The Journal of Neuroscience, February 1, 2017 - 37(5):1187-1196 = 1187

Systems/Circuits

Edge-Related Activity Is Not Necessary to Explain
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Multivariate pattern analysis is a powerful technique; however, a significant theoretical limitation in neuroscience is the ambiguity in
interpreting the source of decodable information used by classifiers. This is exemplified by the continued controversy over the source of
orientation decoding from fMRI responses in human V1. Recently Carlson (2014) identified a potential source of decodable information
by modeling voxel responses based on the Hubel and Wiesel (1972) ice-cube model of visual cortex. The model revealed that activity
associated with the edges of gratings covaries with orientation and could potentially be used to discriminate orientation. Here we
empirically evaluate whether “edge-related activity” underlies orientation decoding from patterns of BOLD response in human V1. First,
we systematically mapped classifier performance as a function of stimulus location using population receptive field modeling to isolate
each voxel’s overlap with a large annular grating stimulus. Orientation was decodable across the stimulus; however, peak decoding
performance occurred for voxels with receptive fields closer to the fovea and overlapping with the inner edge. Critically, we did not
observe the expected second peak in decoding performance at the outer stimulus edge as predicted by the edge account. Second, we
evaluated whether voxels that contribute most to classifier performance have receptive fields that cluster in cortical regions correspond-
ing to the retinotopic location of the stimulus edge. Instead, we find the distribution of highly weighted voxels to be approximately
random, with a modest bias toward more foveal voxels. Our results demonstrate that edge-related activity is likely not necessary for
orientation decoding.
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A significant theoretical limitation of multivariate pattern analysis in neuroscience is the ambiguity in interpreting the source of
decodable information used by classifiers. For example, orientation can be decoded from BOLD activation patterns in human V1,
even though orientation columns are at a finer spatial scale than 3T fMRI. Consequently, the source of decodable information
remains controversial. Here we test the proposal that information related to the stimulus edges underlies orientation decoding.
We map voxel population receptive fields in V1 and evaluate orientation decoding performance as a function of stimulus location
in retinotopic cortex. We find orientation is decodable from voxels whose receptive fields do not overlap with the stimulus edges,
suggesting edge-related activity does not substantially drive orientation decoding. j

ignificance Statement

neuroimaging studies employing multivariate pattern analysis
(MVPA). Although MVPA is highly influential, a significant
drawback of the sensitivity of classification techniques is that the
source of decodable information used by the classifier is ambig-

Introduction
Orientation decoding in human visual cortex has become the test
case for determining the source of decodable information in
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uous (Bartels et al., 2008; Op de Beeck, 2010a; Naselaris and Kay,
2015). The initial demonstrations of orientation decoding from
patterns of BOLD activity in human V1 a decade ago were signif-
icant (Haynes and Rees, 2005; Kamitani and Tong, 2005), as these
studies were conducted at the resolution of 3T fMRI, a coarser
spatial scale than orientation hypercolumns, now known to be
observable at 7T (Yacoub et al., 2008). Consequently, it was sug-
gested that MVPA conferred hyperacuity to fMRI, allowing fine-
scale orientation information to be detected at a subvoxel
resolution (Boynton, 2005; Kamitani and Tong, 2005). Since
then, the issue of whether hyperacuity is attainable from MVPA
has inspired significant debate (Mannion et al., 2009; Op de
Beeck, 2010a, b; Swisher et al., 2010; Chaimow et al., 2011; Clif-
ford et al., 2011; Freeman et al., 2011, 2013; Alink et al., 2013;
Carlson, 2014; Carlson and Wardle, 2015; Clifford and Mannion,
2015; Maloney, 2015; Pratte et al., 2016). As orientation process-
ing in early visual cortex is well understood from neurophysiol-
ogy (Hubel and Wiesel, 1963, 1972), it is the ideal domain for
testing empirical approaches to elucidating the source of decod-
able information.

The principal alternative to the hyperacuity explanation of
orientation decoding is the coarse scale map account (Freeman et
al., 2011, 2013), which suggests that coarse-scale biases in orien-
tation preference existing at the level of retinotopic maps are
sufficient for orientation decoding (Furmanski and Engel, 2000;
Sasaki et al., 2006). Originally, it was proposed that the coarse-
scale biases primarily arose from the radial bias (Freeman et al.,
2011); however, decoding of radially balanced spiral stimuliin V1
(Mannion et al., 2009; Seymour et al., 2010; Alink et al., 2013) and
areexamination of the methods used to support this claim (Pratte
etal., 2016) suggest that biases in voxel responses produced by the
radial bias are not necessary for orientation decoding. Impor-
tantly, Freeman et al. (2013) later demonstrated that coarse scale
biases that do not arise from the radial bias support orientation
decoding. Although there is substantial evidence for a role of
coarse-scale biases, the question of whether there is a contribu-
tion from information at the columnar level is still actively de-
bated (e.g., Op de Beeck, 2010a; Freeman et al., 2013; Carlson and
Wardle, 2015; Pratte et al., 2016) and has recently been extended
from fMRI to MEG (Cichy etal., 2015; Stokes et al., 2015; Wardle
etal., 2016).

