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Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well
defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual
and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-
related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fascic-
uli were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing
the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal
fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified
regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and
specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to
cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word
learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital
fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus,
these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our
capacity to identify correct associations between words and meanings under referential indeterminacy.
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The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the white matter pathways that
support novel word learning within this network remains unclear. In this work, we dissected language-related (arcuate, uncinate,
inferior-fronto-occipital, and inferior-longitudinal) fasciculi using manual and automatic tracking. We found the left inferior-
longitudinal fasciculus to be predictive of word-learning success in two word-to-meaning tasks: contextual and cross-situational
learning paradigms. The left uncinate was predictive of cross-situational word learning. No significant correlations were found for
the arcuate or the inferior-fronto-occipital fasciculus. While previous results showed that learning new phonological word forms
is supported by the arcuate fasciculus, these findings demonstrate that learning new word-to-meaning associations is mainly
dependent on temporal white matter pathways. j

ignificance Statement

Introduction
Learning new words and meanings is a fundamental aspect of
first and second language acquisition, representing a continuous
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challenge for humans throughout their life span. However, there
is a current lack of understanding regarding the brain networks
supporting word-to-meaning mappings. Establishing a link be-
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tween a new word and a set of representations (Allport, 1985)
could be governed by different mechanisms with different task
requirements: from simple associative ones in which a new label
is fast glued to an external referent, to more subtle and continu-
ous learning processes, in which repeated encounters with a new
word in different contexts allows for a gradual inference of its
meaning (Nation, 2001).

In addition to task requirements, subject-specific differences in
performance can be linked to differences in neuroanatomy. The mi-
crostructural properties of white matter (WM) pathways—which
constrain the flow of information across brain areas— convey reli-
able information about the role of these pathways and their con-
nected regions in supporting particular cognitive processes
(Behrens and Johansen-Berg, 2005; Kanai and Rees, 2011). With
the aim of identifying— by performing in vivo dissections—the
WM pathways supporting word-to-meaning mappings, we col-
lected diffusion-weighted MRI (DW-MRI) data on 40 healthy
adults who completed two semantic learning tasks that relied on
different processes: (1) a contextual learning task (CTXL;
Mestres-Missé et al., 2008; Ripollés et al., 2014) and (2) a cross-
situational learning paradigm (XSL; Yu and Smith, 2007). During
CTXL, possible meaning candidates that correspond with the
contextual information available in a learning instance (i.e., sen-
tences) are gradually narrowed down until reaching a correct
word-to-meaning mapping through inferential processes (van
Daalen-Kapteijns et al., 2001). In contrast, XSL allows correct
identification of word-to-meaning mappings through the compu-
tation of cross-situational statistics by tracking the frequency of
co-occurrence between words and referents (Smith et al., 2014;
but for alternative hypothesis testing accounts of XSL, see Medina
et al., 2011; Trueswell et al., 2013). While XSL neuroimaging
studies are lacking, previous research using functional MRI
(fMRI), shows that, in CTXL, learning word-to-meaning map-
pings is mediated by ventral inferior frontal (BA 47) and poste-
rior middle temporal regions (Mestres-Missé et al., 2008, 2009;
Ripollés et al., 2014). Although the inferior-fronto-occipital
(IFOF) and the inferior-longitudinal fasciculi (ILF) are thought
to mediate a direct connection between occipitofrontal and oc-
cipitotemporal areas, respectively (Catani et al., 2003; Forkel et
al., 2014), research shows that information could flow from the
posterior middle temporal gyrus (pMTG)—a hub in which sev-
eral major WM pathways converge—to the ventral inferior fron-
tal gyrus (IFG) through two routes: directly via the IFOF (Turken
and Dronkers, 2011) or using a two-step alternative pathway
comprising the ILF [ending in the anterior temporal lobe (ATL)]
and the uncinate fasciculus (UF; connecting the anterior tempo-
ral lobe to the IFG; Vigneau et al., 2006). However, a discrepancy
exists about which of these pathways support general language-
related processes, let alone word-to-meaning mappings. While
several findings suggest that the ILF (Saur et al., 2008; Shinoura et
al.,2010; Wongetal., 2011) and the UF do have a role in semantic
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processing (Papagno et al., 2011; Dick and Tremblay, 2012; Har-
vey et al., 2013), other research tends to favor the IFOF as the
main semantic pathway (Duffau et al., 2005, 2009; Mandonnet et
al., 2007).

To characterize the potential role of the IFOF, ILF, and UF in
different types of semantic learning [the arcuate fasciculus (AF)
was also dissected as a control, given its role in learning new
phonological word-forms; Lopez-Barroso et al., 2013], we ap-
plied both manual dissections (in which an average diffusivity
value for a whole pathway is taken) and an automatic method,
which allowed for the computation independent values along a
particular tract. The latter method can provide information
about the parts of the tract instrumental for semantic learning, as
axons do not always run along a whole tract and can enter or exit
at different anatomical positions within a pathway (Yeatman et
al., 2012).

Materials and Methods

Participants. Forty German speakers (mean = SD age, 24.78 * 4.7 years;
18 women; same as in Ripollés et al., 2014) were recruited from the
student population at Otto-von-Guericke-University (Magdeburg, Ger-
many). All participants were right handed, gave their informed written
consent, and were paid or received course credits for their participation
in accordance with local ethics. Stimuli were presented using the
Psychophysics Toolbox 3.09 (Brainard, 1997) and Matlab version
R2011b (7.13.0.564, 32 bit).

