050 s before stimulus onset. Trials containing sensor jump
artifacts or muscle artifacts were rejected using automatic FieldTrip artifact-
rejection routines. Line noise was removed using a discrete Fourier trans-
form filter at 50, 100, and 150 Hz. In addition, independent component
analysis (ICA; Makeig et al., 1996) was performed using the extended info-
max (runica) algorithm implemented in fieldtrip/EEGLAB. ICA compo-
nents strongly correlated with EOG and ECG channels were removed from
the data. Finally, data were visually inspected for residual artifacts.

To minimize movement-related errors, the mean head position over
all experimental blocks was determined for each subject. Only trials in
which the head position did not deviate >5 mm from the mean head
position were considered for further analysis.

Because artifact rejection and trial rejection based on the head position
may result in different trial numbers for Face and House blocks, the mini-
mum number of trials across Face and House blocks was selected randomly
after trial rejection from the available trials in each block (stratification).

Sensor level spectral analysis. Spectral analysis at the sensor level was
performed to determine the subdivision of the power spectrum in fre-
quency bands (Brodski et al., 2015). As we aimed to identify frequency
bands based on stimulus-related increases or decreases, respectively, new
data segments were cut from —0.35 to —0.05 s before stimulus onset for
the time interval of “baseline” and from 0.05 to 0.35 s after stimulus onset
for the interval of “task.” Before spectral transformation, a single Han-
ning taper was applied to the data. The spectral transformation was cal-
culated in an interval from 4 to 150 Hz using a fast Fourier approach.
Average spectra of task and baseline periods were contrasted over sub-
jects using a dependent-sample permutation ¢t metric with a cluster-
based correction method (Maris and Oostenveld, 2007) to account for
multiple comparisons. Adjacent samples whose t values exceeded a
threshold corresponding to an uncorrected « level of 0.05 were defined as
clusters. The resulting cluster sizes were then tested against the distribu-
tion of cluster sizes obtained from 1000 permuted datasets (i.e., labels
“task” and “baseline” were randomly reassigned within each of the sub-
jects). Cluster sizes larger than the 95th percentile of the cluster sizes in
the permuted datasets were defined as significant.

Source grid creation. To create individual source grids, we transformed
the anatomical MR images to a standard T1 MNI template from the
SPMS8 toolbox (http://www.fil.ion.ucl.ac.uk/spm) and obtained an indi-
vidual transformation matrix for each subject. We then warped a regular
3-D dipole grid based on the standard T1 template (15 mm spacing
resulted in 478 grid locations) with the inverse of each subject’s transfor-
mation matrix, to obtain an individual dipole grid for each subject in
subject space. This way, each specific grid point was located at the same
brain area for each subject, which allowed us to perform source analysis
with individual head models as well as multisubject statistics for all grid
locations. Lead fields at those grid locations were computed for the individ-
ual subjects with a realistic single-shell forward model (Nolte, 2003) ac-
counting for the effects of the ICA component removal in preprocessing.

Source time course reconstruction. To enable a whole-brain analysis of AIS, we
reconstructed the source time courses for all 478 source grid locations.

For source time course reconstruction, we calculated a time-domain
beamformer filter [linear constrained minimum variance (LCMV); Van
Veen et al., 1997] based on broadband-filtered data (8 Hz high pass, 150 Hz
low pass) from the prestimulus interval (—1 to —0.050 s) of Face blocks
as well as House blocks (use of common filters; Gross et al., 2013).

For each source location, three orthogonal filters were computed (x;, y,
z direction). To obtain the source time courses, the broadly filtered raw
data were projected through the LCMV filters, resulting in three time
courses per location. We performed on these source time courses a sin-
gular value decomposition to obtain the time course in the direction of
the dominant dipole orientation. The source time course in the direction
of the dominant dipole orientation was used for calculation of AIS.
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Definition of AIS. We assume that the reconstructed source time
courses for each brain location can be treated as realizations
{X1, ..., % ..., x\} of a random process X = {X;,..., X, ..., Xy},
which consists of a collection of random variables, X,, ordered by some
integer t. AIS then describes how much of the information the next
time step t of the process is predictable from its immediate past state
(Lizier et al., 2012). This is defined as the mutual informationk (Eq. 1)

c oL g & P(xr—pxz)
IXi X)) = hmkexthxﬁl p(x, x ) log P(x’r:l)P(Xt),
where I is the mutual information and p(.) are the variables’ probability
density functions. Variable X*_, describes the past state of X as a collec-
tion of past random variables X}, = {X,_1,..., X, | (xsn}, Where
k is the embedding dimension (i.e., the number of time steps used in the
collection) and 7 the embedding delay between these time steps. For
practical purposes, k has to be set to a finite value k., such that the
history before time point ¢ — k. * T does (statistically) not further
improve the prediction of X, from its past (Lizier et al., 2012).

