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Neurobiology of Disease

Histological Underpinnings of Grey Matter Changes in
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Chronic pain patients present with cortical gray matter alterations, observed with anatomical magnetic resonance (MR) imaging. Reduced
regional gray matter volumes are often interpreted to reflect neurodegeneration, but studies investigating the cellular origin of gray matter
changes are lacking. We used multimodal imaging to compare 26 postmenopausal women with fibromyalgia with 25 healthy controls (age range:
50-75 years) to test whether regional gray matter volume decreases in chronic pain are associated with compromised neuronal integrity.
Regional gray matter decreases were largely explained by T1 relaxation times in gray matter, a surrogate measure of water content, and not to any
substantial degree by GABA , receptor concentration, an indirect marker of neuronal integrity measured with [ '*F] flumazenil PET. In addition,
the MR spectroscopy marker of neuronal viability, N-acetylaspartate, did not differ between patients and controls. These findings suggest that
decreased gray matter volumes are not explained by compromised neuronal integrity. Alternatively, a decrease in neuronal matter could be
compensated for by an upregulation of GABA , receptors. The relation between regional gray matter and T1 relaxation times suggests decreased
tissue water content underlying regional gray matter decreases. In contrast, regional gray matter increases were explained by GABA , receptor
concentration in addition to T1 relaxation times, indicating perhaps increased neuronal matter or GABA,, receptor upregulation and inflam-
matory edema. By providing information on the histological origins of cerebral gray matter alterations in fibromyalgia, this study advances the
understanding of the neurobiology of chronic widespread pain.
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Regional gray matter alterations in chronic pain, as detected with voxel-based morphometry of anatomical magnetic resonance
images, are commonly interpreted to reflect neurodegeneration, but this assumption has not been tested. We found decreased
gray matter in fibromyalgia to be associated with T1 relaxation times, a surrogate marker of water content, but not with GABA ,
receptor concentration, a surrogate of neuronal integrity. In contrast, regional gray matter increases were partly explained by
GABA, receptor concentration, indicating some form of neuronal plasticity. The study emphasizes that voxel-based morphome-
try is an exploratory measure, demonstrating the need to investigate the histological origin of gray matter alterations for every
distinct clinical entity, and advances the understanding of the neurobiology of chronic (widespread) pain. j

ignificance Statement

Introduction
Brain atrophy occurs in a variety of different neurological and
psychiatric conditions and was traditionally identified postmor-
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tem. With the advent of high-resolution anatomical MRI, it has
become possible to analyze gray matter volumes (GMVs) in vivo
and to detect subtle, regionally confined decreases in cerebral
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gray matter. Regional gray matter decreases have been described
in patients with Alzheimer’s disease, Parkinson’s disease, and
schizophrenia (Mueller et al., 2012a, b), among others. Chronic
pain is no exception and is associated with regional GMV de-
creases in several cortical and subcortical areas, including the
cingulate cortex, insula, prefrontal cortex, and the thalamus, as
confirmed in meta-analyses (Davis and Moayedi, 2013; Small-
wood et al., 2013).

Neurodegeneration, the progressive damage of neurons, is
known to occur in many conditions involving brain atrophy. In
Alzheimer’s disease, for example, hippocampal gray matter de-
creases as detected with MRI were related to decreased numbers
of neurons (Bobinski et al., 2000; Duyckaerts et al., 2009). Neu-
rodegeneration provides an attractive explanation for the delete-
rious effects chronic pain has on cognitive and emotional
processing (Bushnell et al., 2013). However, whether GMV de-
creases in chronic pain are associated with compromised neuro-
nal integrity has not been tested.

In addition to regional gray matter decreases, increases are
observed in chronic pain, albeit less extensively and less consis-
tently (Davis and Moayedi, 2013; Smallwood et al., 2013). We
have speculated that regional gray matter increases reflect su-
praspinal inflammation in chronic pain (Schweinhardt et al.,
2008). Alternatively, increased gray matter in chronic pain might
be caused by increased use of certain neuronal populations, akin
to plastic changes in synapses and neural processes described for
learning (e.g., Anderson, 2011; Draganski et al., 2011; for review,
see Zatorre et al., 2012). Similar to gray matter decreases, tissue
properties underlying gray matter increases in chronic pain have
not been investigated.

Using multimodal imaging, we aimed to better understand
the nature of cerebral gray matter alterations in fibromyalgia, in
which the cardinal symptom is chronic widespread pain (Mease
et al, 2009). The assessment of regional GMVs with high-
resolution T1-weighted MRI, as done in previous studies, enables
the investigation of subtle changes in regional GMVs; however, it
cannot determine which tissue or cell types are affected. There-
fore, we complemented GMV measures with [ '*F]flumazenil
PET, proton magnetic resonance (MR) spectroscopy, and voxel-
based quantitative T1 relaxometry. Flumazenil binds to the ben-
zodiazepine site of the y-aminobutyric acid (GABA,) receptor,
which is densely expressed at inhibitory synapses in the cortex
(Holthoffetal., 1991; Sette et al., 1993; Heiss et al., 1998). Because
the benzodiazepine-GABA , receptor complex is located on neu-
rons, [ '*F]flumazenil PET has been used as a surrogate marker of
neuronal density in gray matter (la Fougere et al., 2011) and of
neuronal integrity (Heiss et al., 2001). The concentration of
N-acetylaspartate, measured with proton MR spectroscopy,
served as additional read-out of neuronal viability (Moffett et al.,
2007). Finally, quantitative T1 relaxometry was used as a surro-
gate measure of tissue water content (Fatouros et al., 1991;
Gelman et al., 2001) because alterations in water content might
influence apparent gray matter (Lorio et al., 2016).