Contextual learning paradigm. For CTXL, we used the same paradigm
as previous research (Ripollés et al., 2014, 2016). In this paradigm, par-
ticipants were required to read 80 duplets of sentences that always ended
in a new word. These words respected the phonotactic rules of German
and were artificially created by changing one or two letters of an existing
word. The nouns to be learned were selected from the CELEX database
(mean frequency, 46.5 per million; SD, 22.85). Participants can derive
and learn the meaning of new words using the semantic context provided
by the duplets of sentences as they are built with an increasing degree of
contextual constraint (Mestres-Missé et al., 2008, 2009, 2010; Ripollés et
al., 2014). The mean cloze probability (the proportion of people who
complete a particular sentence fragment with a particular word) was
14.88 £ 7.6% for the first sentence (low constraint) and 89.1 = 9.2% for
the second sentence (high constraint). These cloze probability patterns
were assessed by presenting each individual sentence in isolation to 150
participants (Mestres-Missé et al., 2010). Only half of the pairs of sen-
tences disambiguated multiple possible meanings, thus enabling the
learning of the new word (M+ condition). For example, a duplet of
sentences could be as follows: (1) “Every Sunday the grandmother went
to the jedin”; (2) “The man was buried in the jedin.” Using the context
provided by the sentences, participants can infer and learn that jedin
means “graveyard” as it is congruent with both the first and second
sentence (Fig. 1A). Thus, participants were able to learn the meaning of
up to 40 new words. For the other 40 pairs, the second sentences were
scrambled so that they no longer matched their original first sentence. In
this case, the new word was not associated with a congruent meaning
across sentences and could not be correctlylearned [e.g., (1) “Every night
the astronomer watched the heutil,” in which “moon” is one possible
meaning of heutil; and (2) “In the morning break coworkers drink heu-
til,” in which “coffee” is now one of the possible meanings of heutil,
which is not congruent with the first sentence]. These sentences were
part of a control condition (M—) designed to increase the level of diffi-
culty of the task and to control for novelty during fMRI scanning (Rip-
ollés et al,, 2014) and was not analyzed in this work (note the
nonsignificant correlation between the number of correctly learned M+
words and the number of correctly rejected M— words; r = —0.07, p >
0.66). In addition to the M+ and M— conditions, nonreadable (NR)
sentences (created by converting each letter of a sentence into a symbol)
were also included in the paradigm. As is the case for M —, this condition
was created for fMRI purposes and is not analyzed. Before entering the
scanner, participants were instructed to learn the meaning of a new word
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Schematic overview of the word-learning paradigms and behavioral results. The mean percentage of the number of learned words for each task is presented on the right (= SD). Dotted

lines indicate chance level. A, Example of two congruent sentences for the M+ condition of the CTXL paradigm. B, Schematic example of a trial of the XSL task. Four unknown objects (A-D) are
simultaneously shown on the screen while their corresponding words are aurally presented, in randomized order, every 3 s.

only if both sentences had a redundant meaning (M +) and to reject the
new words when learning was not possible (M—). To ensure that both
stimulus types were equally comparable, participants were told that it was
just as crucial to learn the words of the M+ condition as it was to cor-
rectly reject the new words from the M— condition. For the NR condi-
tions, participants were asked to look at the symbols and try to “read”
them.

Four pairs of the M+, four pairs of the M—, and two pairs of the NR
conditions were presented during a total of 10 short learning runs. There-
fore, a total of 40 new words from the M+ condition and 40 from the
M— condition were presented during the whole experiment. To achieve
an ecologically valid paradigm, the first and second sentences ending in
the same new word were presented separately in time. The four first
sentences of each of the M+ and M— conditions (a total of eight new
words) plus two “sentences” of the NR condition were presented in a
pseudorandomized order (e.g., M+1A, M—1A, M—1B, NR1A, M—1C,
M+1B,M+1C,NR1B, M+ 1D, and M—1D) in each learning run. Later,
the second sentence “pair” of both the M+ and M— conditions was
presented (i.e., the second presentation of the identical eight new words)
in a pseudorandomized order including two sentences of the NR condi-
tion (e.g., M—2C, M—2B, NR2A, M+2B, M+2D, M—2D, M+2C,
M+2A, M—2A, and NR2B). The temporal order of the different new
words in the first sentence presentation was not related in any systematic
way to the order of presentation of the same new words in their second
sentence. Each of the 20 trials of a run (10 first sentences and 10 second
sentences) started with a 500 ms fixation cross and continued with the six
first German words of the sentence presented for 2 s followed by a dark
screen for 1 s. Each new word was presented for 500 ms in the center of a
black screen. All words were written in white using a font size of 22. Each
new trial was preceded by a dark screen intertrial interval with a variable
duration of 1-6 s (Poisson distribution; Hinrichs et al., 2000).

After each learning run, participants had to complete a brief recogni-
tion test. Participants were presented with a new word in the center of the

screen and two possible meanings below, each on one side of the screen.
In each test, all four M+ and four M— new words presented during a
learning run were tested in a pseudorandomized order. If the new word
tested did not have a congruent meaning across the first and second
sentences, and thus learning was not possible (M— condition), partici-
pants had to press a button located in their left hand. In this case, the two
possible meanings presented served as fillers: one was the meaning
evoked by the second sentence of the M— new word being tested; the
other word shown was the meaning evoked by another second sentence
presented in the same run as the new word being tested. Instead, if the
new word tested had a consistent meaning across the first and second
sentences, and thus learning was possible (M+ condition), participants
had to select the correct meaning using a two-button pad placed on their
right hand. In this case, one of the two possible meanings was correct and
the other, which served as a filler, was the meaning of another new word
presented in the same run. Therefore, the level of chance was set at 33%
accuracy as, for both the M+ and M — conditions, three response options
were available (no consistent meaning, consistent meaning on the left,
consistent meaning on the right). As previously stated, the present work
focused on the ability of the participants to learn new words and, there-
fore, only answers for the M+ condition were analyzed (the M— condi-
tion was included for fMRI purposes). All participants completed a
training block before entering the scanner to become familiarized with
the task and the recognition test.

Cross-situational learning paradigm. For XSL, we used the exact same
paradigm and parameters reported in previous research (Yu and Smith,
2007). The participants were required to learn the correct associations
between 18 spoken pseudowords and their corresponding pictures,
which were unknown objects. Insofar as the concept of meaning includes
basic visual object representations (Gupta and Tisdale, 2009), this para-
digm evaluates the ability to learn the correct word-to-meaning
mappings through a cross-trial strategy, where within-trial referential
ambiguity can be solved across multiple learning instances (Yu and
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Smith, 2007). The learning set included 18 new words and 18 pictures.
The spoken words were designed according to the phonotactical rules of
the German language and were generated with the MBROLA speech
synthesizer software (Dutoit et al., 1996), concatenating diphones at
16 kHz from its German data base. In each learning trial, four object
pictures appeared simultaneously on the screen while four bisyllabic
words were presented, in randomized order, during 3 s, for a total trial
duration of 12 s (Fig. 1B). This configuration yielded a high within-trial
referential ambiguity with four possible word-referent associations per
learning trial. The participants were told that four words and four objects
would co-occur on each trial and they were to learn which word goes with
which object across trials. No information about word—picture corre-
spondence was provided and the order of presentation of the words was
not systematically related to the position of the objects. The task included
27 learning trials with a duration of 5 min and 24 s. To generate each trial,
four object—word pairs were randomly selected among the 18 pairs of the
learning set. Each object appeared with its corresponding word a total of
six times during the entire learning phase (i.e., six repetitions per object—
word pair).