Predictable information as measured by AIS indicates that a signal is
both rich in information and predictable at the same time. Note that
neither a constant signal (predictable but low information content) nor a
memory-less stochastic process (high information content but unpredict-
able) will exhibit high AIS values. In other words, a neural process with high
AIS must visit many different possible states (rich dynamics); yet visit these
states in a predictable manner with minimal branching of its trajectory (this
is the meaning of the log ratio of Eq. 1). As such, AIS is a general measure of
information that is maintained in a process, and could here reflect any form
of memory based on neural activity. AIS is linked specifically to activated
prior knowledge in our study via the experimental manipulation that alter-
nately activates face-specific or house-specific prior knowledge, and via an
investigation of the difference in AIS between the two conditions.

Analysis of predictable information using AIS. The history dimension
(knax Tange, 3—6) and optimal embedding delay parameter (7; range, 0.2
to 0.5 in units of the autocorrelation decay time) was determined for each
source location separately using Ragwitz’s criterion (Ragwitz and Kantz,
2002), as implemented in the TRENTOOL toolbox (Lindner etal., 2011).
To avoid a bias in estimated values based on different history dimensions,
we chose the maximal history dimension across Face and House blocks for
each source location (median k,,,, over source locations and subjects, 4).

The actual spacing between the time points in the history was the
median across trials of the output of Ragwitz’s criterion for the embed-
ding delay 7 (Lindner et al., 2011).

Based on the assumption of stationarity in the prestimulus interval,
AIS was computed on the embedded data across all available time points
and trials. This was done separately for each source location and condi-
tion in every subject.

Computation of AIS was performed using the Java Information Dy-
namics Toolkit (Lizier, 2014). A minimum of 68,400 samples entered the
AIS analysis for each subject, block type, and source location (minimum
of 57 trials; ~1 s time interval; sampling rate, 1200 Hz). AIS was esti-
mated with four nearest neighbors in the joint embedding space using the
Kraskov—Stoegbauer—Grassberger (KSG) estimator (Kraskov et al., 2004;
algorithm 1), as implemented in the open source Java Information Dy-
namics Toolkit (JIDT; Lizier, 2014).

Computation of AIS was performed at the Center for Scientific Comput-
ing Frankfurt, using the high-performance computing Cluster FUCHS
(https://csc.uni-frankfurt.de/index.php?id=4), which enabled the com-
putationally demanding calculation of AIS for the whole brain across
all subjects as well as Face and House blocks (478 X 52 X 2 = 49,712
computations of AIS).

AIS statistics. To determine the source locations in which AIS values
were increased when subjects held face information in memory, a within-
subject permutation ¢ metric was computed. Here, AIS values for each
source location across all subjects were contrasted for Face blocks and
House blocks. The permutation test was chosen as the distribution of AIS
values is unknown and not assumed to be Gaussian. To account for
multiple comparisons across the 478 source locations, a cluster-based
correction method (Maris and Oostenveld, 2007) was used. Clusters
were defined as adjacent voxels whose ¢ values exceeded a critical thresh-
old corresponding to an uncorrected « level of 0.01. In the randomiza-

A, = lim

x -
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Figure2.

Error bars indicate SE.

tion procedure, labels of Face block and House block data were randomly
reassigned within each subject. Cluster sizes were tested against the dis-
tribution of cluster sizes obtained from 5000 permuted datasets. Cluster
values larger than the 95th percentile of the distribution of cluster sizes
obtained for the permuted datasets were considered significant.