Materials and Methods

Participants
Postmenopausal women were studied because fibromyalgia predomi-
nantly affects women (Staud, 2006) and because premenopausal and
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postmenopausal fibromyalgia patients have been reported to show dif-
ferent patterns of regional gray matter alterations (Ceko etal., 2013). The
McGill Institutional Review Board approved the study, and participants
gave written informed consent before inclusion. Exclusion criteria were:
pain conditions other than fibromyalgia, uncontrolled medical condi-
tions, any psychiatric or neurological disorders, and body mass index
>30 kg/m?. Participants using benzodiazepine medication more than
once a week were excluded. Participants using benzodiazepines occa-
sionally (4 patients once a week, 2 patients biweekly) were off medication
for at least 48 h before the PET scan to avoid potential interactions of
benzodiazepines with the radiotracer. Of 59 participants recruited, 8
were excluded from analysis: 4 participants had one or more missing
imaging modalities, 3 had poor quality PET data, and 1 had visible atro-
phy. The final sample comprised 26 patients and 25 controls with com-
plete imaging data. The healthy control group was matched to the
fibromyalgia group for age, body mass index, education level, income,
and physical activity level [short version of the International Physical
Activity Questionnaire (Craig et al., 2003)] because these factors can
influence regional GMVs. An experienced rheumatologist (M.-A.F.)
confirmed the diagnosis of fibromyalgia according to the 2012 Canadian
Guidelines (Fitzcharles et al., 2013), before inclusion.

Participants took part in three 1.5-h-long sessions: a psychophysical/
questionnaire session, one MRI, and one PET session. Thirty-seven par-
ticipants of 51 had the three sessions within a 2 week period, nine within
1 month, and four within 3 months. For one participant, the MRI session
was separated from the PET and psychophysical session by 1 year because
poor data quality required repeating the MRI session.

Psychophysical/questionnaire session

Participants were asked about their current pain level and tested for pain
sensitivity (pressure pain on the thumb), completed the Beck Depression
Inventory (Beck et al., 1961), the Hospital Anxiety and Depression Scale
(Zigmond and Snaith, 1983), the Pain Catastrophizing scale (Sullivan et
al., 1995) (maximum score 52, clinically relevant score >30), and the
Fibromyalgia Impact Questionnaire (Bennett, 2005). Participants were
also assessed using the Attention Network Test (Fan et al., 2002) and the
Auditory Consonant Trigram test (Stuss et al., 1988). The data from the
pain testing as well as the cognitive testing are not included in this report.

Image acquisition

MRI and spectroscopy. MRI was performed using a 3 tesla Tim Trio Sie-
mens scanner (Siemens Medical Solutions) with a 12-channel head coil.
Three types of data were acquired: anatomical T1-weighted images to
assess regional GMVs, absolute T1 relaxation times to assess water con-
tent, and proton MR spectroscopy to measure metabolite levels, specifi-
cally N-acetylaspartate (NAA) and N-acetylaspartyl-glutamate (NAAG).

For T1-weighted images, a 3D MP-RAGE sequence with the following
parameters was used: repetition time 2300 ms, echo time 2.98 ms, flip
angle 9°, field of view 256 mm, 192 slices in the sagittal plane, resolution
1 X 1 X 1 mm; acquisition time 10 min.

To compute maps of absolute T1 relaxation times, T1 mapping was
performed using Variable Flip Angle mapping (Deoni et al., 2005) with
the following parameters: repetition time 15 ms, echo time 3.21 ms, flip
angle 3° and 20°, field of view 256 mm, 160 slices, resolution 1 X 1 X 1
mm. The Actual Flip Angle sequence (Yarnykh, 2007) was used to correct
for inhomogeneities of the radiofrequency magnetic field (B1), with the
following parameters: repetition time 20 ms, N = 5, echo time 3.53 ms,
flip angle 60°, field of view 256 mm, 44 slices, slice thickness 4 mm,
in-plane resolution 2 X 2 mm; acquisition time 19 min.

Single-voxel proton MR spectroscopy was performed using a Point
Resolved Spectroscopy sequence (Bottomley, 1984) with the follow-
ing parameters: repetition time 3000 ms, echo time 30 ms, 196 acqui-
sitions; acquisition time 10 min. A 20 X 40 X 15 mm voxel was
positioned in the anterior cingulate cortex (ACC) (Fig. 1) because it
consistently displays GMV decreases in chronic pain including fibro-
myalgia (Smallwood et al., 2013), plays an important role in pain
processing, and is more suitable for MR spectroscopy compared with
some other brain regions because of the relative lack of susceptibility
artifacts and signal inhomogeneities.



1092 - J. Neurosci., February 1, 2017 - 37(5):1090-1101

PET. Data were acquired using an ECAT
High-Resolution Research Tomograph (Sie-
mens Medical Solutions), which has a spatial
resolution of 2.3-3.4 mm at FWHM. The ra-
diopharmaceutical ['®F]flumazenil was syn-
thesized as published previously (Massaweh et
al., 2009). After a transmission scan for atten-
uation correction ('*’Cs-source), ~370 MBq
of [ "®F]flumazenil was injected intravenously
as a slow bolus over 60 s. List-mode data were
acquired for 60 min after injection and were
subsequently binned into fully 3D sinograms
for a total of 17 time frames (40, 20, 2 X 30,3 X
60, 4 X 150, 3 X 300, and 3 X 600 s).

Image analysis

Data were analyzed in a blinded fashion with
any group identifying information (patient or
control) removed. The quality of the raw data
from each imaging modality as well as at each
processing step in each modality’s processing
pipeline was carefully checked.

MIND/NORM

Voxel-based morphometry (VBM)
Regional GMVs were obtained by VBM analy-
sis (Ashburner and Friston, 2000) using the
VBMS toolbox (RRID:SCR_014196) in the
Statistical Parametric Mapping software (SPM8 revision 4667, Wellcome
Trust Centre for Neuroimaging, RRID:SCR_007037) on the anatomical
T1-weighted images. The following analysis steps were performed: (1)
Image normalization to the MNI standard space using linear and non-
linear transformations (sixth generation nonlinear International Con-
sortium for Brain Mapping template) and tissue probability maps. (2)
Segmentation of the normalized images into gray matter, white matter,
and CSF using the intensity distribution of the images. (3) Modulation of
the gray matter segments (i.e., the intensity of each voxel was multiplied
by the amount of contraction or expansion estimated by the nonlinear
transformation to obtain relative volumes corrected for brain size and
gross anatomical differences). (4) The modulated normalized gray mat-
ter segments were spatially blurred with a 7 X 7 X 7 mm (FWHM)
Gaussian smoothing kernel (Fig. 2).