Recently, a third potential source of decodable information from
fMRI was identified by modeling the responses of voxels in V1 to
gratings of different orientations (Carlson, 2014). Carlson (2014)
demonstrated that a “perfect cube model” based on Hubel and Wi-
esel’s ice cube model of visual cortex (Hubel and Wiesel, 1963, 1972)
produces characteristic activity at the stimulus edges. As the edge-
related activity covaries with orientation, it could potentially be used
by classifiers to recover stimulus orientation from patterns of BOLD
activation in V1. In contrast to both the hyperacuity and coarse-scale
map accounts, edge-related activity does not require an underlying
biased representation of orientation at any spatial scale. The poten-
tial contribution of edge-related activity to orientation decoding has
not yet been empirically tested with fMRI. Here we use population
receptive field (pRF) modeling (Dumoulin and Wandell, 2008) to
map decoding performance as a function of retinotopic stimulus
location in V1. If edge-related activity substantially drives orienta-
tion decoding, the highest decoding performance is expected from
voxels with pRFs overlapping with the stimulus edges. Further, we
apply a transformation to classifier weights (Haufe et al.,
2014) to evaluate whether voxels with pRFs overlapping with
the stimulus edges contribute most to orientation decoding
(Fig. 1C).
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Materials and Methods

Subjects. Four subjects (2 female authors: S2, S3; two naive: 1 male and 1
female) participated in two scanning sessions on separate days: one ori-
entation experiment session and one pRF mapping session. Each subject
completed 10 fMRI runs for the orientation experiment (8 experimental,
2 stimulus localizer runs) and 10—12 fMRI runs for the pRF mapping
session.

MRI acquisition. MRI data were acquired with a 3T Siemens Verio MRI
scanner at Macquarie Medical Imaging, Macquarie University Hospital.
A high-resolution (1 X 1 X 1 mm) T1-weighted 3D whole-brain struc-
tural MRI scan was collected for each participant at the start of each
session to align the fMRI data between sessions. Functional scans were
acquired with a 2D T2*-weighted EPI acquisition sequence: TR = 2.5 s;
TE = 32 ms; FA = 80°; voxel size = 2 X 2 X 2 mm, in plane matrix size =
120 X 120. A partial volume containing 33 slices was collected oriented
parallel to the calcarine sulcus.

Orientation experiment. Stimulus presentation was controlled using
MATLAB with functions from the Psychtoolbox (Brainard, 1997; Pelli,
1997; Kleiner et al., 2007). The stimulus was a large (19° diameter) 1
cycle/° square wave grating annulus centered on fixation (3.5°-9.5° ec-
centricity), presented on a mid-gray background (Fig. 1A). A sharp edge
was used as this is predicted to produce the strongest magnitude of edge-
related activity (Carlson, 2014). The grating was presented at six orien-
tations (15°-165° in 30° steps) in a block design. Each 10 s stimulus block
was followed by an 8 s fixation block. All six orientations were presented
once in random order before repeating each in a new random se-
quence for a total of four times per orientation; in total, 24 blocks
occurred per run.

During each block, the stimulus cycled on-off at a rate of 4 Hz, with
changes in phase synchronized with each stimulus onset to avoid appar-
ent motion artifacts (Kamitani and Tong, 2005). Within each orientation
block, 20 unique phases were presented in random order for 250 ms each
(Fig. 1A). Subjects fixated on a central fixation bull’s-eye (0.4° diameter),
and the task was to monitor the stripe thickness of the grating, which
changed twice per block (similar to Kamitani and Tong, 2005). The
timing of the task was signaled by the fixation bull’s-eye turning black for
the duration of the spatial frequency change (250 ms). In each block, the
grating reduced in spatial frequency by 0.2° for one phase change and
increased by 0.2° for another phase change, with the order randomized
across blocks. One task trial occurred in the first 5 s of the block and the
other in the last 5 s of the block, with the timing jittered across blocks to
maintain attention throughout each block. On each trial, subjects re-
sponded whether the bars appeared thinner or thicker by pressing the
appropriate response button (left or right).