Correlation analysis of spectral properties and AIS. We investigated the
relationship of spectral power in the prestimulus interval and AIS values
on the single-trial level. Before calculation of single-trial spectral power,
a single Hanning taper was applied to each prestimulus epoch. Then,
single-trial spectra were computed with the fast Fourier approach, aver-
aged over all epochs, and subdivided in the predefined frequency bands
for each subject. Next, Spearman’s p was computed for correlation of the
median single-trial spectral power in the predefined frequency bands
with the single-trial AIS values to obtain individual correlation values.
Median correlation values over both block types were computed for each
subject. To test the significance of the correlation analysis, the epochs
were randomly permuted 5000 times for each subject and correlation was
recalculated also for the permuted datasets. For each subject, an original
correlation value >99.99997% (or <99.99997%; threshold Bonferroni’s
correction adjusted for the 52 * 5* 6 multiple comparisons) of the cor-
relation values obtained for the permuted datasets was considered signif-
icant. At the second level, we used a binomial test to assess whether the
number of subjects showing significant correlations (for one source and
frequency range) could be explained by chance. Median correlation val-
ues over subjects and their significance based on the binomial test are
reported.

We also calculated a correlation of two t-value maps: (1) the mean AIS
contrast and (2) a mean power contrast. For both #-value maps, the depen-
dent samples -metric Face blocks vs House blocks was computed over all 52
subjects and all 478 source locations inside the brain. For the power f-value
map, source power in the a-frequency (8—14 Hz) and B-frequency (14—32 Hz)
band was reconstructed with the DICS (dynamic imaging of coherent sourc-

Behavioral results. 4, B, Depiction of hit rates and reaction times of correct responses for (4) Face blocks and (B) House
blocks. Equivalent conditions in different block types are marked in red and gray, respectively. Asterisks indicate significant
differences based on Wilcoxon signed-rank tests within block type (n = 52; Bonferroni’s correction for multiple comparisons).
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es; Gross et al.,, 2001) algorithm as implemented
in the FieldTrip toolbox using real valued filter
coefficients only (Griitzner et al., 2010).

Correlation analysis of reaction times and AIS.
Last, we assessed the relationship of AIS values
and reaction times for each subject. To this
end, before the correlation analysis, mean reac-
tion times and mean AIS values in the brain
areas of interest for Face and House blocks for
each subject were subtracted from each other.
This made it possible to account for different
behavioral speeds among subjects. The corre-
lation of the difference in AIS values and the
difference in reaction times was calculated via
Spearman skipped correlations using the Ro-
bust Correlation Toolbox (Pernet et al., 2012).
To calculate skipped correlations, bivariate outliers
must be identified and removed (Rousseeuw, 1984;
Rousseeuw and Driessen, 1999; Verboven and
Hubert, 2005). This can provide a more robust
measure, which has been recommended for
brain—behavior correlation analyses (Rous-
selet and Pernet, 2012). The uncorrected o
level was set to 0.05. For each correlation, boot-
strap confidence intervals (CIs) were com-
puted based on 1000 resamples. To account for
multiple comparisons across brain areas, boot-
strap CIs were adjusted using Bonferroni’s cor-
rection. If the adjusted CI did not encompass 0,
the correlation was considered significant.

Decoding analysis. To investigate whether
prediction content (i.e., Face or House block)
can be decoded from individual trial AIS val-
ues, we applied a multivariate analysis using
support vector machines (SVMs) with the
libsvm toolbox (Chang and Lin, 2011; available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm).
For each subject, the linear SVM classifier was
trained using 70% randomly chosen trials as training data. However, the
training data always contained the same number of trials for Face and
House blocks, respectively. Parameters for the SVMs were optimized in a
threefold cross-validation procedure for the training data only. Subse-
quently, the classifier was tested using the data from the remaining 30% of
the trials with the best parameters obtained from the training procedure,
thereby ensuring strict separation of training and testing data (Nowotny,
2014).

This procedure was repeated 10 times. We report the median accuracy
value for each subject. To test the significance of the median accuracy
value, for each subject the labels of Face blocks and House blocks were
randomly permuted 500 times for each of the 10 training and testing sets
and the median over the 10 accuracy values was calculated also for the
permuted datasets. A median accuracy value of >99.999% (threshold
Bonferroni’s correction adjusted for the 52 multiple comparisons) of the
median accuracy values obtained for the permuted datasets was consid-
ered to be significant, corresponding to an uncorrected « level of 0.05.

Definition of TE (and Granger analysis). TE (Schreiber, 2000) was ap-
plied to investigate the information transfer between the brain areas
identified with AIS analysis. For links with significant information trans-
fer, we studied post hoc the spectral fingerprints of these links using
spectral Granger analysis (Granger, 1969).