Figure 1.
subject.

Voxel-based relaxometry (VBR)

To compute T1 maps, the B1 maps were used to correct transmit field
inhomogeneities, ensuring that the flip angles in the Variable Flip Angle
acquisitions are accurate across the field of view. The two corrected Vari-
able Flip Angle images were used to infer absolute T1 relaxation times
(Deoni etal., 2005), which are independent of the acquisition parameters
and comparable between different scanners and sites (Chengetal., 2012).
The resulting maps, which reflect extracellular and intracellular water
(Cheng et al., 2012), were masked for the head. To analyze T1 relaxation
times on a voxelwise basis, we developed an analysis pipeline specific for
this purpose: (1) Each participant’s voxelwise map of T1 relaxation time
was registered to the corresponding T1-weighted image. (2) The nons-
moothed gray matter segment output from VBM8 was thresholded to
keep only voxels containing at least 90% of gray matter, then binarized.
(3) The binarized gray matter segment was used to mask the T1 maps. (4)
To spatially normalize the T1 maps, the transformation matrix (from
native T1-weighted image space to standard MNI space) was applied to
the masked map of T1 relaxation times. The T1 maps were not modu-
lated (not multiplied by the amount of contraction or expansion esti-
mated by the nonlinear transformation) to preserve the quantitative
information. (5) The resulting T1 maps in gray matter were spatially
blurred with a 7 X 7 X 7 mm (FWHM) Gaussian smoothing kernel
(Fig. 2).

To test the validity of the measurements, we added an alternative
analysis to infer water content based on proton density (PD) measure-
ments, obtained from the same T1 mapping protocol. To circumvent
problems associated with high correlations between T1 and PD (Fatou-
ros et al., 1991), the PD maps were normalized by the average PD in CSF,
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Proton MR spectroscopy voxel. Localization of the 20 X 40 X 15 mm voxel in the ACCfor MR spectroscopy inasingle

as per Mezer et al. (2013). Thereby, the resulting water volume fraction
(WVF) maps (WVE, g = PD,, /PDcgp) are highly reproducible
across subjects and field strengths (Mezer et al., 2013). The remaining
processing steps (coregistration with the T1-weighted scan, masking of
the gray matter, application of transformations to standard space, and
smoothing) were identical to the analysis of T1 relaxation times.

Proton MR spectroscopy

Postprocessing of the spectroscopy data was performed using LC Model
(Provencher, 1993) (RRID:SCR_014455), which explicitly fits the base-
line, thereby achieving high sensitivity. LC Model is an operator-
independent software that fits in vivo metabolite spectra by using model
spectra previously acquired from similar scanning conditions from var-
ious compounds in phantom solutions. Concentration ratios relative to
Creatine (Cr) were computed for NAA + NAAG (denoted tNA). In
mature brain, NAA and NAAG are present exclusively in neurons and
their processes, and thus serve as markers of neuronal viability (Moffett
etal.,, 1991). Given that the NAAG resonance is much smaller than that of
NAA, and there is considerable overlap, the total signal is more robustly
quantified. Quality control criteria for retaining spectra included
Cramer-Rao SD of the total N-acetyl group fit <10% (mean * SD: 3 *
0.8%), peak FWHM <0.08 ppM, spectrum signal-to-noise ratio >10
(mean * SD: 37 = 7), and low residual spectrum. GMV, nondisplaceable
binding potential (BPy,), and water content were extracted from the
spectroscopy voxel volume in native space. The MR spectroscopy voxel
masks were created from information in the raw spectroscopy data.

PET

We computed the BPy, maps from the PET images. BP, of a reversibly
binding radioligand is related to the maximum available concentration
of its receptor (B, ,,) accounting for the binding affinity of the tracer (A)
and the fraction (fy) of nondisplaceable tracer bound (i.e., tracer irre-
versibly bound to other molecules than the receptor) in the tissue
(BPyp = fyp X B X A). Thus, BPy, of flumazenil represents the
signal in the brain arising from the fraction of radiotracer that is specif-
ically bound to the benzodiazepine site of GABA, receptors. Lower
flumazenil BPy, indicates a lower concentration of GABA, receptors,
which could be caused by receptor downregulation, decreased neuronal
matter, or compromised neuronal integrity (Heiss et al., 2001).

Raw PET images were reconstructed by fully 3D filtered back-
projection by a 3D reprojection method and corrected for participants’
head motion. The BPy, maps were computed with the “iterative
deconvolution with surface-based anatomically constrained filtering”
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Figure 2.

Processing pipelines. Middle, VBM analysis of GMVs. Other panels, Voxel-based analysis pipelines that we developed specifically for analysis of BP,,,, maps for flumazenil PET (left), and

voxel-based relaxometry (VBR) analysis of T1 maps, a surrogate marker of water content (right). Blue box represents data in standard space (MNI space).

(idSURF) method as published by Funck et al. (2014). The idSURF algo-
rithm corrects for partial volume effects and reconstructs a high-
resolution signal in the cortical gray matter in MNI standard space. (1)
The idSURF algorithm uses the representation of the volume above the
white matter-gray matter surface and below the gray matter-CSF surface
as a spatial constraint to the PET signal. (2) To estimate BP,, the Logan
plot is applied to the high-resolution data using the white matter seg-
ments as low receptor density reference region because there are no
benzodiazepine-GABA, receptor complexes on myelinated axons
(Hammers et al., 2003). The white matter segments were eroded to limit
radioactivity spill over from adjacent gray matter. (3) BP, maps were
back-transformed to native MRI space, and the VBM8 transformation
was applied to the data. (4) Resulting BP;, maps in gray matter were
spatially blurred with a 7 X 7 X 7 mm FWHM Gaussian smoothing
kernel (Fig. 2).

