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The human brain contains trillions of syn-
apses, which need to be produced in the
correct places, in the correct quantity, and
with the correct properties for the brain
to function normally. Trans-synaptic cell
adhesion molecules play integral roles in
this process, by initiating synapse formation,
specifying synapse type, and coordinating
synapse maturation and maintenance (Dalva
et al., 2007). The neuroligins (NLs) and
neurexins (NRXs) were one of the first
pairs of synaptic adhesion molecules to
be characterized, and their mutation was
quickly shown to be associated with au-
tism, and later with schizophrenia (Ja-
main et al., 2003; Sun et al., 2011). Yet,
despite over 2 decades of inquiry, their
precise role in synapse development re-
mains elusive. NLs are the postsynaptic
binding partners of presynaptic NRXs,
and in rodents three NLs are highly ex-
pressed in the nervous system (Dalva et
al., 2007). NL1 is localized at glutama-
tergic synapses, NL2 at GABAergic and
glycinergic synapses, and NL3 at both glu-
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tamatergic and GABAergic synapses (Bu-
dreck and Scheiffele, 2007). Early work
using RNAi-mediated knock-down and
overexpression (OE) approaches suggested
that NL1 and NL2 were necessary and suffi-
cient for excitatory and inhibitory synapse
formation, respectively (Chih et al., 2005).
However, in a study using NL123 triple
knock-out (TKO) mice, Varoqueaux et al.
(2006) showed that NLs were not required
for the initial formation of synapses in the
brainstem but were essential for the mat-
uration of synaptic currents. Since then,
the discrepancies between these early
studies have not been fully resolved, with
recent work using conditional NL knock-
outs (cKOs) suggesting that NLs may be
involved in regulating both synapse num-
ber and maturation (Rothwell et al., 2014;
Liang et al., 2015; Zhang et al., 2015; Jiang
etal., 2017).

In a recent article, Chanda et al. (2017)
undertook a systematic study of the role
and functional redundancy of NLs in
synaptic development. The authors em-
ployed dissociated mouse hippocampal
and cortical neuronal cultures, using Cre-
recombinase-mediated cKO of NL1, 2,
and/or 3. Chanda et al. (2017) first examined
NL123 triple cKO neurons, finding de-
creased frequency and amplitude of min-
iature postsynaptic currents (mPSCs), as
well as decreased evoked PSCs, at both in-
hibitory and excitatory synapses. As ex-

pected from the above-mentioned work of
Varoqueaux et al. (2006), and despite the
alterations in synaptic physiology, Chanda
et al. (2017) found no changes in synaptic
puncta size or number or dendritic spine
density between control and NL123 triple
cKO neurons, suggesting that the synapse
number was unaltered.

The decreased amplitudes of minia-
ture and evoked PSCs clearly suggest de-
fective maturation of synapses. According
to the quantal theory of neurotransmitter
release though, decreased mPSC frequency
can indicate either deficits in presynaptic
neurotransmitter release or changes in syn-
apse number. Because the latter possibility
was ruled out, as mentioned above, Chanda
et al. (2017) tested whether decreased
mPSC frequencies resulted from deficits
in presynaptic release. They ruled out
changes in presynaptic function in cKO
neurons with multiple lines of evidence,
leaving the cause of the reduced mPSC
frequency unclear. Similarly unexplained
decreases in mPSC frequency were found
in other studies of NL KOs as well (Varo-
queaux et al., 2006; Rothwell et al., 2014;
Zhang et al., 2015). One possible explana-
tion is that the number of silent synapses
is elevated in NL KOs. Silent synapses
would appear normal by immunological
studies but would not contribute to mPSC
frequency. Silent synapses, which are
present normally during development,
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can be unsilenced by the induction oflong-
term potentiation (LTP; Hanse et al.,
1997). Interestingly, NL123 cKO mice
have deficits in LTP (Jiang et al., 2017),
which could explain the potentially ele-
vated numbers of silent synapses sug-
gested by the decreased mPSC frequency
seen by Chanda et al. (2017) and others.
To further characterize the deficits in
synapse maturation indicated by decreased
PSC amplitudes, Chanda et al. (2017, their
Fig. 7D,E) examined receptor content
and found that the total charge transfer
during PSCs evoked by puffing AMPA or
GABA was lower in cKO cells than in con-
trols. Decreased charge transfer may indi-
cate shorter decay times of the evoked
PSCs, which seems apparent in their ex-
ample traces. This is consistent with a
change in AMPA and GABA receptor sub-
unit composition. GluA2-containing AMPA
receptors give rise to EPSCs with slower
decay kinetics compared with those lack-
ing GluA2 (Geiger et al, 1995), and,
furthermore, NL1/NRX1f binding prefer-
entially recruits GluA2-containing AMPA
receptors (Heine et al., 2008). Notably,
Chanda et al. (2017) used GluA2 surface
staining as a general indicator of glutama-
tergic synapse function and found that
GluA2 puncta were smaller in ¢cKO neu-
rons than in control neurons, explaining
the probable change in decay kinetics they
observed. Although NL2 has not been
shown to recruit specific GABA receptor
subunits, gradual shifts in GABA receptor
composition underlie the maturation of
GABAergic currents during development
(Fritschy and Panzanelli, 2014). In addition,
gephyrin, the major binding partner of
NL2 in the GABAergic postsynaptic scaf-
fold, has been proposed to play differen-
tial roles in synapse assembly depending
on its conformation and phosphorylation
state (Tyagarajan and Fritschy, 2014). A
role for NL2, via its interactions with
gephyrin, in recruitment of specific GABA
receptor subunits would further confirm
the notion that NLs promote synapse mat-
uration by influencing the subunit compo-
sition of neurotransmitter receptors.
Chanda et al. (2017) also questioned
the functional redundancy of NLs by ex-
amining double KOs (dKOs) and single
KOs (sKOs). Confirming previous work,
they showed that NL1 is necessary for ex-
citatory synapse development, NL2 for in-
hibitory synapses, and NL3 for neither.
Importantly NL1 sKO neurons had defi-
cits only in evoked, not in miniature
EPSCs (mEPSCs), while the further loss of
NL3 in NL13 dKO neurons decreased
both evoked and mEPSC amplitude, sug-

