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Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain’s capacity to flexibly
reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-
related networks are modest when compared with intrinsic “resting-state” network architecture. Here we combined resting-state and
task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing
reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an
initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state
scan. The reasoning task required participants to deduce the identity of a missing element in a 4 � 4 matrix, and item difficulty was scaled
parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a
significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more
segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further
increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity
between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the
newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that
underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity.
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Introduction
Humans are unparalleled in their ability to reason and solve com-
plex problems in the service of goal-directed behavior (Penn et

al., 2008; Johnson-Laird, 2010). Nevertheless, our ability to rea-
son successfully is limited by the complexity of the task at hand
(Halford et al., 1998, 2005). Increasing reasoning demands are
supported by the flexible reconfiguration of large-scale func-
tional brain networks (Cocchi et al., 2013, 2014), but recent work
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Significance Statement

Humans have clear limits in their ability to solve complex reasoning problems. It is thought that such limitations arise from
flexible, moment-to-moment reconfigurations of functional brain networks. It is less clear how such task-driven adaptive changes
in connectivity relate to stable, intrinsic networks of the brain and behavioral performance. We found that increased reasoning
demands rely on selective patterns of connectivity within cortical networks that emerged in addition to a more general, task-
induced modular architecture. This task-driven architecture reverted to a more segregated resting-state architecture both imme-
diately before and after the task. These findings reveal how flexibility in human brain networks is integral to achieving successful
reasoning performance across different levels of cognitive demand.
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has demonstrated that such reconfigurations are relatively mod-
est and occur within a preserved global network architecture
(Cole et al., 2014; Krienen et al., 2014). Here we assessed changes
in functional brain architecture induced by engagement in a
complex reasoning task, as well as changes in communication
across regions with parametric increases in reasoning complexity.
To do so, we used high-field functional magnetic resonance
imaging (fMRI) to measure brain activity at rest and during per-
formance of a behavioral task in which task complexity was ma-
nipulated parametrically.

Higher cognitive functions are supported by the adaptive re-
configuration of large-scale functional networks (Bassett et al.,
2011; Cole et al., 2013; Braun et al., 2015; Cohen and D’Esposito,
2016; Yue et al., 2017). Previous empirical and theoretical work
suggests that a multitude of complex tasks are related to activity
and communication within and between select frontoparietal,
cingulo-opercular, and default-mode networks (Knowlton et al.,
2012; Cocchi et al., 2014; Hearne et al., 2015; Crittenden et al.,
2016; Bolt et al., 2017). Such networks are flexible and tend to
increase their functional relationship in line with task demands
across a wide range of domains, including reasoning (Cocchi et
al., 2014), working memory (Vatansever et al., 2017), and deci-
sion making (Cole et al., 2013).

Recent empirical work has shown that task-induced network
reconfigurations are modest when compared with intrinsic,
“resting-state” networks (Cole et al., 2014; Krienen et al., 2014).
For example, Cole and colleagues reported a matrix-level corre-
lation between rest and task states of r � 0.90 (on average 38% of
connections demonstrated change, with an average change of r �
0.04). Likewise, it is now apparent that task-induced activity can
be well predicted and modeled from resting-state data alone
(Cole et al., 2016; Tavor et al., 2016). These results suggest that
while behaviorally meaningful, selective task-induced reconfigu-
rations occur against a backdrop of stable, large-scale networks
that support diverse cognitive functions (Power et al., 2011;
Crossley et al., 2013). An important unresolved question is how
selective, “flexible” task-driven reconfigurations emerge among
“stable” intrinsic brain topology. Moreover, it is critical to under-
stand how such global and selective changes are related to behav-
ior (Bolt et al., 2017; Mill et al., 2017).

To investigate this question, we measured functional brain
networks at rest, as well as during several discrete levels of rea-
soning complexity. To systematically manipulate task complex-
ity, we exploited relational complexity theory (Halford et al.,
1998), which posits that the number of relations between vari-
ables quantifies the complexity of a problem, regardless of the
domain of the original stimulus (e.g., semantic, spatial, etc.). Us-
ing this theoretical framework, it has been shown that increasing
the number of relations imposes a quantifiable cognitive load
(measured via reaction time and accuracy), and eventually results
in a breakdown of the reasoning process (Halford et al., 2005).
We collected 7 T fMRI data from 65 individuals while they un-
dertook a nonverbal reasoning task known as the Latin Square
Task (LST; Birney et al., 2006). During the task, participants
solved problems with three discrete levels of difficulty, defined
formally in terms of their relational complexity (binary, ternary,
quaternary). In addition, just before the task, and again immedi-
ately afterward, participants underwent a resting-state scan. To
examine network reconfigurations across rest and reasoning
states, we used modularity to assess segregation and integration
and global efficiency to assess changes in network communica-
tion. Further, to examine selective changes, we employed the
network-based statistic to identify circumscribed changes in con-

nectivity patterns (Zalesky et al., 2010), and related such network
metrics to behavior.