After the learning phase, the participants underwent a four-alternative
forced-choice test. Each test trial presented one spoken word with four
object pictures. Participants were requested to select the object that cor-
responded to the aurally presented word. Therefore, the level of chance
was set at 25% accuracy. There were 18 test trials, 1 for each object-word
pair presented during the learning phase. On each trial, the three filler
objects were randomly selected from the set of 18 objects presented dur-
ing the learning task.

Scanning parameters and diffusion measures. DW-MRI data were
acquired on a 3 T scanner (MAGNETOM Verio using Syngo MR B17
software, Siemens) with a 32-channel phased-array head coil well suited
for diffusion tensor imaging (DTI). Diffusion images were acquired with
a twice-refocused, single-shot, spin-echo EPI sequence fully optimized
(Reese et al., 2003) for DW-MRI of WM [72 axial slices; TR, 10400 ms;
TE, 86 ms; GRAPPA (generalized autocalibrating partially parallel acqui-
sitions) acceleration factor, 3; slice thickness, 2.0 mm; acquisition matrix,
128 X 128; voxel size, 2.0 X 2.0 X 2.0 mm?]. Two runs with one non-
diffusion-weighted volume (using a spin-echo EPI sequence coverage of the
whole head) and 30 diffusion-weighted volumes (noncollinear diffusion
gradient directions from Siemens MDDW mode; b-values, 1000 s/mm ?)
were acquired. A high-resolution T1 (MPRAGE) image was also acquired
during this MRI session (TR, 2500 ms; TE, 4.82 ms; TI, 1100 ms; slice
thickness, 1.0 mm; acquisition matrix, 256 X 256; voxel size, 1.0 X 1.0 X
1.0 mm?).

Several diffusion measures can be extracted from DW-MRI. One of
them is the radial diffusivity (RD) index, which has gained increasing
interest in recent years. Several factors can contribute to the RD signal,
including the number of axons and axon packing and diameter. Among
all diffusion measures, RD has been consistently related to the myelin
content along axons, with demyelination being associated with increased
RD values (Song et al., 2002, 2005; Klawiter et al., 2011; Zatorre et al.,
2012). Accordingly, thicker myelin sheaths have been related to increased
conduction of action potentials along WM pathways (Fields, 2008).
Indeed, in animal studies, directional measures (i.e., RD)—unlike sum-
mary parameters such as mean diffusivity or fractional anisotropy
(FA)—provide better structural details of the state of the axons and
myelin (Aung et al., 2013). Therefore, RD has been suggested to be a
sensitive index of cognitive processing as fibers with greater myelination
are hypothesized to enable a faster and more synchronized transfer of
information between separated brain regions. This is of crucial importance
to our hypothesis, as semantic learning requires the synergic cooperation of
different cortical regions and RD values could provide an indirect measure of
the speed of information exchange between language-related areas. Concor-
dantly, a recent study (Lopez-Barroso et al., 2013) showed a relationship
between decreased RD values of the left long segment of the AF and the
ability to learn new word forms from a continuous speech stream (i.e.,
new phonological word-form learning). Hence, for both manual and
automatic dissections, RD maps for each participant were calculated
using the eigenvalues extracted from the diffusion tensors, to be used
later to calculate the microstructure of several WM tracts.
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Manual dissection of WM pathways. Diffusion data processing started
by correcting for eddy current distortions and head motion using the
FMRIB Diffusion Toolbox (FDT), which is part of the FMRIB Software
Library (FSL 5.0.1; www.fmrib.ox.ac.uk/fsl/; Jenkinson et al., 2012). Sub-
sequently, the gradient matrix was rotated corresponding to the head
movement to provide a more accurate estimate of diffusion tensor ori-
entations using the fdt_rotate_bvecs program included in FSL (Leemans
and Jones, 2009). In a next step, brain extraction was performed using the
Brain Extraction Tool (Smith, 2002), which is also part of the FSL distri-
bution. The analysis continued with the reconstruction of the diffusion
tensors using the linear least-squares algorithm included in Diffusion
Toolkit 0.6.2.2 [TrackVis software, Ruopeng Wang, Van J. Wedeen
(trackvis.org/dtk), Martinos Center for Biomedical Imaging, Massachu-
setts General Hospital, Boston, MA]. As stated above, RD values were
obtained.

Previously preprocessed DTI data were analyzed for deterministic
tracking using a two-ROI approach within the TrackVis software. ROIs
were defined using the FA and FA color-coded maps as a reference for
individual anatomical landmarks (comparable to a T2-weighted MRI
image). Here, we focused in WM pathways related to the ventral stream
of language processing (Hickok and Poeppel, 2007; Rauschecker and
Scott, 2009). Thus, we performed virtual in vivo dissections of the IFOF,
ILF, and UF. We placed three spherical ROIs at the level of the anterior
temporal lobe (temporal ROI), the posterior region located between the
occipital and temporal lobe (occipital ROI), and the anterior floor of the
external/extreme capsule (frontal ROI). To define each of the tracts of
interest, we applied a two-ROI approach. The ILF was obtained by
connecting the temporal and occipital ROIs. The streamlines passing
through the occipital lobe and frontal ROIs were considered as part of the
IFOF. The frontal capsule ROI was united to the temporal ROI to delin-
eate the UF. All these ROIs were applied according to a well defined
anatomical atlas (Catani and Thiebaut de Schotten, 2008). The exclusion
of single fiber structures that do not represent part of the dissected tract
was achieved using subject-specific non-ROIs. These processes were per-
formed for both the left and the right hemisphere. After the dissection
was completed, the mean RD value of each tract was extracted for further
analysis.

Although this work is focused in the ventral stream of language pro-
cessing, the long segment of the AF (the main tract associated to the
dorsal stream of language processing) was also dissected as a control. This
approach was based on previous research relating the long segment of the
AF to phonological word learning, when novel word forms without
meaning are segmented from continuous speech (Lépez-Barroso et al.,
2013). This segment was dissected using established guidelines and a
two-ROI approach (Catani et al., 2005; Lopez-Barroso et al., 2013; Fran-
coisetal.,, 2016; Vaquero etal., 2017). A first frontal ROI was placed in the
coronal plane between the central fissure and the cortical projection of
the tract. A second temporal ROI was placed in the axial plane involving
the fibers descending to the posterior temporal lobe through the poste-
rior portion of the temporal stem. The streamlines going through the
frontal and temporal ROIs were classified as the long segment of the AF.
This process was performed for both the left and the right hemisphere.