Localizer runs consisted of four black-and-white checkerboard annuli
corresponding to the entire stimulus (2.5°-10.5° eccentricity), inside
edge (2.5°-4.5°), middle (5.5°-7.5°), and outside edge (8.5°-10.5°) of the
annulus. Stimuli were presented in blocks of 16 s interspersed with 8 s
fixation blocks after each stimulus appeared once. Subjects passively
maintained central fixation during the localizer runs and did not perform
a task. Data from the full-sized stimulus localizer were used to define the
ROI for the stimulated region of retinotopic V1. The data collected for
the other three localizer stimuli were not used. In later analyses (see Figs.
2B, 4B, 5B), ROIs corresponding to different stimulus locations [inner
edge, middle (no edges), outer edge] were defined precisely by using each
voxel’s fitted pRF.

PRF mapping. pRF mapping was conducted using MATLAB and MGL
software (http://gru.stanford.edu/doku.php/mgl/overview) for stimulus
presentation and mrTools software for pRF model fitting and analysis
(http://gru.stanford.edu/doku.php/mrTools/overview). pRF mapping
stimuli (Fig. 1B) consisted of clockwise rotating wedges (2 runs), coun-
terclockwise rotating wedges (2 runs), expanding (1-2 runs) and con-
tracting (1-2 runs) rings, and bars that swept across the visual field in 8
different directions (4 runs). All stimuli were composed from high-
contrast dynamic black-and-white stimuli to stimulate early visual cor-
tex. Observers fixated on a cyan central fixation cross while completing a
2AFC fixation task, which required judging in which of two intervals the
fixation cross appeared dimmer by pressing a key on the response pad.
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The fixation cross turned yellow to indicate when a response was re-
quired. The brightness of the fixation cross was controlled using a stair-
case to maintain task difficulty across the experimental session. pRFs
were fit to each voxel using the Nelder-Mead algorithm and the
Gaussian-hdr pRF model as implemented in mrTools, which produces a
fitted eccentricity, polar Angle, and rfHalfWidth for each individual
voxel in addition to fitting the hemodynamic response function. Voxels
with poor pRF fits (4%—6% ROI voxels per subject) defined as r* < 0.1,
rfHalfWifth < 0, or eccentricity >15° were removed from further anal-
ysis (total of 2635 voxels per subject; Table 1).

Preprocessing. Minimal preprocessing was applied to the MRI data
using SPM8. For each observer, fMRI data from both orientation and
pRF mapping sessions were motion corrected, slice-time corrected,
and coregistered to a common space (the structural scan from the pRF
session for each subject). No normalization or spatial smoothing was
applied, and all analyses were conducted in the native brain space of
each subject.

Region of interest (ROI) definition. V1 was defined from each observer’s
individual anatomy using the method described in Benson et al. (2012).

Table 1. Final ROI size in voxels for each subject’

Subject V1size ROI size Discarded voxels Missing values
P1 1310 618 27 (4.2%) 5
P2 1567 553 35(6.0%) 5
P3 1375 520 35(6.3%) 3
P4 1744 412 26 (5.9%) 3

“The ROl used for all subsequent analyses was the intersection ROI (restricted to the voxels within V/1 that correspond
to the retinotopic representation of the stimulus). Additionally, a small percentage of voxels with poor pRF fits were
discarded from the ROl and further analysis. Missing values are voxels that were not assigned a weight by the SYM
during dlassification analysis and thus returned an NaN.

First, cortical reconstruction was performed in Freesurfer 5.3 (http://
surfer.nmr.mgh.harvard.edu/) from the high-resolution structural MRI
for each subject. Next, the cortical surface templates from Benson et al.
(2012) were registered to each subject’s inflated cortical surface to define
V1 from each individual subject’s surface topology. Benson et al. (2012)
reported that the precision of this method in defining the retinotopic
organization of V1 is equivalent to a 10 min scanning session of standard
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phase-encoded retinotopic mapping for eccentricity and a 25 min session
for polar angle. We used the template to define the boundaries of V1 and
PRF mapping to precisely measure each voxel’s polar angle and eccen-
tricity within V1. The region of V1 corresponding to the retinotopic
representation of the stimulus was functionally defined in mrTools by
including all voxels within the borders of V1 that were significant in a
stimulus>fixation contrast within a GLM (FWE-corrected, p < 0.05).
This resulted in an intersection ROI that included only voxels that were
both inside the boundaries of V1 and significantly activated by the func-
tional stimulus localizer. Finally, voxels with poor pRF fits as defined
above (4%—6% ROI voxels per subject) were removed from the ROI
before further analysis (Table 1).