Statistical analysis
Group differences between fibromyalgia patients and healthy controls. Clin-
ical variables and questionnaire data were compared between groups
using two-sample two-sided Student’s t tests in SPSS (version 17.0,
RRID:SCR_002865). The tNA/Cr ratio in the ACC was compared be-
tween groups using a univariate GLM with the percentage of gray matter
in the spectroscopy voxel and/or age as covariates of no interest.
Statistical analysis of VBM was performed in SPM8 with nonunifor-
mity smoothness correction (Worsley et al., 1999). A GLM was used for
GMYV analysis to compare patients and controls with age as a covariate of
no interest. Two approaches were used for statistical inference: (1) a
voxel-based threshold of Z > 2.3 (corresponding to a p << 0.01) corrected
for spatial extent across the whole brain using cluster-level correction
based on random field theory at p << 0.05 (Worsley et al., 2004); and (2)
avoxel-based threshold of Z > 2.3 combined with a more lenient extent
threshold of k > 200 contiguous voxels to reduce the probability of a
Type II statistical error.

Table 1. Participants’ demographic and clinical data“

Patients Controls
Group

Mean  SD Mean SD difference (p)
Age (yr) 61 54 61 7.6 0.86
BMI (kg/m?) 26 3725 39 027
Education (yr) 15 4.1 16 4.0 0.18
Income (in 1000%/year) 44 24 40 28 0.62
IPAQ score (MET, minutes/week)? 2831 3717 2735 2912 0.92
GMV (ml) 595 42 578 32 0.12
White matter volume (ml) 481 56 467 38 0.29
CSF (ml) 230 37 227 34 0.76
Total volume (ml) 1307 100 1273 82 0.19
Time since diagnosis (yr) 9 8 NA NA
Symptom duration (yr) 16 9 NA NA
Current pain level (1-10) 48 2.2 0.7 1 <<0.001
BDI score (1-63) 16 10 4 4 <0.001
HADS score (1-42) 16 6 6 4 <0.001
PCS score (1-52) 22 13 7 9 <0.001
FIQ score (1-100) 51 18 7 8 <0.001

“BMI, Body mass index; IPAQ, International Physical Activity Questionnaire; BDI, Beck Depression Inventory; HADS,
Hospital Anxiety and Depression Scale; FIQ, Fibromyalgia Impact Questionnaire; PCS, Pain Catastrophizing Scale; NA,
notapplicable. Brain volumes were derived from native space. Total volume refers to gray matter + white matter +
CSF. FIQ is based on questions, such as “Were you able to do laundry with a washer and dryer (in the past week)?”
Therefore, the FIQ can be completed by control participants.

®MET, Metabolic equivalent intensity levels (median); 1 MET s considered a resting metabolic rate obtained during
quiet sitting. Participants were on average minimally active.

Contribution of BPy, and water content to GMV

Areas showing GMV’s differences between patients and controls were
used as regions of interest (ROIs) in which flumazenil BP, and water
content were investigated. Hierarchical multiple regression analyses were
used to test whether BPy, water content, and group (patients or con-
trols), in this order, significantly contributed to GMV. Visual inspection
of scatter plots indicated that the assumptions of linearity were met. The
studentized residuals were normally distributed and homoscedastic. We
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GMV decreases in patients with fibromyalgia and their relationship with tissue water content. Whole-brain map of GMV decreases in patients compared with controls. Results are

presented at a voxelwise threshold of 2> 2.3 and a cluster-extent threshold of k > 200, overlaid on the mean anatomical image of the whole sample (N = 51). Scatter plots represent GMV (in mm 3)
and T1 time in seconds (a surrogate for water content) in each significant cluster. Axial images are displayed in neurological convention. Right, Right hemisphere.

included interaction terms between BPy, and group as well as water
content and group to assess the influence of group on the relationship
between gray matter and BPy, or water content. The mean values of
modulated gray matter density, BPy,, and water content within the ROIs
in standard space were extracted in MATLAB 8.1 (The MathWorks,
RRID:SCR_001622) using the spm_summarise SPM8 function. The
modulated gray matter density in each ROI was transformed to volume
by taking into account voxel size as in Kurth et al. (2015). GMV (in mm?)
served as the dependent variable; BPy, (unitless), water content (T1
relaxation times in seconds, the longer T1, the more water in the tissue),
group, and the interaction terms served as the explanatory variables.

Finally, the effect size and power of the BP, difference between groups
were calculated for each ROL.

Correlation with clinical variables

Pearson’s correlation analyses (one-tailed) were performed to assess the
clinical significance of the GMV changes in patients. We tested whether
GMVs in areas of decreased gray matter were negatively correlated with
questionnaire scores (Fibromyalgia Impact Questionnaire, Hospital
Anxiety and Depression Scale, Beck Depression Inventory, Pain Cata-
strophizing Scale), current pain level, time since diagnosis, and symptom
duration. Inversely, we tested whether GMVs in areas of gray matter
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increases were positively correlated with clinical variables. Correlation
analyses were considered exploratory and therefore nor corrected for
multiple comparisons.

Replication of PET and VBM relationship

To test whether we could replicate a previously reported relationship
between PET and VBM measures, we tested our healthy control group
for the significant positive correlations between gray matter density
and flumazenil BPy, described by Duncan et al. (2013) for young
healthy adults. We followed their approach and conducted weighted
least square regression analyses between gray matter density and
BPyp in regions defined by the Jiilich histological atlas (Eickhoff et
al., 2006, 2007). The weighting was computed as the inverse of the
variance of the BPy, measure within each anatomical region, for each
subject.

Results

Participant characteristics

Patients had on average moderate pain at the time of the psycho-
physical/questionnaire session (mean * SD: 4.8 = 2.2 on an
11-point numerical rating scale) and a moderate impact of fibro-
myalgia on functioning as measured by the Fibromyalgia Impact
Questionnaire. Patients and controls did not differ significantly
with respect to age, body mass index, education level, income, or
physical activity levels. Despite having statistically higher scores
on the Beck Depression Inventory, the Hospital Anxiety and De-
pression Scale and the Pain Catastrophizing Scale, none of the
patients had clinically significant levels of depression, anxiety, or
pain catastrophizing as determined by questionnaire cutoffs. To-
tal brain volume and volumes of gray matter, white matter, and
CSF were not significantly different in patients compared with
healthy controls (Table 1).