Automatic dissection of WM pathways. For the automatic virtual dis-
section, we used the Automatic Fiber Quantification (AFQ; https://
github.com/jyeatman/AFQ) software, which can identify 18 major WM
tracts and allows for the calculation of differentiated diffusion measure-
ments along the whole dissected pathways (Yeatman et al., 2012). AFQ
was run under MATLAB version R2012a (MathWorks). Data were first
preprocessed using the mrDiffusion toolbox (http://web.stanford.edu/
group/vista/cgi-bin/wiki/index.php/MrDiffusion). This preprocessing
included standard steps (motion correction of the DW-MRI images,
coregistration of the DW-MRI images to the T1, realignment to the
anterior commissure—posterior commissure line, and tensor calculation).
The preprocessed DW-MRI data were then fed to the AFQ standard pipeline
consisting of the following three main steps: (1) whole-brain tractography;
(2) tract segmentation; and (3) fiber tract refinement (Yeatman et al,,
2012). Whole-brain tracking used a deterministic streamlines tracking
algorithm with a fourth Runge-Kutta path integration method and
1 mm fixed step size (Mori et al., 1999; Basser et al., 2000). Tract segmen-
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tation was performed using a two-ROI approach, using ROIs defined in
MNI space (Wakana et al., 2007). These MNI ROIs were registered to
each participant’s space by means of nonlinear transformation (Friston
and Ashburner, 2004). Only fibers passing through the two specified
ROIs were assigned to a particular tract. Fiber tract refinement was ac-
complished in two phases. For each participant, the dissected tracts in
native space were first compared with a probability atlas of major WM
pathways (also registered from standard to native space; Hua etal., 2008),
and aberrant fibers were discarded. Second, the fibers that spatially devi-
ated >3 or 4 SDs from the core or the tract were also removed (we
adjusted the value depending on the subject and tract until aberrant
fibers were left out). Finally, diffusion properties were extracted for the
AF, IFOF, ILF, and UF. Specifically, RD values at 100 equidistant nodes
along each tract were calculated. This approach enabled the assessment of
the relationship between each participant’s word-learning ability and the
WM microstructure on a point-by-point basis along each of the dissected
tracts (i.e., using the 100 different RD values obtained per WM tract).

In addition, for the automatic method and for visualization purposes
only, we created approximated probabilistic group overlaps of the AF,
ILF, UF, and IFOF. First, the coordinates for each of the 100 nodes that
form each AFQ tract were extracted for each participant. Then, 3 mm
spheres were created for each of the nodes using MarsBar (Brett et al.,
2002). For each tract and subject, the spheres were combined together
and binarized to obtain an approximated map of the AFQ-dissected WM
pathway in native space. The structural high-resolution T1-weighted im-
ages of each subject were then coregistered to the individual diffusion
maps by using Statistical Parametric Mapping software (SPM8; Well-
come Department of Imaging Neuroscience, University College, Lon-
don, UK; www.filion.ucl.ac.uk/spm). New Segment (Ashburner and
Friston, 2005) was applied to the T1 images to obtain gray and white
matter tissue probability maps that were imported and fed into Diffeo-
morphic Anatomical Registration using Exponentiated Lie algebra
(DARTEL; Ashburner, 2007). The flow fields obtained from this process
were applied to the tract masks in native space previously created with
MarsBar to register them to MNI space. Finally, for each tract, all of the
MNI individual tract masks were averaged to obtain an approximated
probabilistic map of the dissected WM pathways. For display purposes,
we thresholded these maps at a 50% threshold (showing only voxels that
are part of the tract in at least half of the participants). Moreover, to
compare these WM pathways with the cortical regions usually associated
to semantic processing, we conducted a meta-analysis using NeuroSynth
(a platform for large-scale, automated meta-analysis of fMRI data; www.
neurosynth.org; Yarkoni et al., 2011). We calculated a term-based search
on “semantic” that resulted in 884 studies (search performed on 23 April
2017). Then, a reverse inference map was generated in MNI space. This
reverse inference map depicts the brain regions that are preferentially
related to the term semantic (i.e., it shows areas that are more diagnostic
of the term semantic, instead of brain regions that are just activated in
studies associated with that term). Finally, the probabilistic tract masks
were visually compared with the cortical fMRI semantic-related activa-
tions (Frangois et al., 2016).

Experimental design and statistical analysis. Correlational analyses were
performed using MATLAB version R2012a. For all correlations com-
puted regarding manual dissections, RD mean values of manual tracts
>2.5 SDs of the mean were considered outliers and removed (Lépez-
Barroso et al., 2013). AFQ was occasionally unable to dissect a particular
tract; therefore, the affected WM pathway was excluded from all analyses
regarding automatic dissections (one right AF, one left and right ILF, one
left and right UF, one left IFOF, and four right IFOFs). To compare
manual and AFQ dissections, Spearman’s rank-order correlations were
first computed for mean RD values of each tract of interest (for automatic
dissections, mean RD values were calculated as the average of the 100 RD
values obtained).

To assess the relationship between word learning and the WM micro-
structure, Spearman’s rank-order correlations were also used to correlate
scores in both word-learning tasks and RD values. For manual dissec-
tions, scores from both the CTXL and the XSL tasks were correlated with
the mean RD values of the ILF, UF, IFOF, and the long segment of the AF
from both hemispheres. False discovery rate (FDR) correction was used
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to control for multiple comparisons (16 correlations: 4 tracts X 2 hemi-
spheres X 2 word-learning scores; for a similar approach, see Kronfeld-
Duenias et al., 2016; Rojkova et al., 2016; Zhao et al., 2016; Vaquero et al.,
2017).

Regarding automatic dissections, correlations were computed be-
tween the scores of both learning tasks and the 100 RD values obtained
for the ILF, UF, IFOF, and the AF from both hemispheres. To correct for
multiple comparisons (100 correlations were computed per tract and
score), we used an FWE-corrected cluster size threshold, calculated by a
nonparametric permutation method (Nichols and Holmes, 2002). Spe-
cifically, we used the AFQ_MultiCompCorrection function (which is
part of the AFQ software; Yeatman et al., 2012), which returns, among
other values, the minimum number of significant and sequential nodes
(i.e., a cluster) so that any cluster with a greater number of significant
nodes is considered corrected for multiple comparisons. We, thus, only
report those clusters in which a significant correlation at an uncorrected
level of p < 0.05 occurred in a sufficient number of sequential nodes (for
similar approaches, see Dodson et al., 2017; Travis et al., 2016; Vaquero et
al., 2017).