Orientation decoding. The functional data from the orientation exper-
iment were entered into a GLM in SPM8 with a separate regressor for
each orientation per experimental run to produce separate parameter
estimates for each orientation condition in each run. Fixation blocks
were not included in the model but provided an implicit baseline. De-
coding of orientation was performed using a linear SVM as implemented
in the Decoding Toolbox (Hebart et al., 2014) with standard leave-one-
run-out cross validation in a pairwise classification analysis. The classifier
was trained and tested on the parameter estimates (3 weights) from the
GLM analysis corresponding to one estimate per run for each of the 6
orientation conditions.

Classifier weights and activation patterns. To estimate the contribution
of each individual voxel to orientation decoding, we transformed the
weights into “activation patterns” using the method described by Haufe
et al. (2014) and implemented in the Decoding Toolbox (Hebart et al.,
2014). For N voxels, A is a vector of transformed activation patterns of
length N where Xis the fMRI data (N X M observations) and w is a vector
of classifier weights of length N (Eq. 1) as follows:

A = cov(X) = w* inv(cov(w' * X)) (1)

Raw classifier weights are not directly interpretable as providing
stimulus-relevant classification information because a high weight may
signal either a high level of information about the stimulus, or high utility
in suppressing noise for the classifier (Haufe et al., 2014). Each pairwise
classification of orientation produces a weight for each voxel and a cor-
responding activation pattern for every iteration of leave-one-run-out
cross-validation. To produce a single weight (and activation pattern)
value for each voxel and orientation pair, we repeated classification with-
out cross validation. In the subsequent analyses, voxels scoring =2 SDs
above the mean (absolute value) in the transformed “activation pattern”
for at least 1 of the 15 orientation pairs were considered to be high
performing voxels in their contribution to orientation decoding. For
each voxel, the activation patterns and raw classifier weights were linked
to the pREF fits using custom-made scripts.

Results

Orientation decoding as a function of stimulus location

First, we confirmed that stimulus orientation could be decoded
from V1 (Fig. 2A). Overall orientation classification performance
was high across subjects. Classifier accuracy appears higher for
the ROI constructed from a subset of retinotopic voxels in V1 (V1
ROI) than when all voxels in V1 were available for classification,
even though the V1 ROI only contained approximately one-third
of all V1 voxels (Table 1). As one ROI (V1 ROI) is a subset of the
other (V1), the data were not independent and were analyzed in a
separate repeated-measures ANOVA for each ROI as a function
of orientation difference. For both ROIs, there was a significant
main effect of orientation difference on classification perfor-
mance (V1: Fp, ) = 20.116,p < 0.01; V1 ROL F(, o) = 12.873,p <
0.01). Significant linear trends indicate that decoding accuracy
increased as a function of orientation difference (V1: F(, 3, =
20.835,p < 0.05; VI ROL F, 5, = 11.864, p < 0.05). These results
replicate previous observations of an increase in classifier accu-
racy in V1 with increasing orientation difference (Kamitani and
Tong, 2005) and also the predictions of the ice cube model (Carl-
son, 2014). All subsequent analyses use the V1 ROL.

To examine whether orientation decoding differed between
voxels corresponding to the stimulus edges or the middle of the
grating, we classified each voxel’s receptive field as overlapping
with the inner or outer edge, or the middle of the stimulus, based
on their fitted pRFs. Voxels not fitting into one of these categories
were discarded from this analysis. We constructed new ROIs
from these groups to examine decoding performance as a func-
tion of stimulus location (Fig. 2B). Data are analyzed in a
repeated-measures ANOVA. Orientation decoding was high
across the stimulus; however, classifier performance decreased
with increasing distance from the fovea (inner edge), and there
was a main effect of pRF location (F(, s, = 16.161, p < 0.01).
Because of cortical magnification, ROIs corresponding to the in-
ner edge (nearer the fovea) contained more voxels than ROIs
corresponding to the outer edge (by a factor of 1.2-2.3 across
subjects). To equate ROI size, we created new ROIs for each
category and subject by resampling voxels in 50 voxel bins 100
times (with replacement across permutations) and performing
the decoding analysis on the resampled bins. Classifier perfor-
mance was lower for the resampled 50 voxel ROIs than when all
voxels in each group were used. However, the significant main
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effect of pRF location remained (F, ¢y = 57.153, p < 0.001) and
decoding decreased with increasing distance from the inner edge,
demonstrating that this effect is robust to ROI size.