Both, TE and Granger analysis are implementations of Wiener’s
principle (Wiener, 1956), which can be summarized as follows: if the
prediction of the future of one-time series X can be improved com-
pared with predicting it from the past of X alone by adding informa-
tion from the past of another time series Y, then information is
transferred from Y to X.

TE is an information-theoretic, model-free implementation of Wie-
ner’s principle and can be used, in contrast to Granger analysis, to study
linear as well as nonlinear interactions (Chang and Lin, 2011) and was
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previously applied to broadband MEG source
data (Wibral et al., 2011). TE is defined as a
conditional mutual information as follows
(Eq. 2):

TEy.x = lIm I(X;Y] X))

jrk—
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where X, describes the future of the target time
series X, Xf_l describes the past state of X, and

Y/_, describes the past state of the source time
series Y. As for the calculation of AIS, past
states are defined as collections of past random
variables with number of time steps j and k and
adelay 7. The parameter u accounts for a phys-
ical delay between processes Yand X (Wibral et

1 1 1

al., 2013) and can be optimized by finding the
maximum TE over a range of assumed values
for u.

Analysis of information transfer using TE and

20 ,40 60 80

100 120 140
frequency [Hz]

Granger causality analysis. We performed TE
analysis with the open-source Matlab toolbox
TRENTOOL (Lindner et al., 2011), which im-
plements the KSG estimator (Kraskov et al.,
2004; Frenzel and Pompe, 2007; Goémez-
Herrero et al., 2015) for TE estimation. We
used ensemble estimation (Wollstadt et al.,
2014; Gomez-Herrero et al., 2015), which esti-
mates TE from data pooled over trials to obtain
more data and hence more robust TE estimates.
Additionally, we used Faes’s correction method
to account for volume conduction (Faes et al.,
2013).

In the TE analysis, we used the same time
intervals (prestimulus) and embedding pa-
rameters as for AIS analysis. TE values for Face blocks and House blocks
were contrasted using a dependent-sample permutation ¢ metric for sta-
tistical analysis across subjects. In the statistical analysis, Bonferroni’s
correction was used to account for multiple comparisons across links
(uncorrected « level, 0.05). As for AIS, the history dimension for the past
states was set to finite values; we here set j,.. = k,,,.. and used the values
obtained during AIS estimation for the target time series of each signal
combination.

For the significant TE links, we computed post hoc nonparametric
bivariate Granger causality analysis in the frequency domain (Dhamala et
al., 2008). Using the nonparametric variant of Granger causality analysis
avoids choosing an autoregressive model order, which may easily intro-
duce a bias. In the nonparametric approach, Granger causality is com-
puted from a factorization of the spectral density matrix, which is based
on the direct Fourier transform of the time series data (Dhamala et al.,
2008). The Wilson algorithm was used for factorization (Wilson, 1972).
A spectral resolution of 2 Hz and a spectral smoothing of 5 Hz were used
for spectral transformation using the multitaper approach (Percival and
Walden, 1993; nine Slepian tapers). We were interested in the differences
among Granger spectral fingerprints in Face and House blocks. How-
ever, we also wanted to make sure that the Granger values for these
differences significantly differed from noise. For that reason, we created
two additional “random” conditions by permuting the trials for the Face
block and the House block condition for each source separately. Two
types of statistical comparisons were performed for the frequency range
between 8 and 150 Hz and each of the significant TE links: (1) Granger
values in Face blocks were contrasted with Granger values in House
blocks using a dependent-samples permutation ¢ metric; (2) Granger
values in Face blocks/House blocks were contrasted with the random

Figure 3.

Sensor-level frequency analysis: defining frequency bands. Middle, Power spectra for all significant clusters (one
positive and one negative cluster) at the sensor level (permutation t metric, contrast [0.05 0.35 s] vs [—0.35 —0.05 s] around
stimulus onset, t values masked by p << 0.05, cluster correction, n = 52). Frequency analysis at the sensor level was calculated
using both block types jointly. Task-related increases in power are shown inred (positive cluster) and task-related decreasesin blue
(negative cluster). Black dashed lines frame the identified frequency ranges. Top and bottom, Topographical plots of the task-
related increases (top) or decreases (bottom) for each defined frequency range.