Finally, we used a cross-validation approach to assess whether the
white matter tracts showing significant correlations between diffusion
values and word-learning scores actually predicted (instead of just cor-
related with) CTXL and XSL (for a similar analysis, see King et al., 2016).
Note that for this analysis we only used data from the automatic method,
as it allowed us to use all the information provided by the AFQ software
(the 100 diffusivity values along each tract) to fit a generalized linear
model (GLM), as opposed to the correlational analysis in which we used
each single value separately to calculate 100 correlations with the learning
scores. In this analysis, we expected CTXL and XSL (y in a GLM) to be a
linear combination of the 100 diffusivity values obtained per tract
(xI...x100in a GLM). In other words, we tried to predict a vector of
CTXL or XSL scores (y) from a matrix of diffusivity values (X: 100 diffu-
sivity values X N participants). All analyses were performed using the
MNE (version 0.15; Gramfort et al., 2013, 2014) and Scikit-Learn pack-
ages (Pedregosa et al., 2011).

To do this, for each tract, we first fitted a linear model to a training
subset of 75% of the available data (e.g., AFQ was able to automatically
dissect the left AF of all 40 participants; in this case, the training subset
came from the 100 diffusivity values of 30 participants). To fit the model,
we used a ridge regression to better account for multicollinearity effects
(as there is a linear relationship between the 100 diffusivity values) and
also to prevent overfitting, since we have more features (100 diffusivity
values) than observations (40 participants). Using the parameters ob-
tained by this fit, we then predicted word-learning scores on a different
testing subset formed by the remaining 25% of the data (e.g., the 100
diffusivity values of the remaining 10 participants in the left AF example
above). These predicted scores could then be compared with the real
CTXL and XLS scores (i.e., the ground truth). We did so by computing a
Spearman correlation between the real and the predicted values (King et
al., 2016), which resulted in an r, value: the closer this value is to 1, the
more similar the predicted and the real word-learning scores are. This
analysis was repeated 100 times per tract using a random permutation
cross-validator (ShuffleSplit function from the Scikit-Learn package; we
created random subdivisions of our population into training and testing
subsets). In other words, we generated 100 training (with 75% of avail-
able participants) and test (with 25% of available participants) random
subsets that were used for the following: (1) to fit a model (using the
training subset); (2) to predict the word-learning scores (using the testing
subset); and (3) finally, to generate an r, value (using the predicted and
the real scores of the training set). We then averaged the 100 r, values to
obtain a mean measure of the goodness of fit of the prediction made by
the diffusion properties (the 100 diffusivity values) of each tract.

To estimate the null distribution of each prediction, we repeated the
same approach 10,000 times after randomly shuffling the y label (e.g.,
CTXL or XSL scores) while maintaining the X (100 diffusivity values X N
participants) constant. Thus, in each of the 10,000 permutations, each X
set of values (the 100 diffusivity nodes) is randomly paired with a y value
(i.e., a word-learning score), and we expect the correlation between the
predicted and the real values of the testing set to be 0 (the model is fit
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Table 1. Spearman r, and p values for each correlation between mean RD values of
pair of tracts in each hemisphere

Left hemisphere Right hemisphere Difference
AF-IFOF r,=10.53,p <0.001 r,=10.39,p <0.017 0.14
AF-ILF r,=038,p<0.012 r,=035,p <0.037 0.03
AF-UF r,=037,p<0.021 r, = 0.44,p < 0.007 —0.07
IFOF-ILF r, =0.68, p < 0.001 r,=10.58,p < 0.001 0.10
[FOF-UF r, = 0.48,p < 0.002 r, = 0.47,p < 0.003 0.01
UF-ILF r,=0.51,p <0.001 r,=037,p<0.021 0.13

All correlations survived a p << 0.05 FDR-corrected threshold.

using an incorrect labeling). We finally ranked the 10,000 random r;
values obtained (i.e., created from random X-y pairings), so that any real
r, (coming from the original data; created using correct X—y pairings)
with a value greater than that of the 9500 position in the ranking allowed
us to reject the null hypothesis with a p value <0.05 (i.e., reject that there
is no correlation between the predicted and the real learning scores).
Thus, this method allowed us to assess whether the relationship between
the predicted and the real word-learning scores was significant: whether
a particular tract is a good predictor of a particular word-learning score.

Results

Behavioral results for the semantic learning tasks

Participants showed above-chance performance in both tasks as
they learned 60 = 15.51% of the new words in the CTXL para-
digm (M + condition; ¢35, = 10.80, p < 0.001; chance level was at
33%, see Materials and Methods) and 52 = 17% of the object—
word pairs in the XSL task (30) = 9.97, p < 0.001; chance level
was at 25%; see Materials and Methods). This last result replicates
the learning performance reported in a previous study using the
same task (~55% of accuracy; Yu and Smith, 2007). No behav-
ioral outliers (>2.5 or <2.5 SDs) were detected in any of the
tasks. A significant association was observed between the perfor-
mance of both learning tasks (r = 0.45, p < 0.005). Note that,
despite this correlation between behavioral measures, their neu-
ral underpinnings differed significantly (see below).

Manual and automatic virtual dissections
For manual dissections and to characterize the hemispheric par-
ticularities of the dissected tracts, we first computed laterality
indices (LIs; we used tract volume; Thiebaut de Schotten et al.,
2011). LIs range from —1 to 1, with more positive values repre-
senting left lateralized structures [calculated as (LeftVolume —
RightVolume)/(LeftVolume + RightVolume)]. Our results
replicate previous findings (Thiebaut de Schotten et al., 2011a;
Lopez-Barroso et al., 2013) with the AF (LI = 0.19 * 0.34) being
the only tract showing a left lateralized pattern (IFOF = 0.07 =
0.19; ILF = —0.08 = 0.19; UF = —0.07 = 0.17). In addition, we
also calculated Spearman rank correlations between intrahemi-
spheric tracts (correlations between RD values of tracts of the
same hemisphere). Results (Table 1) show that, in general, r,
values were larger for correlations between left-hemispheric
tracts, especially for the left AF-IFOF and left ILF-UF pairs.
Regarding the direct comparison between manual and auto-
matic dissections, there was a significant correspondence be-
tween the mean RD values of both approaches for all the tracts of
interest, with almost all r, values >0.60, indicating a strong agree-
ment between methods (left AF, r, = 0.69; right AF, r, = 0.86; left
UF, r, = 0.52; right UF, r, = 0.63; left ILF, r, = 0.60; right ILF,
r, = 0.53; left IFOF, r, = 0.63; right IFOF, r, = 0.66; all p values
<0.001). The coefficients obtained for the left AF are similar to
those reported in previous research (Vaquero et al., 2017), which
also compared manual dissections of the left long segment of the
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AF with automatic fiber tracking. This shows that, considering
the manual dissections as the gold standard, automatic dissec-
tions produced reliable diffusion measures of microstructural
WM integrity, further corroborating the validity of the anatom-
ical measures used here.