GMYV decreases in patients compared with controls

In line with previous studies, fibromyalgia patients presented
GMYV alterations in several cortical regions. Regional GMV was
decreased in patients compared with healthy controls in the pos-
terior cingulate cortex (PCC) and precuneus, significantly when
corrected for cluster extent on a whole-brain level. ACC, bilateral
insula, right medial prefrontal cortex (MPFC), left precentral
gyrus, left middle temporal gyrus (MTG), and right fusiform
gyrus showed decreased GMV at the more lenient statistical
threshold of 200 contiguous voxels (Fig. 3; Table 2).

In most regions of decreased GMV, T1 relaxation times (a
surrogate measure of water content) and group (patient or con-
trol) accounted for a large proportion of the variance, with no
significant contribution of flumazenil BPy,, measuring GABA ,
receptor concentration (Fig. 3). T1 relaxation time accounted for
between 13% (ACC) and 55% (MPFC) of the variance; only in
the fusiform gyrus did T1 relaxation time not contribute signifi-
cantly to the hierarchical multiple regression model. Only in the
left insula, MPFC, and MTG did GABA, receptor concentration
explain some gray matter variance (11%, 12%, and 12%, respec-
tively). Closer inspection revealed a negative relationship in the
left insula: the less GMV, the higher the concentration of GABA
receptors. In the precuneus, group influenced the relationship
between GABA, receptor concentration and GMV: patients
showed a significant positive relationship between GABA , recep-
tor concentration and GMV, which was absent in the controls.

The results in regions of decreased GMV were largely un-
changed when T1 relaxation time was entered first in the regres-
sion model. The results were very similar when using the proton
density derived metric (Mezer et al., 2013) instead of T1 relax-
ation times as a measure of water content. Detailed results of the
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Table 2. VBM analysis results’

Cluster Cluster .
corrected  extent Coordinates (mm)
Region p (no. of voxels) ~ Zscore  x y z
Gray matter decreases in patients compared with controls
PCCR 0.011° 830 3.82 15 —34 34
298 10 —24 33
2.66 16 —40 55
Fusiform gyrus R 0.087 644 3.66 36 —49 -2
3.29 39 —60 —15
2.49 27 —60 —17
Insula L 0.126 383 3.4 —48 —6 9
2.79 -39 =10 7
InsulaR 0.133 349 3.21 4 8 10
MPFCR 0.096 225 3.2 2 56 6
273 -2 64 10
2.66 0 60 )
ACCL 0.067 537 3.9 -3 PE] 30
2.99 —14 18 25
2.36 —15 3 30
Precuneus R 0.022° 651 3.14 16 —51 2%
2.94 33 —48 0
2.72 21 —49 13
Precentral gyrusL  0.207 448 3.04 —58 -3 37
2.6 —56 5 21
MTG L 0.154 282 3.03 —44 =37 3
2.8 —46 —40 —6

2.77 —4 -8 -2
Gray matter increases in patients compared with controls

Angular gyrus L 0.05 594 3.83 -39  —60 40
2.68 —33 —63 55
Cuneus R 0.113 234 3.38 12 -8 46
3.27 6 =76 39
Postcentral gyrusR ~ 0.262 306 3 40 —25 34
2.97 36 —31 46
237 39 =27 56

“Whole-brain results are presented at a voxel-wise threshold of Z > 2.3 and cluster extent of k > 200 contiguous
voxels. L, Left; R, right.

bSignificant with cluster-level correction across the whole brain at p < 0.05.

regression analysis are found in Table 3. The finding that GABA ,
receptor concentration did not contribute to the gray matter vari-
ance in regions of decreased gray matter in patients is corrobo-
rated by the observation that GABA , receptor concentration was
not lower in patients than in controls in any of the ROIs (highest
effect size = 0.12, power = 0.07).

GMYV in the ACC spectroscopy voxel was not significantly
different in patients compared with controls (patients mean =
SD: 6727 = 458 mm°, controls: 6842 £ 609 mm?>, F = 0.54,p =
0.465) or when controlling for age. tNA/Cr ratios were in line
with literature values: 1.12 * 0.11 for patientsand 1.11 * 0.11 for
controls (Nordahl et al., 2002). There was no group difference for
tNA/Cr ratios when controlling for gray matter amount in the
voxel, for age, or for both, indicating that neuronal viability was
not affected in the ACC of the patients. There was no correlation
between tNA/Cr ratios and GABA , receptor concentration in the
spectroscopy voxel across the two groups (r = —0.14, p = 0.314).