Face block condition/random House block condition using another
dependent-samples permutation ¢ metric. For the first test, a cluster cor-
rection was used to account for multiple comparisons across frequency
(Maris and Oostenveld, 2007). Adjacent samples with uncorrected p val-
ues of <0.01 were considered clusters. Five thousand permutations
were performed and the o value was set at 0.05. Frequency intervals in the
Face block versus House block comparison were only considered signif-
icant if all included frequencies also reached significance in the compar-
ison with the random conditions using a Bonferroni’s correction. Last,
Bonferroni’s correction was also applied to account for multiple com-
parisons across links.

Results

Behavioral results

We found no differences between Face blocks and House blocks
for hit rates (average hit rate: Face blocks, 93.9%; House blocks,
94.6%; Wilcoxon signed-rank test p = 0.57) and reaction times of
correct responses (average mean reaction times: Face blocks,
0.545 s; House blocks 0.546 s; Wilcoxon signed-rank test p =
0.85). For both block types, subjects showed decreased hit rates
and increased reactions times for the instructed intact stimulus
(i.e., face in Face blocks and house in House blocks) compared
with the noninstructed intact stimulus (house in Face blocks and
face in House blocks), as the instructed intact stimuli had to be
distinguished from a similar distractor (SCR stimuli; Fig. 2). Also,
slower reaction times were found for the instructed intact stim-
ulus versus the noninstructed SCR stimulus for both block types.
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brain slice.

Table 1. Correlation of single-trial power and single-trial predictable information
(measured by AlS) in the face-prediction network

pValue

FFA alt Vi OFA PPC
«(8-14Hz) 0.46* 0.46* 0.49* 0.47* 0.47%
B (14-32Hz) 0.33* 0.34* 0.31* 0.33* 0.3*
Low y (32-50 Hz) 0.07 0.07 0.08 0.07 0.09
Mid--y (50 - 60 Hz) 0.03 0.01 0.02 0.02 0.04
High -y (60100 Hz) —0.007  —0.02 0.01 0.003 0.05
Very high y(100-150Hz) ~ —0.13 —0.16*  —0.12 —0.13*  —0.11

*Significant, based on binomial test.

Moreover, for both block types, subjects showed lower hit rates
for houses than SCR houses (Fig. 2).

Definition of frequency bands

Following the same approach as Brodski and colleagues (2015),
we defined frequency bands for subsequent neural analysis based
on the significant clusters of a task versus baseline contrast at the
MEG sensor level. This analysis was based on the spectra of all
conditions for both block types and revealed one positive cluster
with task-related increases in activity and one negative cluster
with task-related decreases in activity (Fig. 3). Based on the spec-
tral profile of the two significant clusters, the following six fre-
quency bands were defined for further analysis: (1) 8—14 Hz (a);
(2) 14-32 Hz (B); (3) 32-50 Hz (low ), (4) 50—60 Hz (mid-7),
(5) 60—100 Hz (high vy), and (6) 100—150 Hz (very high 7).

Analysis of predictable information
Statistical comparisons of AIS values between Face blocks and
House blocks in the prestimulus interval revealed increased AIS

OFA (x=-35,y =

ul C R

-2.5cm

-85 z=

V1 (x=10,y=-9.5,2=-05)

Statistical analysis of predictable information (measured by AIS) at the MEG source level. Results of whole-brain
dependent samples permutation ¢ metric contrasting Face blocks and House blocks (n = 52, t values masked by p < 0.05, cluster
correction). Peak voxel coordinates in MNI space are shown at the top for each brain location; z values are displayed below each
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values for Face blocks in clusters in the
fusiform face area (FFA), anterior inferior
temporal cortex (alT), occipital face area
(OFA), posterior parietal cortex (PPC),
and primary visual cortex (V1; Fig. 4). We
referred to these five brain areas as the
“face-prediction network” and subjected
it to further analyses. In contrast to this
finding of a face-prediction network, we
did not find brain areas showing signifi-
cantly higher AIS values in House blocks
compared with Face blocks. This is similar
to frequently cited previous studies that
failed to find prediction effects for houses
in the brain in contrast to faces (Summer-
field et al., 2006a, 2006b; Trapp et al.,
2016).

X0))

Correlation of single-trial power and
single-trial predictable information

To investigate the neurophysiological corre-
lates of activated prior knowledge identified
via AIS analysis, we conducted a correlation
analysis of single-trial power in distinct
frequency bands with single-trial AIS.
Correlation analysis revealed significant
positive correlations in the a-frequency
and B-frequency bands (Table 1). This
means that a-band and B-band activity is
the most likely carrier of activated prior
knowledge. Additionally, for two of the
brain areas, we also found a weak negative
correlation of single-trial very high y power and AIS. However, the
tiny effect size of the very high y correlation questions the relevance
of this effect. We will therefore only discuss the findings in the o and
B band.