Relationship between learning scores and structural
connectivity of language-related pathways: manual
dissections
To address the critical question on the relationship between WM
structure and word-learning success, we then correlated subject-
specific WM measures with individual learning success. We used
RD values (for both the automatic and manual correlations) as a
measure of WM microstructure, as RD has been consistently
related to the myelin content along axons—an indicator of in-
creased conduction of action potentials (Song et al., 2002, 2005;
Fields, 2008; Klawiter et al., 2011; Zatorre et al., 2012)—and thus
could serve as a sensitive index of cognitive processing. While the
WM microstructure of several pathways crossing the temporal
lobe (especially those of the left hemisphere) showed significant
relationships with both learning performances at an uncorrected
threshold, only the left ILF and the left UF were significantly
associated with CTXL (18.5% of the variance explained by the left
ILF) and XSL (33.6% of the variance explained by the left UF),
when corrected for multiple comparisons (Fig. 2, see Table 2 for
all correlation coefficients). Importantly, both the left and right
long segments of the AF failed to show a significant relationship
(corrected or uncorrected) with performance on any of the se-
mantic learning paradigms. Hence, our results reveal that the
pattern of behavior is tightly linked to the integrity of WM path-
ways in the temporal lobe of the left hemisphere.

Given that the IFOF has previously been implicated in seman-
tic processing (Duffau et al., 2005, 2009; Mandonnet et al., 2007),
we conducted further analyses to test for this hypothesis. In par-
ticular, we computed a hierarchical multiple regression in which
the IFOF was added as an independent predictor to a model that
included the ILF (with CTXL as a dependent variable) or the UF
(with XSL as dependent variable). Adding the IFOF failed to
significantly increase the amount of variability predicted by the
model in both cases (XSL: 0.4% increase in R% F(, 54 = 0.197;
p = 0.66; tolerance = 0.76; variance inflation factor = 1.31;
CTXL: 0.1% increase in R%; F(1 35 = 0.06; p = 0.808; tolerance =
0.438; variance inflation factor = 2.28).

Relationship between learning scores and structural
connectivity of language-related pathways: automatic
dissections

As stated before, the automatic tracking method allows for the
extraction of individual RD values along each of the tracts of
interest (right/left AF, IFOF, UL, and ILF). Thus, the correlations
between word-learning scores and RD values were calculated on
a point-by-point basis using 100 nodes equidistantly placed along
each tract. Figure 3 shows an approximate group map of the four
different tracts dissected with the automatic procedure in MNI
space (a voxel is shown if it was part of a tract in at least 50% of the
participants; see Materials and Methods), along a meta-analysis
of semantic-related fMRI activity calculated using NeuroSynth
(Yarkoni et al., 2011). This meta-analysis revealed, as expected, a
strongly left-lateralized cortical network, covering not only the
left IFG, anterior temporal lobe, and pMTG, but also the inferior
temporal and the fusiform gyri, the angular gyrus, and even
mesial temporal regions such as the hippocampus and parahip-
pocampus. To further assess the reliability of the tracts dissected
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Table 2. Spearman r, and p values for each correlation between word-learning
success in the two different learning paradigms and the mean RD value of each
tract of interest

WM (TXL XSL
Dorsal
AF
Left r,=—0.18,p > 0.266 r,=—021,p>0.183
Right r,=—0.08,p>0.623 r,=—0.18,p > 0.283
Ventral
ILF
Left r,=—0.43,p < 0.006 r,=—032,p <0.049
Right r,=—033,p<0.038 r,=—0.13,p > 0.403
UF
Left r,=—0.25p>0.131 r,=—0.58,p < 0.001
Right r,=—034,p <0.036 r,=—0.28,p > 0.087
IFOF
Left r,=—035p<0.027 r,=—035p<0.027
Right ro=—0.17,p > 0.300 ry=—0.20,p > 0.216

Notice that lower RD values indicate better WM microstructure integrity. Correlations in bold survived a p << 0.05
FDR-corrected threshold.

using AFQ, we also compared our MNI group-specific probabi-
listic tracts (Fig. 3) with a well known probabilistic tractography
atlas (Thiebaut de Schotten et al., 2011a,b, 2014). We thresholded
both our probabilistic group-specific maps and those of the prob-
abilistic atlas at the 50% level (i.e., showing only voxels that were
part of a particular tract in at least half of our participants). We
then calculated the percentage of voxels of our tracts that over-
lapped with the atlas. As expected, there was a great overlap
between all the dissected tracts for our group and their corre-
sponding counterparts in the atlas (left AF, 81.91%; left IFOF,
80.70%; left ILF, 85.89%; left UF, 74.34%; right AF, 85.59%; right
IFOF, 83.59%; right ILF, 99.19%; right AF, 89.67%). These re-
sults add further evidence that the obtained dissections are ana-
tomically plausible and reliable.

Regarding the correspondence between semantic learning
measures and automatic dissections, two clusters along the left
ILF (located in the posterior and in the anterior to mid-portion of
the tract) showed significant FWE-corrected associations with
individual word-learning success in the CTXL paradigm (Fig. 4A;
32.8% of the variance explained by the peak node at the left ILF).
The cluster with the strongest WM-behavior correlation was the

one located posteriorly, around the pMTG (Fig. 4C, approximate
location of this cluster in MNI space). In addition, one cluster at
the anterior to mid-region of the ILF also showed a significant
association with XSL (Fig. 4B; 21% of the variance explained by
the peak node at the left ILF). Importantly, there was an overlap
between the clusters showing significant correlations for both
XSL and CTXL at the anterior to mid-section of the ILF (near the
hippocampus; Fig. 4C, light blue cluster). To quantify this over-
lap, we calculated a dice similarity index (DSI; Dice, 1945), which
we defined as twice the overlap between the number nodes cor-
relating with CTXL and XSL at the same time, divided by the sum
of the number of nodes in the anterior to mid-portion of the ILF
that correlate with CTXL and XSL independently (Seghier et al.,
2008; Ripollés et al., 2012). DSI ranges between 0 and 1 (0, no
overlap; 1, perfect similarity) with values exceeding 0.80 consid-
ered as an indicator of a high similarity (Wilke et al., 2011). The
DSI for this cluster was 0.89, which indicates a high overlap be-
tween the nodeslocated in the anterior to mid-part of the ILF that
correlates both with XSL and CTXL.