GMYV increases in patients compared with controls

In line with the literature, increases of GMVs in fibromyalgia
patients were less pronounced than decreases. Increased GMVs
were found in the angular gyrus, cuneus, and right postcentral
gyrus (Fig. 4; Table 2). In contrast to regions with GMV de-
creases, GABA , receptor concentration explained more variance
than tissue water content. Specifically, GABA, receptor concen-
tration explained 32% of the variance in the angular gyrus, 70%
in the cuneus, and 22% in the postcentral gyrus; tissue water
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Table 3. Multiple regression results”
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Water content Proton density
Adjusted R* R? change F p Adjusted R* R? change F p
Gray matter decreases in patients compared with control
PCCR
BPyp 035 0.06 32 0.082 0.53 0.06 32 0.082
T1/PD 0.20° 12.7° 0.001° 0.40° 35.5° <0.001°
Group 0.12° 9.2 0.004° 0.08° 83’ 0.006°
Group X BPy 0.04 28 0.102 0.04 39 0.055
Group X T1/PD 0.00 0.1 0.730 0.00 0.0 0.961
Fusiform R
BPyp 0.01 0.4 0.509 033 0.01 0.4 0.509
T1/PD 0.01 0.6 0.452 0.04 2.1 0.158
Group 031° 21.2° <0.001° 030 21.2 <0.001°
Group X BPy, 0.02 14 0.249 0.02 13 0.253
Group X T1/PD 0.05 38 0.058 0.03 22 0.141
Insula L
BPyp 031 0.11° 59 0018 0.38 0.11° 59 0.018°
T1/PD 0.15° 9.8 0.003° 0.23° 16.6° <0.001°
Group 0.11° 8.1° 0.007° 0.08° 6.1 0.017°
Group X BPy 0.01 0.4 0.515 0.00 03 0.585
Group X T1/PD 0.00 0.1 0.820 0.02 20 0.168
Insula R
BPyp 034 0.06 3.4 0.072 042 0.06 34 0.072
T1/PD 0.23° 153 <0.001° 0.29° 21.8° <0.001°
Group 0.11° 8.9 0.005° 0.10° 8.3 0.006°
Group X BPy, 0.00 0.1 0.702 0.01 1.1 0.298
Group X T1/PD 0.00 0.1 0.786 0.01 0.8 0377
MPFCR
BPyp 0.68 0.12° 6.6° 0.013° 0.77 0.12° 6.6° 0.013°
T1/PD 0.55° 79.3 <0.001° 0.65° 131.1° <0.001°
Group 0.04° 6.5 0.014° 0.03° 6.2 0.016
Group X BPy 0.01 1.0 0326 0.00 03 0.578
Group X T1/PD 0.00 03 0.594 0.00 0.9 0.347
ACCL
BPyp 0.29 0.00 0.0 0.930 032 0.00 0.0 0.930
T1/PD 0.13° 6.9° 0.012° 0.20° 1.8 0.001°
Group 0.21° 14.6° <0.001° 0.16° 11.9° 0.001°
Group X BPy, 0.02 16 0.206 0.03 19 0.180
Group X T1/PD 0.00 0.0 0.861 0.00 02 0.695
Precuneus R
BPyp 0.62 0.02 0.8 0376 0.59 0.02 0.8 0.376
T1/PD 0.42° 35.1° <0.001° 0.41° 34,0 <0.001°
Group 0.15° 17.3 <0.001° 0.15° 16.8° <0.001°
Group X BPy, 0.06° 7.3 0.010° 0.05° 58 0.020°
Group X T1/PD 0.02 20 0.168 0.01 0.7 0.398
Precentral L
BPyp 038 0.00 0.0 0.925 0.40 0.00 0.0 0.925
T1/PD 036 27.3 <0.001° 0.40° 3130 <0.001°
Group 0.06 4.8 0.033 0.04 3.7 0.061
Group X BPy, 0.02 14 0.249 0.02 14 0.246
Group X T1/PD 0.00 0.2 0.650 0.00 0.0 0.828
MTGL
BPyp 0.45 0.12° 6.5° 0.014° 0.45 0.12° 6.5° 0.014°
T1/PD 034 30.0° <0.001° 0.35° 31.0° <0.001°
Group 0.03 26 0.116 0.03 28 0.098
Group X BPy 0.01 0.5 0.471 0.01 05 0.505
Group X T1/PD 0.01 0.9 0.354 0.01 0.6 0.431
Gray matter increases in patients compared with controls
Angular gyrus L
BPyp 0.56 032 27° <0.001° 0.61 032 07’ <0.001°
T1/PD 0.22° 2.0° <0.001° 0.28° 34.0° <0.001°
Group 0.06° 6.4° 0.015° 0.04° 46 0.038°
Group X BPy, 0.00 0.0 0.899 0.01 0.6 0.439
Group X T1/PD 0.01 15 0.225 0.01 0.6 0.430

Table Continued
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Table 3. (continued)
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Cuneus R
BPyp 0.81 0.70° 114.0°
T1/PD 012 3.7
Group 0.00 1.0
Group X BPy, 0.00 0.9
Group X T1/PD 0.00 0.1
Postcentral gyrus R
BPyp 0.40 0.22° 13.6°
T1/PD 0.18° 14.6°
Group 0.05° 45
Group X BPy, 0.01 0.5
Group X T1/PD 0.01 0.4

<0.001° 0.87 0.70° 114.0° <0.001°
<0.001° 017 65.6° <0.001°
0324 0.00 11 0.298
0.358 0.01 20 0.160
0.794 0.00 0.1 0.795
0.001° 0.47 0220 13.6° 0.001°
<0.001° 0.24 20.7° <0.001°
0.039° 0.04 37 0.059
0.491 0.01 0.6 0.447
0.531 0.03 2.4 0.130

“GMV served as the dependent variable; flumazenil BP, , T1 time (water content) or proton density (PD), group (patients or controls), and the interaction terms served as the explanatory variables in the multiple regression analysis. L, Left;

R, right.
bSignificant with cluster-level correction across the whole brain at p < 0.05.

content an additional 22%, 12%, and 18%, respectively. When
water content was included first in the regression model, the
variance explained by water content increased, indicating that
some of the explained variance could not uniquely be ascribed to
GABA, receptor concentration or water content. Because the
variance explained by GABA receptor concentrationand tissue
water was largely separable for areas of decreased GMV, this sug-
gests that GABA, receptor concentration and water content
change concomitantly in areas of GMV increase. The results of
the regression analysis were very similar when proton density was
used instead of T1 relaxation times. The factor “group” had no
influence on the relationship between GMV and GABA , receptor
concentration or water content (Table 3).

Correlation with clinical variables

GMYV in the PCC was negatively correlated with time since diagnosis
(r = —0.51, p = 0.004) and symptom duration (r = —0.33, p =
0.048), and GMV in the ACC was negatively correlated with time
since diagnosis (r = —0.52, p = 0.007). This means that the longer
the patients have had fibromyalgia, the less gray matter patients had.
There was also a trend for a negative correlation between GMV in the
PCC and depression scores from the Hospital Anxiety and Depres-
sion Scale (r = —0.29, p = 0.073) and the Beck Depression Inventory
(r=—0.27, p = 0.091) (i.e., the higher the score on the depression
scales, less GMV was present).