While we found a significant correlation of single-trial power
and predictable information in the @ and 8 band, the contrast
map based on mean beamformer reconstructed source power
over all source grid points for Face and House blocks (t values
obtained from dependent sample t metric over all 52 subjects) did
not correlate with the mean AIS contrast map for both « and 3
power (a p = 0.043, p = 0.33; B p = 0.05, p = 0.21; Fig. 5). This
suggests that AIS analysis provides additional information not
directly provided by a spectral analysis. In other words, while AIS
seems to be carried by a/B-band activity, not all a/B-band activ-
ity contributes to AIS.

Decoding prediction content from single-trial AIS values

To study whether face or house predictions can be decoded from
AIS values of the face-prediction network on a trial-by-trial basis,
SVMs were used (Chang and Lin, 2011). Cross-validated decod-
ing performance reached =65.2% (mean performance, 53.5%;
SD, 3.9% over subjects). When Bonferroni’s correction was ap-
plied for the high number of subjects tested (n = 52), perfor-
mance was still significantly better for 22 of 52 subjects than for
permuted datasets (p < 0.05/52). Note, that this fraction is much
higher than would have been expected by chance (p = 1.1 X
10 ~>2, binomial test).

Analysis of information transfer
To understand how activated prior knowledge is communicated
within the cortical hierarchy, we assessed the information trans-
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fer within the face-prediction network in
the prestimulus interval by estimating TE
(Schreiber, 2000) on source time courses
for Face blocks and House blocks, respec-
tively. Statistical analysis revealed signifi-
cantly increased information transfer for
Face blocks from aIT to FFA (p = 0.0001,
Bonferroni’s correction) and from PPC to
FFA (p = 0.0014, Bonferroni’s correction).
For House blocks, information transfer was
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increased compared with Face blocks from B alpha power beta power
brain area V1 to PPC (p = 0.0014, Bonfer-
roni’s correction; Fig. 6). 4 rho = 0.043 4 rho =0.05
Post hoc frequency-resolved Granger * e e, Iy
Fausality analysis did not reveal any signif- g s ‘:&’ . : . g oo .: ,.’.
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formation and behavior, we correlated - -
the per-subject difference of AIS values -4 alpha power t-value 4 -3 beta power t-value 4
between Face blocks and House blocks
with the per-subject difference in reaction ~ Figure5. Correlation of predictable information contrast maps and source power contrast maps. A, lllustration of the -value

times. This analysis was performed for
FFA, alT, and PPC, three brain areas that,
according to our findings, showed an in-
crease of information transfer during Face
blocks. For these brain areas, we tested the
hypothesis that predictable information
for Face blocks was associated with per-
formance, i.e., reaction times during Face
blocks. Negative correlation values were
found for all three brain areas. However,
only brain area FFA reached significance
when correcting for multiple comparisons
(Fig. 7; FFA robust Spearman’s p, —0.41; ro-
bust CI after correcting for multiple com-
parisons, [—0.68 —0.066]; alT robust
Spearman’s p, —0.12; CI, [—0.4554 0.245];
PPC robust Spearman’s p, —0.21; CI,
[—0.5480 0.1178]).

Discussion
We tested the hypothesis that the neural

maps of the dependent samples t metric for the Face-block versus House-block contrast (n = 52, no correction) on the cortical
surface. B, Scatter plots of the relationship of the «t/ 3 contrast and the AIS contrast. Each dot represents a source location within
the brain. Spearman correlation values are displayed at the top right corner of each plot (n = 478). Linear regression lines are
included in gray (solid).