To further examine the relationship between decoding perfor-
mance and stimulus location, we systematically created multiple
new ROIs by binning voxels according to the fitted pRF param-
eters of eccentricity (Fig. 3A), polar angle (Fig. 3B), and pRF size
(Fig. 3C). There is a consistent relationship between decoding
accuracy and voxel eccentricity across all subjects; performance
increases toward the inner stimulus edge and falls off around the
middle of the stimulus at ~6° eccentricity (Fig. 3A). Importantly,
decoding performance does not rise again to coincide with the
outer edge of the stimulus, as would be expected if edge-related
activity (Carlson, 2014) had a significant impact on decoding
performance (compare Fig. 1C). In contrast to eccentricity, sys-
tematic variation in decoding performance is not observed as a
function of polar angle (Fig. 3B). For consistency, we fitted a
cubic polynomial to the data for polar angle (as for eccentricity
and pREF size); however, in this case, the fits are generally poor.
Decoding peaks for pRF sizes ~1.5°-2° half-width at half-
maximum (HWHM), which is likely to relate to the 1 ¢/° spatial
frequency of the stimulus. Voxel preference for spatial frequency
varies as a function of eccentricity (Tootell et al., 1998), and as
receptive field size increases with eccentricity (Smith et al., 2001),
it is likely that the receptive field size of a voxel is related to its
spatial frequency preference.

In addition to binning by the fitted pRF parameters, we
examined the relationship between decoding performance and
goodness-of fit (r2) for the pRF model (Fig. 3D). Decoding accu-
racy was high even for bins with the lowest values of 72, confirm-

ing that our inclusion of only voxels with pREF fits reaching above

> = 0.1 was an appropriate cutoff for the analysis. The strong
relationship between decoding accuracy and pRF goodness of fit
is notable as the data for pRF fitting and orientation decoding
were collected on separate days. A likely explanation for the rela-
tionship between decoding performance and goodness of fit is
simply that voxels with higher functional signal-to-noise will
tend to have both better pRF fits and more stimulus-related in-
formation. Alternatively, it is possible that voxels with poorer
PRE fits are broadly tuned both for spatial location and the
visual features of the dynamic checkerboard stimuli used in
the pRF mapping sessions. If this is the case, a voxel with low
selectivity to these spatial properties is also likely to have low
orientation specificity, which may explain the positive rela-
tionship between goodness of fit of the pRF model and orien-
tation decoding performance.

PREF distribution of high performing voxels
Decoding performance as a function of voxel eccentricity sug-
gests that voxels with pRFs overlapping with the stimulus closer
to the fovea perform better in orientation decoding than more
peripheral voxels, regardless of whether these voxels overlap with
the stimulus edges (Fig. 2A). To assess the relative contribution of
voxels to classification of the orientation of a large grating stim-
ulus when all voxels are available, we used the method of Haufe et
al. (2014) to transform the classifier weights into interpretable
activation patterns and examine the pRF distribution of voxels
that disproportionately drive classification.

First, to evaluate the relationship between the transformed
patterns and decoding performance, we compared decoding per-
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formance as a function of raw classifier weight and transformed
activation pattern (Fig. 4A). Weights were obtained by using all
voxels for classification; voxels were then rebinned in sets of 50
voxels according to their weight to assess the relationship with
decoding performance. As expected, classifier accuracy increased
systematically with increases in binned classifier weight, confirm-
ing that voxels assigned a high raw weight in SVM classification
with a full set of voxels performed well in decoding when only a
much smaller subset of voxels were available. Decoding perfor-
mance increased exponentially with increasing raw classifier
weight (all R* > 0.91). Critically, the relationship between voxel
weights prescribed by the classifier and decoding performance
held when these weights were transformed into activation pat-
terns (Haufe et al., 2014) and the voxels were rebinned, confirm-
ing that the activation patterns relate to classifier performance as
strongly as the raw weights (Fig. 4B). The majority of voxels in
each ordered bin were different after transforming the weights
into activation patterns (76%—100% across subjects and binned
ROIs), demonstrating that the transformation substantially
changed which voxels were assigned a high weight. These results
justify the use of transformed activation patterns as an estimate of
voxel’s contribution to classification performance.

Next, we identified the high performing voxels, defined as
those with a transformed pattern (absolute value) = 2 SD above
the mean on at least 1 of 15 orientation classifications. A clear
prediction from the edge model of orientation decoding is that
high performing voxels will be clustered around the stimulus
edges (Fig. 1C). We observed that high performing voxels were
disproportionately more likely to have pRFs overlapping with the
inner edge and less likely to overlap with the outer edge, com-
pared with the entire voxel pRF distribution (Fig. 4B). Regardless
of pRF size, high performing voxels were more likely to have an
eccentricity preference near the inner edge than the outer edge.
Examination of the eccentricity distributions (Fig. 4G) suggests
that high performing voxels are a random subset of the overall
voxel distribution. The second peak in the voxel distribution
~10° is likely due to a small proportion of erroneous pRF fits
corresponding to the screen edge as fits are less accurate for voxels
with receptive fields near the border of the stimulated area (Lee et
al., 2013). However, this second peak is not present in the high
performing voxel distribution, inconsistent with the predictions
of the edge model of orientation decoding. The center of each
voxel’s receptive field is plotted in Figure 4F, weighted by its
contribution to all 15 pairwise orientation classifications.
Highly weighted voxels tend to be clustered near the inner (but
not outer) edge of the stimulus.