In the regions of increases, GMV in the angular gyrus was
positively correlated with current pain level (r = 0.35, p = 0.04),
the anxiety subscale of the Hospital Anxiety and Depression Scale
(r = 0.36, p = 0.034), and the Pain Catastrophizing Scale (r =
0.36, p = 0.035). This means that the more severe the pain and
psychological symptoms, the more gray matter patients had in
this region.

Replication of PET and VBM relationship

We largely replicated the findings of positive relationships be-
tween gray matter density and flumazenil BPy, by Duncan et al.
(2013) (Table 4). In addition to validating the VBM and the BP,
measurements in the present study, this shows that positive rela-
tionships between GMVs and flumazenil BP, are preserved in
postmenopausal women.

Discussion

Here, we investigated the histological underpinnings of regional
gray matter alterations in chronic pain using multimodal imag-
ing. Gray matter decreases were largely explained by T1 relax-
ation times, a surrogate measure of water content, and not to
any substantial degree by GABA, receptor concentration. In

contrast, gray matter increases were explained by GABA, re-
ceptor concentration, in addition to T1 relaxation times. To
the best of our knowledge, this is the first time that GABA .
receptor concentration and T1 relaxation times were mea-
sured and combined to understand the basis of gray matter
alterations in chronic pain.

GABA,, is the most widespread inhibitory receptor in the CNS
(Nutt and Malizia, 2001), mainly localized on postsynaptic mem-
branes (for review, see Waldvogel and Faull, 2015), and expressed
only weakly in non-neuronal tissue (Fraser et al., 1995; Kullmann
et al., 2005). The difference in GABA, receptor concentration
between neuronal and non-neuronal tissues forms the basis for
using binding of flumazenil, an antagonist at the benzodiazepine
binding site of the GABA, receptor, as a surrogate of neuronal
integrity (Heiss et al., 1998) or density (la Fougere et al., 2011).
The finding that regional gray matter decreases were not ex-
plained by GABA, receptor concentration likely indicates that
neurons are unaffected in those areas. Alternatively, neurodegen-
eration is present in patients with fibromyalgia but is masked by
concomitant upregulation of GABA , receptors. Changes in tNA
concentrations occur almost invariably when neuronal loss or
dysfunction is present (Moffett et al., 2013), which was the ratio-
nale to include this measure in the present study. Despite show-
ing decreased gray matter, the ACC did not exhibit a decreased
tNA/Cr concentration ratio. Thus, compromised neuronal integ-
rity with concomitant GABA, receptor upregulation appears to
be the less likely explanation, at least for the ACC. These findings
are in line with decreased prefrontal cortical thickness in a pre-
clinical model of long-term neuropathic pain (Seminowicz et al.,
2009) without concomitant changes in neuronal cell density
(Millecamps et al., 2010, data published in abstract form) and
with reports of the reversibility of gray matter decreases with
successful pain therapy (Rodriguez-Raecke et al., 2009). In con-
trast to the neuronal measures, the surrogate measure of tissue
water content partly explained gray matter decreases. T1 relax-
ation times exhibited positive linear relationships with GMVs,
indicating lower water content in areas with reduced gray matter.
Because of potential biases in T1 mapping (Stikov et al., 2015), we
also analyzed proton-density maps (Mezer et al., 2013), which are
less dependent on lipids and macromolecules than T1 times. This
analysis yielded very similar results, supporting the interpreta-
tion that GMV decreases in patients were related to decreased
water content. Dehydration and altered cerebral blood flow are
two potential explanations for the observed contribution of water
content. Although manipulation of hydration state can influence
morphometric measures (Duning et al., 2005; Streitbiirger et al.,



1098 - J. Neurosci., February 1, 2017 - 37(5):1090-1101

2500{ R?=0.23

500+ T
24 3.0

36 42 4.8
BPyp

400

3001

2001

GMV (mm?3)

1001

BPyp

Figure 4.

Pomares et al. @ Is There Neurodegeneration in Fibromyalgia?

Grey matter increases

Angular
gyrus

8001 R?=0.27

Postcentral

o
S
@

IS
S
@

GMV (mm3)

200-— T T T T ,
20 25 3.0 35 4.0 45

BPyp

Bl Patients

GMVincreases in patients with fibromyalgia and their relationship with GABA, receptor concentration. Whole-brain map of gray matter increases in patients compared with controls.

Results are presented at a voxelwise threshold of 2> 2.3 and a cluster-extent threshold of k > 200, overlaid on the mean anatomicalimage of the whole sample (N = 51). Scatter plots display GMV
(in mm ) against flumazenil BP; in each cluster. The axial image is displayed in neurological convention. Right, Right hemisphere.

Table 4. Relationship between gray matter density and flumazenil BP,,”

Gray matter WLS regression

Region Volume (mm?>) BPyp GM density T p
Anterior inferior parietal sulcus 2406 3.08 0.45 2.98° 0.007°
Parietal lobule PF 3385 3.94 0.61 1.68 0.107
V3V 2865 342 0.52 1.60 0.123
Laterobasal amygdale 1301 242 0.67 2.05 0.052
Hippocampus cornu ammonis 2955 2.69 0.70 2.88° 0.008°
Hippocampus subiculum L 2505 2.67 0.72 1.63 0.116
Hippocampus subiculum R 2509 2.84 0.69 1.81 0.084

“Relationship between gray matter density and flumazenil BP,, in regions showing a significant relationship in the Duncan et al. (2013) study. This table replicates the weighted least square (WLS) regression analysis done in Duncan et al.

(2013) to investigate the relationship between gray matter density and flumazenil BPy, in our healthy control group (N = 25), in regions from the Jilich histological atlas.

®Significant with cluster-level correction across the whole brain at p < 0.05.

2012), it seems unlikely that differences in hydration status ex-
plain the finding of gray matter decreases in patients because
there is no evidence of compromised hydration in fibromyalgia,
atleast to the best of our knowledge. An alternative explanation is
reduced cerebral blood flow (Franklin et al., 2013), which might
lead to decreased tissue water content by reduced extravasation.
Indeed, reduced blood flow has been described in the thalamus in
several chronic pain conditions, including fibromyalgia (for re-
view, see Williams and Gracely, 2006). Interestingly, the PCC,
which consistently shows decreased gray matter in chronic pain
(Smallwood et al., 2013), is part of the default mode network and
has a very high metabolic rate at rest (Cavanna and Trimble,
2006), making it perhaps particularly vulnerable to altered cere-
bral perfusion.