A B c
PPC F
alT aIT
\}«- L [FFA
OFA 1 %e b~ FFA
OFA V1

Figure 6.  Analysis of information transfer in the prestimulus interval. Results of dependent sample permutation ¢ tests on TE
values (Face blocks vs House blocks, n = 52, p << 0.05, Bonferroni's correction). Red arrows indicate increased information transfer
for Face blocks; blue arrows indicate increased information transfer for House blocks. A—C, lllustration of the resulting network in
(A) a view of the back of the brain, (B) a view of the top of the brain, and () depiction of the network hierarchy (based on the
hierarchy by Zhen et al., 2013; Michalareas et al., 2016).

correlates of prior knowledge activated for

use as an internal prediction must show up

as predictable information in the neural signals carrying that acti-
vated prior knowledge. This hypothesis is based on the rationale that
the content of activated prior knowledge must be maintained until
the knowledge or the prediction derived from it is used. The fact that
activated prior knowledge has a specific content then mandates that
increases in predictable information should be found in brain areas
specific to processing the respective content. This is indeed what we
found when investigating the activation of prior knowledge about
faces during face-detection blocks. In these blocks, predictable infor-
mation was selectively enhanced in a network of well known
face-processing areas. In these areas, prediction content was de-
codable from the predictable information on a trial-by-trial basis
and increased predictable information was related to improved
task performance in brain area FFA. Given this established link
between the activation of prior knowledge and predictable
information, we then tested current neurophysiological ac-

counts of predictive coding suggesting that activated prior
knowledge should be represented in deep cortical layers and at
a-band or B-band frequencies and should be communicated
as a prediction along descending fiber pathways (Bastos et al.,
2012). Indeed, predictable information within the network of
brain areas related to activated prior knowledge of faces was
associated with a-band and 3-band frequencies and informa-
tion transfer within this network was increased in a top-down
direction, in accordance with the theory.

We will next discuss our findings with respect to their impli-
cations for current theories of predictive coding.

Activated prior knowledge for faces shows up as predictable
information in content-specific areas

We found increased predictable information as reflected by in-
creased AIS values in Face blocks in the prestimulus interval in
the FFA, OFA, alIT, PPC, and V1. Out of these five brain areas
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Figure 7.  Correlation analysis for predictable information and reaction times. Scatter plots
displaying the (skipped) correlation of per-subject AlS difference values (Face blocks — House
blocks) with per-subject reaction time difference values (Face blocks — House blocks). Robust
Spearman correlation values are displayed at the top right corner of each plot. Asterisks indicate
significant correlation, using Bonferroni’s correction of bootstrap Cls. Linear regression lines are
included in gray (solid).

FFA, OFA, and alT are well known for playing a major role in face
processing (Kanwisher et al., 1997; Kriegeskorte et al., 2007; Tsao
et al., 2008; Pitcher et al., 2011).

It might seem surprising that predictable information for
Face blocks was not increased within the superior temporal
sulcus (STS), a brain area that has been recently identified as a
key region for the prediction of face identities in a face-
identity recognition task (Apps and Tsakiris, 2013). This find-
ing may be explained by the specific role of the STS in face
processing: mainly processing facial identities and emotional
expressions (Winston et al., 2004; Fox et al., 2009). In contrast,
the STS may play alesser role in the pure face-detection task of
our design, where neither identities nor emotional expressions
were of relevance.
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In addition to increased predictable information in well
known face-processing areas, we also found increased predictable
information in Face blocks in the PPC. We consider the increase
in predictable information in the PPC also as content-specific,
because regions in the PPC have been recently linked to high-
level visual processing of objects, like faces (Pashkam and Xu,
2014), and activation of the PPC has been repeatedly observed
during the recognition of Mooney faces by us and others (Dolan
et al., 1997; Griitzner et al., 2010; Brodski et al., 2015).

In sum, our finding of increased predictable information for
Face blocks in the FFA, OFA, alT, and PPC confirms our hypoth-
esis that activation of face prior knowledge elevates predictable
information in content-specific areas. Additionally, our results
suggest that predictable information in content-specific areas is
associated with the corresponding prediction on a trial-by-trial
basis, by decoding the anticipated category (Face or House block)
from trial-by-trial AIS values at the face-prediction areas.

However, while we found increased predictable information
in content-specific areas for Face blocks, we did not find brain
areas showing increased predictable information for House
blocks. Similarly, Summerfield and colleagues (2006a) observed
in a face/house discrimination task increased activation in the
FFA, when a house was misperceived as a face, but failed to see
increased activation in the parahippocampal place area (PPA), a
scene/house-responsive region, when a face was misperceived as
a house. The authors suggest that this might be related to the fact
that the PPA isless subject to top-down information than the FFA
because faces have more regular features potentially useful for
top-down mechanisms than the natural scenes that the PPA usu-
ally responds to. Additionally, because of their strong social rel-
evance (Farah et al., 1995), faces capture a disproportionate
amount of attention (Vuilleumier and Schwartz, 2001). Thus,
also face predictions/templates may be prioritized compared
with other templates (e.g., for houses; Puri et al., 2009; Esterman
and Yantis, 2010; Van Belle et al., 2010).