As decoding performance varied as a function of pRF size (Fig.
3C) and receptive field size in V1 is known to increase with ec-
centricity (Gattass et al., 1987; Smith et al., 2001; Dumoulin and
Wandell, 2008), we repeated the analysis of high performing vox-
els while holding receptive field size constant. We selected voxels
with pREF sizes between 1.5° and 2° HWHM (459 of 2087 voxels)
as this size range corresponded to higher decoding performance
when voxels were binned by pRF size (Fig. 3C) and is within the
peak of the pRF size distribution of all voxels (Fig. 4D). We re-
peated the classification analysis with this subset of voxels of the
same pREF size, obtaining a new weight and transformed pattern
(Haufe et al., 2014) for each voxel. Consistent with the full anal-
ysis, we found that, when pRF size was held constant, highly
weighted voxels tended to have eccentricities corresponding to
the inner edge and area of the stimulus nearest the fovea (Fig. 5A)
and pRFs that overlapped with the inner edge (Fig. 5B). This
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suggests that it is proximity to the fovea or inner edge of the
annulus that is important, rather than pRF size.

Although the above analysis suggests that pRF size does not
account for the observed relationship between eccentricity and
decoding performance, it is difficult to account for all possible
effects of cortical magnification in these analyses. We used a re-
sampling approach to equate the number of voxels in ROIs re-
gardless of their eccentricity (Fig. 2B). This analysis showed that
the higher performance of the classifier for voxels corresponding
to the inner edge (rather than middle or outer edge) is robust,
even when ROI size is equated in the number of voxels. However,
each voxel has a cortical magnification factor and voxels closer to
the occipital pole (i.e., more foveal) will contain more detailed
spatial information than more anterior voxels. Our finding across
repeated analyses that voxels nearer the fovea have higher decod-
ing performance is consistent with some contribution from cor-
tical magnification.

In summary, neither the observed relationship between de-
coding with eccentricity (Fig. 3A) nor the pRF distribution of
highly performing voxels (Fig. 4B-D) is wholly consistent with
our predictions based on the edge model (Fig. 1C). We expected
two peaks in decoding performance, corresponding to each stim-
ulus edge. Instead, voxels that overlap with the stimulus closer to
the fovea appear to drive classification disproportionately more
than voxels with more peripheral pRFs. Notably, decoding per-
formance is still superior for voxels nearer the fovea and inner
regions of the stimulus when ROI size (Fig. 3A) and pRF size
(Fig. 5) are equated. Although the strong performance of inner
edge voxels is partially consistent with a contribution from edge-
related activity, cortical magnification appears to contribute
more strongly to decoding performance as there is no corre-
sponding peak in performance associated with the outer stimulus
edge. Further, decoding of orientation is possible across the visual
field, even in regions of the stimulus where the voxel pRFs do not
contain either stimulus edge (Fig. 2B). As we did not find the
predicted relationship between voxel eccentricity and contribu-
tion to orientation classification, we also checked the relationship
between high performing voxels and their polar angle (Fig. 4C),
pREF size (Fig. 4D), and goodness of fit for the pRF model (Fig.
4E). Overall, the distribution of high performing voxels appears
consistent with a random selection of voxels from the entire dis-
tribution of available voxels, with no obvious bias in the location
or properties of their pRFs. However, when only some voxels are
available for classification, clear differences in decoding perfor-
mance emerge as a function of eccentricity (Fig. 3A), pRF size
(Fig. 3C), and pRF goodness of fit (Fig. 3D). There was also evi-
dence for higher decoding performance for voxels overlapping
with the inner edge (Fig. 2B), and inner edge voxels tend to con-
tribute disproportionately to classification when all voxels are
available (Fig. 4B).

Discussion

Recent modeling of voxel responses in V1 identified a new pos-
sible source of decodable information localized to the stimulus
edges that was suggested to contribute to orientation decoding
(Carlson, 2014). Here we applied pRF mapping to test two
straightforward predictions of the edge model of orientation de-
coding. First, we examined orientation decoding as a function of
stimulus location by grouping voxels as a function of their pRF
parameters. We found that orientation was decodable from vox-
els with receptive fields overlapping with any region of a large
grating stimulus, even if they did not overlap with the edges.
Voxels with eccentricities closer to the fovea or inner edge of the
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Figure4. Distribution of voxels driving orientation classification performance, including all voxels from the 4 subjects. A, Decoding

patterns =2 SDs above the mean are classed as high performing voxels for classification. (—E, Histograms comparing the distributions

classification pairs (dark gray). Red lines indicate the stimulus edges at 3.5°and 9.5°.