The only other tract showing significant correlations with the
semantic tasks was the UF. A significant FWE-corrected cluster
correlating with XSL scores was found in the inferior part of the
left UF (Fig. 5A,B; 30.3% of the variance explained by the peak
node at the left UF; the nonsignificant correlations with CTXL
outcomes are also shown for the sake of completeness). This
significant cluster is placed around the left anterior temporal lobe
(Fig. 5C, approximate location of this cluster in MNI space).

Finally, we applied a cross-validation approach to assess
whether the left ILF and left UF actually predicted (instead of just
correlated with) CTXL and XSL scores (King et al., 2016). Results
for the left AF and left IFOF are also presented as controls. Figure
6 depicts the mean and SD of r, values that describe the goodness
of fit of each tract as a predictor for each word-learning score (the
r, value is computed between the predicted and the real learning
scores; the greater the r, value is, the more similar these values are
and the better the prediction). As expected, both the left ILF and
UF were significantly predictive of CTXL and XSL, respectively.
In addition, the left UF was also a good predictor of CTXL, while
the r, value between the predictions made by the left ILF RD
values and the real XSL scores approached significance (proba-
bility of rejecting the null hypothesis that r, = 0 was 0.0789). This
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Mean tracts produced by automatic dissections and the semantic network. An approximation of the mean tracts dissected automatically (thresholded at 50% probability; see Materials

and Methods) is shown (light blue, AF; dark blue, IFOF; green, ILF; yellow, UF). In red-yellow, thresholded at a p << 0.01 FDR-corrected threshold, the NeuroSynth fMRI meta-analysis on the term
semantic is shown. Results are overlaid over a canonical T1 with MNI coordinates at the bottom right of each slice. Neurological convention is used. L, Left hemisphere; R, right hemisphere.

further shows that not only was there a significant relationship
between the left ILF and UF tracts and CTXL and XSL scores, but
also that the pattern of RD values from these tracts actually pre-
dicted word learning.

Discussion

The goal of the present study was to assess whether the micro-
structural anatomy of the ILF, UF, and IFOF was associated with
individual differences in semantic learning for different types of
word-to-meaning mappings (CTXL and XSL). Our results indi-
cate that individual differences in the microstructure of the left
ILF and UF predict semantic learning success beyond their sug-
gested—and still controversial (Duffau et al., 2005, 2009; Man-
donnet et al., 2007)—contribution to semantic processing.
Specifically, the manual dissection approach indicated that the
left ILF and the left UF correlated with scores in CTXL and XSL,
respectively (Fig. 2). The automatic dissections further corrobo-
rated these findings, but revealed—despite both tasks being cor-
related on the behavioral level—only a partly overlapping WM
network: although the anterior to mid-section of the ILF cor-
related with both learning tasks, its posterior region (near the
PMTG) was more associated with CTXL (Fig. 4C). In the same
line, the anterior inferior portion of the left UF (around the an-
terior temporal lobe) significantly correlated with XSL (Fig. 5C).
Remarkably, the cross-validation analyses showed that both the
left ILF and UF were good predictors of performance on both
semantic learning tasks, although, as expected, the left ILF gen-
erated better predictions than the left UF for CTXL and the op-
posite occurred for XSL (Fig. 6). No significant correlations were

found for the long segment of the AF, part of the dorsal pathway
for phonological processing (Hickok and Poeppel, 2007; Raus-
checker and Scott, 2009). Previous research, using the same
CTXL task (Ripollés et al., 2014) and similar learning paradigms
(Rodriguez-Fornells et al., 2009), shows that contextual learning
is supported by regions related to semantic processing (Lau et al.,
2008; Binder et al., 2009; Fig. 3), which are connected by the WM
fiber tracts of the ventral pathway of language processing (ILF,
UF, and IFOF): the left ventral IFG (BA 47), the pMTG, and the
ATL. The left ventral IFG has been related to semantic processing,
with a special role in guiding top-down retrieval of semantic knowl-
edge from long-term memory (Fiez, 1997; Badre et al., 2005; Badre
and Wagner, 2007). The pMTG has been suggested to be an im-
portant hub for semantic processing (Turken and Dronkers,
2011), which could also act as a lexical interface that mediates
mapping between phonetic representations in superior temporal
regions and semantic features widely localized over a distributed
network (Hickok and Poeppel, 2007; Rodriguez-Fornells et al.,
2009; Gow, 2012). In line with this view, our results revealed the
highest correlations with CTXL for the WM surrounding the
PMTG (Fig. 4C). Together, these findings suggest that the com-
bined activity of the above-mentioned regions and the temporal
WM pathways connecting them—especially by the ILF around
the pMTG—allowed learners (1) to retrieve the possible meaning
candidates that cohere with the contextual information avail-
able in a learning instance and (2) to narrow down the alter-
native meanings to finally learn the correct word-to-meaning
mappings.
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ILF automatic dissections. Correlations between word-learning scores and RD values were calculated on a point-by-point basis using 100 nodes equidistantly placed along the ILF.In 4

and B, atract from an individual subject with a colored overlay representing the Spearman’s rank-order r, value is shown on the left. The p values associated with each r, value at each of the 100 points
extracted with the automatic procedure are displayed on the right (left hemisphere in black; right hemisphere in gray; FWE-corrected clusters in red). A, Results of the correlations between the WM
microstructural properties of the left ILF and individual success in CTXL. B, Results of the correlations between the WM microstructural properties of the left ILF and individual success in XSL.
€, Approximate location in MNI space of the results shown in A and B (see Materials and Methods), shown over a canonical T1 along a Neuro-Synth meta-analysis of semantic-related fMRI activity.
Neurological convention is used, with MNI coordinates shown at the right bottom of each slice. In dark blue, portions of the ILF correlating with CTXL are shown. In light blue, portions of the ILF
correlating with XSL are shown. Note the overlap at the anterior to mid-section of the ILF. The cluster at the posterior region of the ILF is the one showing the greatest correlation (see blue circle in
A) for CTXL (highlighted also with a blue circle in axial and coronal slices). L, Left hemisphere; HP, hippocampus; ITG, inferior temporal gyrus.