Maintenance of activated prior knowledge about faces is
reflected by increased o/ 3 power

We found a positive single-trial correlation of AIS with «/f
power for all face-prediction areas. This finding supports the
assumption that the maintenance of activated prior knowledge as
indexed by AIS is related to a and S frequencies.

Mayer and colleagues (2016) recently showed, in findings
consistent with ours, that activation of prior knowledge about
previously seen letters is associated with increased power in «
frequencies in the prestimulus interval. Also, Sedley and col-
leagues (2016) observed that the update of predictions, which
also requires access to maintained activated knowledge, is associ-
ated with increased power in 3 frequencies.

Extending these previous findings, we are the first to report that
single-trial low-frequency activity strongly correlates with the mo-
mentary amount of activated prior knowledge in content-specific
brain areas. Specifically, our results demonstrate that the current
amount of activated prior knowledge usable as predictions for face
detection is associated with neural activity in the a-frequency and
B-frequency range, supporting the hypothesis of a popular micro-
circuit theory of predictive coding (Bastos et al., 2012).

Face predictions are transferred in a top-down manner

In Face blocks we observed increased information transfer to
the FFA from the aIT as well as from the PPC, both areas located
higher in the processing hierarchy than the FFA (Zhen et al.,
2013; Michalareas et al., 2016). Thus, the FFA seems to serve as a
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convergence center where information from higher cortical areas
is transferred to prepare for rapid face detection.

Closely related to our findings Esterman and Yantis (2010)
observed that anticipation effects for faces in the FFA (and houses
in the PPA) were associated with increased activity in a posterior
IPS region (part of the PPC) extending to the occipital junction.
However, to our knowledge our study is the first to report face-
related anticipatory top-down information transfer from the
PPC and alT to the FFA.

Top-down information transfer in face-processing regions in
a preparatory interval before face detection is in general support-
ive of the predictive coding account (Mumford, 1992; Rao and
Ballard, 1999; Friston, 2005, 2010), which suggests a top-down
propagation of predictions. This top-down information transfer
of predictions is probably associated with a low-frequency chan-
nel (Bastos et al., 2012), in contrast to the bottom-up propagation
of prediction errors, which has been linked to a high-frequency
channel (Bastos et al., 2012, Brodski et al., 2015). The spectral
dissociation between the transfer of predictions and of prediction-
error frequencies is in line with physiological findings in monkeys
and humans (Bastos et al., 2015; Michalareas et al., 2016) and
received recent support from an MEG study investigating the
(spectrally resolved) information transfer during the prediction
of causal events (van Pelt et al., 2016). Our spectrally resolved
Granger causality analysis did not contradict this view, yet results
failed to reach statistical significance.

In addition to the two top-down links showing increased in-
formation transfer for Face blocks, we observed a bottom-up link
from V1 to the PPC with increased information transfer for
House blocks. As we did not find a prediction network for houses
and our analysis was thus only performed in the brain areas of the
face-prediction network, one can only speculate on the function
of this bottom-up information transfer. It is possible that it indi-
cates that house detection was rather performed in a bottom-up
manner, for instance by first identifying low-level features that
distinguish houses from their scrambled counterparts.

Preactivation of prior knowledge about faces

facilitates performance

Across subjects we found elevated predictable information in the
FFA in Face blocks in contrast to House blocks to be associated
with shorter reaction times for Face blocks compared with House
blocks. This suggests that preactivation of prior knowledge, espe-
cially about faces in the FFA, facilitates processing and speeds up
face detection, as also suggested by FFA effects in previous fMRI
studies (Puri et al., 2009; Esterman and Yantis, 2010). Our study
is, however, the first to demonstrate that the size of the facilitatory
effect on perceptual performance depends on the quantity of
activated prior knowledge for faces in the FFA, measurable as the
difference in AIS between Face and House block for each subject.
Differential size of the faciliatory effect among subjects and the
associated differences in the quantity of activated prior knowl-
edge in the FFA may be related to the differential ability in main-
taining an object-specific representation (Ranganath et al., 2004).
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