performance as a function of raw classifier weight (left) and
transformed classifier pattern (right). Bin size = 50 voxels. Weights and patterns are derived from prior classification with all voxels. Voxels not fitting into the final (low weight) full-sized bin are
discarded from the analysis. B, Proportion of voxels with pRFs overlapping with the stimulus edges, defined as a function of pRF eccentricity and half-width at half-height. Voxels with transformed
of polar angle, pRF size (HWHM), or pRF goodness of fit of all
voxels (light gray) versus those whose contribution to classifier performance was =2 SDs above the mean for at least 1 of the 15 orientation classification pairs (dark gray). F, Center of each voxel's
pRF. Color represents relative contribution to classification performance across all 15 orientation classification pairs. Gray annulus indicates the stimulus location. G, Histogram comparing the
distributions of eccentricity for all voxels (light gray) versus the eccentricity of voxels whose contribution to classifier performance was =2 SDs above the mean for at least 1 of the 15 orientation
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=2 SD (100)

All Voxels (459)

Distribution of voxels with population receptive fields between 1.5-2° half-width at half maximum (HWHM). All voxels in this pRF size range are included for all subjects. Voxels with

transformed patterns =2 standard deviations above the mean are classed as high performing voxels for orientation classification. 4, Histogram comparing the distributions of eccentricity for all
voxels (light grey) within the selected pRF size range (1.5-2° HWHM) versus the eccentricity of voxels in this range whose contribution to classifier performance was =2 standard deviations above
the mean for at least one of the 15 orientation classification pairs (dark grey). Red lines mark the stimulus edges at 3.5 and 9.5°. B, Proportion of voxels in the selected size range (1.5-2° HWHM) with
population receptive fields overlapping with the stimulus edges, defined as a function of pRF eccentricity and half width at half height.

stimulus tended to have higher decoding accuracies; however,
there was not a similar increase in performance for voxels corre-
sponding to the more peripheral outer stimulus edge as predicted
if edge-related activity substantially drives orientation decoding.
Second, when all voxels were available for decoding, voxels with
pRFEs corresponding to more foveal regions of the stimulus
tended to have higher transformed patterns (Haufe et al., 2014)
than peripheral voxels, indicative of a stronger contribution to
decoding performance. However, voxels with a strong contribu-
tion to decoding performance did not cluster at the stimulus
edges, as would be predicted if edge-related activity was a domi-
nant factor in orientation decoding. Overall, orientation decod-
ing was significant across all regions of the stimulus and was not
mediated by the presence of an edge.

Although our data show clearly that edge-related activity
(Carlson, 2014) is not necessary for orientation decoding, we are
unable to evaluate the more challenging question of whether
edge-related activity is sufficient for orientation decoding. The
high performance of voxels corresponding to the inner edge is
consistent with a contribution from both cortical magnification
and edge-related activity. However, the contribution from corti-
cal magnification is much stronger than any contribution from
edge-related activity, as the falloff in decoding performance
tracks the falloff in cortical magnification with eccentricity and
there is no second rise in decoding at the outer stimulus edge. As
the edge model (Carlson, 2014) does not include cortical magni-
fication, it is unclear how the two factors would interact. Inner
edge voxels remained the strongest classifiers of orientation, even
after accounting for differences in ROI size and pRF size as a
function of eccentricity. It is not possible to empirically isolate
edge-related activity from other potential sources of decodable
information as even at the stimulus edges, multiple sources of
potential decodable information may be present. Thus, we can-
not rule out the possibility here that edge-related activity may

contribute to orientation decoding. Nevertheless, it is clear that
edge-related activity is not required to explain previous reports of
orientation decoding (Haynes and Reese, 2005; Kamitani and
Tong, 2005) as our data show that orientation decoding is possi-
ble across a large annular grating, even from voxels that do not
overlap with the stimulus edges.

The observation that orientation is decodable from voxels
whose pRFs exclude the stimulus edges is consistent with more
subtle findings in the literature. Notably, Kamitani and Tong
(2005) used a stimulus localizer that was smaller than the ori-
ented gratings, excluding 0.5° from the inner edge and 1° from the
outer edge. Although this method would not reliably exclude all
voxels overlapping with the stimulus edges to the same degree as
pRF mapping, their finding of orientation decoding with this
localizer is consistent with our result of significant orientation
decoding for voxels with receptive fields overlapping with the
middle of the stimulus. Additionally, orientation maps in V1 for
annular gratings with blurred edges are consistent with the maps
observed for gratings with visible edges (Freeman et al., 2011),
suggesting that activity related to the stimulus edges does not
modulate the orientation-related responses in V1 detectable with
fMRI. Further, orientation information is observed across retino-
topic cortex (Pratte et al., 2016), rather than localized at regions
of cortex representing eccentricities corresponding to the stimu-
lus edges. Together with our systematic mapping of decodability
across the visual field, these data suggest that edge-related activity
is not solely driving orientation decoding from patterns of BOLD
activation in human visual cortex.