Learning the correct word-to-meaning mappings in a situa-
tion of referential ambiguity can be also achieved through the
computation of cross-situational statistics (Smith et al., 2014). It
has been proposed that XSL is supported by statistical learning
mechanisms where word learning takes place gradually by track-
ing the frequency of co-occurrence between many words and
referents in a cross-trial approach (Yu and Smith, 2007). Thus,
during XSL, we expected participants to use different strategies
than those used during CTXL. Our results for the automatic dis-
sections show that the neuroanatomy of both the left ILF and UF
was predictive of XSL scores. This time, the area showing the
highest correlations (Fig. 5) was the WM surrounding the left
ATL. Note that there is only a partial overlap for WM correlations
for both CTXL and XSL in the anterior to mid-section of the ILF.
Although fMRI studies focusing on XSL are lacking, the left ILF
has been related to visual object recognition (Mummery et al.,
1999), possibly playing a role in linking object representations
and labels. Importantly, the UF has been related to lexical re-
trieval of semantic knowledge and semantic control (but see Duf-
fau et al., 2009; de Zubicaray et al., 2011; Harvey et al., 2013),

reflecting the role of this pathway in connecting the IFG and the
ATL (Catani et al., 2002). Indeed, XSL might engage both the left
IFG and ATL. On the one hand, the IFG has been related to the
retention of semantic short-term representations (Shivde and
Thompson-Schill, 2004) and to the selection, activation, and in-
hibition of competing semantic alternatives (Thompson-Schill
and Botvinick, 2006; Hoffman et al., 2009). Furthermore, it has
been proposed that XSL relies on statistical learning mechanisms
(Yu and Smith, 2007; Penaloza et al., 2017), which have been
associated with the IFG in both healthy (Karuza et al., 2013) and
clinical populations (Pefaloza et al., 2015). On the other hand,
the ATL plays a role in semantic processing (Bajada et al., 2016),
object naming (Price et al., 2006), and semantic lexical retrieval
(Schwartz et al., 2009), with WM in this region also being asso-
ciated with the degradation of conceptual representations in
semantic dementia (Agosta et al., 2010; Ralph et al., 2017).
Moreover, the ATL is thought to operate as a hub that processes
information about object-related associations (Patterson et al.,
2007). Therefore, it is possible that the IFG is engaged during XSL
through statistical learning mechanisms and that the ATL—
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lobe; ITG, inferior temporal gyrus; FG, fusiform gyrus.
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Figure 6.  Results of the cross-validation approach. A cross-validation approach was used to assess whether the 100 RD values from the left ILF and left UF actually predicted (instead of just
correlated with) CTXL and XSL scores. Data for the left AF and left IFOF are also presented as a control. Bars represent average r, values (= SD) denoting the goodness of fit for each tract as a predictor
for each word-learning score. The r, value is computed using the predicted scores (calculated for 100 testing subsets of the data, using the coefficients obtained after fitting a model with their
respective training sets; see Materials and Methods) and the real learning scores. The closer the r, value is to 1, the more similar the predicted and real values are, and the better the prediction is.
*p << 0.05; % p = 0.0789.
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receiving its contribution through the UF—integrates novel
information about conceptual referents that have recently
been disambiguated. We propose that the ILF, and especially the
UF, may support the integration and retrieval of the correct rep-
resentations for recently acquired words during XSL, although
functional data are still needed to support this claim.

Research shows that the initial stage of word learning is a rapid
process sustained by medial temporal lobe structures (Davis and
Gaskell, 2009; Rodriguez-Fornells et al., 2009). Studies in both
clinical (Gabrieli et al., 1988; Warren et al., 2016) and healthy
populations (Breitenstein et al., 2005; Tuomiranta et al., 2014)
implicate the hippocampus in new word learning, as well as
when a CTXL paradigm is used (Mestres-Missé et al., 2010;
Ripollés et al., 2016). In our study, the region in the anterior to
mid-section of the ILF showing significant correlations with both
CTXL and XSL is close to the hippocampus (Fig. 4C, light blue
cluster). This could support the idea that initial information re-
garding word-to-meaning mappings reaches the medial tempo-
ral lobe via the ILF.

Remarkably, we found no significant correlations between se-
mantic learning and the IFOF. In a previous DW-MRI whole-
brain analysis (in standard space), we found a scattered pattern of
results that showed significant correlations with CTXL not only
for the ILF and UF, but also for the IFOF and even portions of the
AF (Ripollés et al., 2014). This may suggest that fine-grained anal-
yses (i.e., tractography) performed in native space can be more sen-
sitive to subject-specific effects. There is still an ongoing debate
regarding whether the IFOF or the ILF-UF route is the crucial path-
way for semantic processing. While previous studies show that
intraoperative electrostimulation of the IFOF—but not of the UF
or ILF—induces disruptions in semantic processing (Duffau et
al., 2005, 2009; Mandonnet et al., 2007), recent research in both
healthy (Saur et al., 2008; Wong et al., 2011) and patient popula-
tions (Shinoura et al., 2010; Papagno et al., 2011; Harvey et al.,
2013) shows that the ILF-UF pathway may also support semantic
processing. Although we cannot rule out a role of the IFOF in
semantic learning (note that the way in which we selected the
ROIs might have constrained the IFOF temporal connections;
Turken and Dronkers, 2011), our results lend support to the
notion that although the IFOF might be sufficient during stan-
dard semantic processing, the ILF and UF may also support novel
word-to-meaning mappings (Fig. 6). Remarkably, one can find a
parallel between this indirect ILF-UF pathway and other indirect
routes. For example, in the VTA—hippocampal loop (a circuit in
the service of memory and learning), signals coming from the
hippocampus must pass through several anatomical structures
(e.g., ventral striatum) before reaching dopaminergic regions.
This complexity is thought to be related to the need to control
which information enters long-term memory (Lisman and
Grace, 2005). In the same way, the ILF-UF pathway provides an
indirect connection between temporal and inferior frontal re-
gions that has the advantage of adding signals from the ATL.

In conclusion, we provide evidence for the involvement of the
left ILF and UF in the acquisition of novel word-to-meaning
mappings beyond their possible involvement in semantic pro-
cessing. Current and previous (Lopez-Barroso et al., 2013) find-
ings are in line with views suggesting that the roles of the dorsal
and ventral pathways in word learning resemble their roles in
phonological and semantic processing, respectively. Conducting
statistics along WM fiber bundles was found to be fundamental
for a fine-grained identification of areas of specific importance
for new word learning. We suggest that this approach can be
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generalized for the identification of WM bottlenecks in cognitive
processing.
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