The regions showing gray matter decreases are consistent with
previous reports in fibromyalgia (Kuchinad et al., 2007; Luerding
et al., 2008; Lutz et al., 2008; Burgmer et al., 2009; Wood et al.,
2009; Puri et al., 2010; Robinson et al., 2011; Ceko et al., 2013;
Diaz-Piedra et al., 2016) and other chronic pain conditions
(Smallwood et al., 2013). In particular, bilateral insula and ACC

are key pain processing regions and the specific subregions found
here receive ascending nociceptive input (Dum et al., 2009). The
statistically most robust GMV decreases were observed in the
PCC and the precuneus, which negatively correlated with disease
duration and time since diagnosis: the longer patients had fibro-
myalgia, the smaller the GMVs. This replicates previous findings
in fibromyalgia patients (Kuchinad et al., 2007; Ceko et al., 2013).
It also speaks against the group difference being a false-positive
finding, which is important because the PCC was recently iden-
tified as a “hotspot” of false positives in human brain imaging
studies (Eklund et al., 2016). PCC, precuneus, and MPFC, also
exhibiting decreased GMV in the patients, are part of the default
mode network (Raichle et al., 2001), suggested to be disrupted in
chronic pain (Baliki et al., 2008). We further observed decreased
gray matter in the precentral gyrus, which is interesting because
sensorimotor regions have been found to be key for the classifi-
cation of chronic pain disorders based on morphometric mea-
sures (Labus et al., 2015).

In contrast to areas with decreased gray matter, the variance in
regions with increased GMVs was partly explained by GABA
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receptor concentration in addition to T1 relaxation times. In-
creased flumazenil binding could be due to increased neuronal
expression of GABA, receptors or increases in the amount of
neuronal matter. Increased expression of GABA, receptors has
been shown in the spinal cord of rats with neuropathic pain
(Lorenzo et al., 2013, data published in abstract form) and de-
creased supraspinal GABA concentration has been reported in
fibromyalgia (Foerster et al., 2012), perhaps leading to compen-
satory receptor increase. Interestingly, supraspinal GABA, re-
ceptor activation in rats decreases nociceptive thresholds and
produces hyperalgesia (Tatsuo et al., 1999), two typical findings
in fibromyalgia. Nevertheless, increased GABA ,-receptor con-
centration is not sufficient to explain the finding of increased
GMVs. These might be related to inflammatory edema, which
could be reflected in the relationship of GMVs with T1 times, or
to increases in the amount of neuronal matter, reflected in the
relationship of GMV to GABA, receptor concentration. Candi-
date cellular mechanisms for increased neuronal matter are in-
creases in the number of neurons or in the size and/or number of
dendrites and synapses. An increased number of neurons seems
unlikely considering we investigated postmenopausal women. In
contrast, remodeling of synapses and dendrites is a well-known
phenomenon with increased usage or training (Lerch et al., 2011;
Zatorre et al., 2012) also in older age (Bloss et al., 2011). A pre-
clinical model of neuropathic pain showed more dendritic
branching and increased spine density in the MPFC (Metz et al.,
2009), indicating that neuronal matter is perhaps “induced” by
ongoing nociceptive input. GMV increases in the current study
concerned brain areas where visual and sensorimotor informa-
tion converge: the angular gyrus, the cuneus, and the postcentral
gyrus are involved in attention to the body and visuomotor co-
ordination (Prado et al., 2005; Macaluso and Maravita, 2010).
Thus, increased gray matter in these regions might reflect patients
allocating increased attentional resources to nociceptive and
other unpleasant sensory stimuli (Schweinhardt et al., 2007). The
finding that larger GMVs in the angular gyrus in patients were
associated with higher pain levels, the cardinal symptom of fibro-
myalgia, as well as higher anxiety and higher catastrophic think-
ing in relation to pain, supports this interpretation.

Limitations

Although state of the art, the measures used here are indirect
measures of the histological underpinnings of gray matter
changes. Therefore, their interpretation is not unambiguous. For
example, it is known that axon size can bias T1 measurements
(Harkins etal., 2016). Also, T1-weighted MR images are based on
T1 relaxation times; therefore, these two measures are not strictly
independent. Last, flumazenil binding has been used as a marker
of neuronal integrity (Heiss et al., 2001) but did not correlate with
NAA, a measure of neuronal viability, which emphasizes that
flumazenil binding and NAA index different phenomena, with
flumazenil binding being representative of neuronal density or of
the availability of GABA , receptors and NAA of neuronal health.

Outlook and conclusions

Other chronic pain conditions show gray matter alterations in
similar brain regions as fibromyalgia (Smallwood et al., 2013),
and it will be interesting to establish whether the histological
underpinnings are similar to or different from the ones we de-
scribe here. Given the observation that gray matter decreases re-
solve with pain reduction in osteoarthritis (Rodriguez-Raecke et
al., 2009), low back pain (Seminowicz et al., 2013), and post-
traumatic headache (Obermann et al., 2009), it appears that neu-
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rodegeneration does not play a role in these conditions. The
present study forms a basis for future work investigating specific
hypotheses regarding gray matter alterations in chronic pain, in-
cluding the relationship to cerebral perfusion or neuroinflamma-
tion. Also, animal models of chronic pain conditions will be
helpful to better characterize cerebral alterations induced by
long-term nociceptive input. Because chronic pain constitutes a
major health problem (Mansfield et al., 2016), understanding its
neurobiology is crucial. This study provides an important step
toward this goal by identifying several potential mechanisms un-
derlying gray matter alterations and indicating that cerebral neu-
rodegeneration is unlikely to play a major role in fibromyalgia.
This is in contrast to diseases with established neurodegeneration
and therefore indicates that different mechanisms can underlie
regional gray matter alterations, as measured with structural
MR, in different clinical conditions.
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