A consistent feature of our results is that decoding perfor-
mance is stronger for voxels closer to the fovea than for more
peripheral voxels, even when differences in voxel numbers due to
cortical magnification are accounted for. There are several possi-
ble reasons for this. It may be that these voxels have better signal
because the central area of the visual field has higher acuity than
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the periphery. Alternatively, there may be an effect of attention
differentially modulating the response of voxels based on their
visual field location. Although the stimulus was a large annular
grating, subjects maintained central fixation in the middle of the
annulus while completing a task judging small changes in stripe
thickness of the grating. We selected this task because it seemed
easier to perform while maintaining central fixation and attend-
ing to the whole grating; however, it is possible that subjects were
attending more to the part of the stimulus located near fixation
than peripheral regions. Attention has a strong modulatory effect
on the BOLD response in V1 (Brefczynski and DeYoe, 1999;
Gandhi et al., 1999; Somers et al., 1999); thus, if observers distrib-
uted attention unevenly across the stimulus, this may be reflected
in differences in signal and hence decodability as a function of
voxel eccentricity (Jehee et al., 2011). However, all orientation
decoding experiments would be susceptible to similar subtle bi-
ases in spatial attention, and we based our stimulus, design, and
task closely on previous studies (Kamitani and Tong, 2005; Free-
man et al., 2011, 2013).

Overall, our analysis using the method of Haufe et al. (2014)
to transform classifier weights into interpretable activation pat-
terns suggests a high degree of randomness in the retinotopic
location of voxels driving orientation classification of a large an-
nular grating. Similarly, Seymour et al. (2010) found that highly
weighted voxels for decoding the orientation, color, and conjunc-
tion of color and orientation for spiral gratings were randomly
distributed across retinotopic cortex, without any clear clustering
based on corresponding visual field location. Although these
were untransformed classifier weights before the methodological
development introduced by Haufe et al. (2014), and some highly
weighted voxels would reflect utility in suppressing noise rather
than information about the stimulus classes, their result is con-
sistent with ours using different methods. We found that, when
all voxels were available for classification, highly weighted voxels
defined using the weight transformation of Haufe et al. (2014)
had pRF properties generally consistent with a random subset of
the overall pRF distribution, although there was a bias for voxels
with pRFs overlapping with the inner stimulus edge. Impor-
tantly, we confirmed that the bias for inner edge voxels to be
highly weighted remained after controlling for pRF size. These
results may be a consequence of voxels with pRFs overlapping
with the most foveal portion of the stimulus having better signal-
to-noise (whether from better acuity nearer the fovea, effects of
attention, or both), which introduces a slight bias into the other-
wise randomly distributed selection of voxels that contribute
most to orientation classification.

Although our data do not directly inform the ongoing contro-
versy about whether MVPA confers hyperacuity in both fMRI
(Kamitani and Tong, 2005; compare Op de Beeck, 2010a) and
MEG (Cichy et al., 2015; Stokes et al., 2015; compare Wardle et
al., 2016), they do emphasize the difficulty of empirically exclud-
ing potential sources of decodable information. Modeling ap-
proaches that consider MR-specific factors such as aliasing and
the effect of draining veins on the feasibility of decoding from the
columnar level offer a valuable complement to experimental
methods (e.g., Chaimow et al., 2011). Our results show that edge-
related activity is not necessary for orientation decoding; how-
ever, it remains an open question whether edge-related activity
contributes to orientation decoding. Similarly, it is challenging to
provide positive empirical evidence for hyperacuity. Instead, ev-
idence in favor of hyperacuity is sometimes concluded on the
basis of ruling out other potential sources of decodable informa-
tion (Kamitani and Tong, 2005; Cichy et al., 2015; Stokes et al.,
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2015). However, hyperacuity cannot serve as a “null hypothesis”
when attempting to identify sources of decodable information as
it is empirically challenging to isolate any particular source of
decodable information. To date, the controversy over the source
of information underlying orientation decoding in V1 has pro-
duced a rich debate highlighting the challenges of interpreting
MVPA results in neuroscience. The exquisite sensitivity of MVPA
analysis is accompanied by substantial obstacles in interpretation
which require careful consideration if neuroscience is to cont-
inue to benefit from the application of these powerful methods
(Bartels et al., 2008; de-Wit et al., 2016; Ritchie et al., 2017).
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