gesting that NL1 and NL3 may play differ-
ent roles at the synapse. This is further
supported by experiments in which NL1
OE increased evoked AMPA and NMDA
receptor currents above basal levels in
both control and triple ¢cKO neurons,
whereas NL3 OE only returned AMPA re-
ceptor currents to basal levels in cKOs. Di-
vergent roles for NL1 and NL3 are likely
underpinned by different complements of
binding partners for the two molecules,
which would alter their ability to recruit
or stabilize synaptic components. In par-
ticular, cis-interactions of NLs with me-
prin/A5 protein/receptor protein tyrosine
phosphatase p domain-containing glyco-
sylphosphatidylinositol-anchored proteins
have recently been shown to differentially
regulate NL function and may hold the key
to the divergent roles of NL1 and NL3 at
excitatory synapses (Elegheert et al., 2017).

Chanda et al. (2017) conclude that
NLI, 2, and 3 are necessary for the matu-
ration of synapses and have limited func-
tional redundancy. In interpreting these
results, however, it should be noted that
with their conditional deletion approach,
synapse formation was already underway
when the NL genes were lost. Chanda et al.
(2017, their Fig. 1) show that synapse for-
mation begins at 4 d in vitro (DIV), while
cKO commenced at 3DIV. Given that
NL2 and NL3 have half-lives of ~2.6 d in
culture (Cohen et al., 2013), NLs were
likely present in the early stages of synap-
togenesis in this study. Furthermore, NL1
has been shown to recruit PSD-95, which
promotes synapse formation and stability
(El-Husseini et al., 2000), within 2—4 h of
binding to NRX18 (Heine et al., 2008).
Verifying the time course of NL protein
and mRNA loss following recombination
would clarify this issue. Furthermore, it
would be informative to compare neu-
rons with cKO commencingat 3DIV to an
earlier KO, by preparing cultures from
TKO pups (Varoqueaux et al., 2006), by
expressing Cre in utero in cKO animals via
a neuronal Cre driver, or by transfecting
Cre on the day of culturing, so that cKO
occurs at ODIV.

Chanda et al. (2017) also observed
decreased inhibitory synaptic puncta den-
sity when triple cKO cultures were left un-
til 28D1V, suggesting that NLs also play a
role in the long-term stability of synapses.
Consistent with this, NL2 has been shown
to couple with IGSF9B, a homophilic adhe-
sion molecule thought to structurally stabilize
inhibitory synapses (Woo et al., 2013).
Furthermore, cKO of NL2 in the medial
prefrontal cortex causes a delayed de-
crease in the number of inhibitory syn-
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apses that only becomes apparent 6-—7
weeks after NL2 is knocked out (Liang et
al., 2015). Thus, NL2, in addition to its
role in regulating synapse maturation,
may play a structural role in stabilizing
mature synapses such that its ablation
causes a slow, stochastic decay of inhibi-
tory synapse numbers. A role for NL1 in
stabilizing nascent synapses has also been
shown in the developing Xenopus optic
tectum (Chen et al., 2010). Alternately,
neuronal activity itself can stabilize syn-
apses (Trachtenberg et al., 2002; Keck et
al., 2011), suggesting that NLs could play
an indirect role here simply by promoting
maturation of synapse strength. Moving
forward, it will be important to tease apart
these possibilities, by further investigating
the role of NL2 in inhibitory synapse sta-
bility, and to assess whether NL1 and NL3
also play structural roles in the long-term
stability of excitatory synapses.

The results of the study by Chanda et
al. (2017) suggest that NLs do not con-
tribute to the initial stages of synaptic
development in neuronal culture but are
necessary for postsynaptic maturation,
and that there is only limited redundancy
between NLI and NL3. Importantly, many
questions remain, and, as recent in vivo
findings suggest, NLs play complex, cell
type-specific roles in maintaining circuit
function in different brain areas (Roth-
well et al., 2014; Zhang et al., 2015). These
will need to be understood to treat disor-
ders caused by NL mutations, such as au-
tism and schizophrenia.
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