Materials and Methods
Participants. Sixty-five healthy, right-handed participants undertook the
current study, of whom 49 were included in the final analysis (mean,
23.35 years; SD, 3.6 years; range, 18 –33 years; 28 females). Four partici-
pants were excluded due to MR scanning issues, one participant was
excluded due to an unforeseen brain structure abnormality, another
participant was excluded due to low accuracy in the behavioral task
(total score �3 SDs below the mean), and 10 participants were ex-
cluded due to excessive head movement (for head-movement exclu-
sions, see Neuroimaging acquisition and preprocessing). Participants
provided informed written consent to participate in the study. The re-
search was approved by The University of Queensland Human Research
Ethics Committee.

Experimental paradigm. Each participant completed two behavioral
sessions and one imaging session. In the imaging session, participants
underwent a resting-state scan, followed by three 12 min runs of the LST
(described below), a structural scan, and finally a second resting-state
scan (Fig. 1a).

In the two behavioral sessions, participants completed the Raven’s
Advanced Progressive Matrices (40 min time limit), which is a standard
and widely used measure of fluid intelligence (Raven, 2000). Of the 49
participants included in the analysis, 43 also completed a conjunction
visual search task in which they were instructed to report the orientation
of a target letter “L” (rotated 90° leftward or rightward) among “T”
distractors in set sizes of 8, 16, or 24 items. The search cost was defined as
the increase in reaction time between the smallest and largest set sizes.
This task was chosen as a “low reasoning” counterpart to the Raven’s
Progressive Matrices to demonstrate the specificity of brain– behavior
correlations, as described in detail in the Results.

Participants also completed a modified version of the LST (Birney et
al., 2006; Birney and Bowman, 2009). The LST is a nonverbal relational
reasoning paradigm in which reasoning complexity is parametrically
varied with minimal working-memory demands (Halford et al., 1998;
Birney et al., 2006). Each LST “puzzle” involves the presentation of a
four-by-four matrix populated with a small number of geometric shapes
(squares, circles, triangles, or crosses), blank spaces, and a single target,
denoted by a yellow question mark (“?”; Fig. 1b). Participants were asked
to solve for the target according to the following rule: each shape can only
occur once in every row and once in every column (similar to the game of
sudoku). Binary problems require integration of information across a
single row or column. Ternary problems involve integration across a
single row and column. Quaternary problems, the most complex, require
integration of information across multiple rows and columns (Fig. 1b).
Null trials involved presentation of an LST grid, but instead of a target
question mark, an asterisk (*) was presented to cue the participant that
no reasoning was required in this puzzle. The identity of the shapes that
appeared in Null trials was random, but the number of shapes and their
spatial locations were matched to those in the active LST trials. In total,
144 LST items were presented in the MR session across 16 blocks, with 36
items in each relational complexity condition; Null, Binary, Ternary, and
Quaternary. Before the MR session, participants completed 20 practice
trials of the LST (12 with corrective feedback). The visual angle subten-
ded by the LST matrices was �7.7°, so that the entire stimulus fell within
the parafoveal region of the visual field. Stimuli were projected onto a
screen located at the head end of the MR scanner, and participants
viewed the projected stimuli via a mirror mounted on the head coil.

Administration of all items was pseudorandomized such that no two
items of the same complexity occurred sequentially, and each block had
two problems from each level of complexity (Fig. 1c). Motor responses
were counterbalanced across individuals, such that equal numbers of
participants had the same shape-response mapping. Confidence ratings
were used to determine participants’ subjective feeling of success, and to
identify any trials in which participants inadvertently disengaged from
the task altogether (e.g., due to a momentary lapse of attention). A three-
point confidence scale indicated whether participants felt certain the
problem had been answered correctly (4), felt unsure of their accuracy
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(3), or felt certain the problem had been answered incorrectly (2). On the
far left (demarcated by a vertical line; Fig. 1c) was an additional “inatten-
tion” rating point (1) that participants were instructed to select if they felt
they had not attempted to solve the problem due to a momentary lapse of
attention, fatigue, or other factors. This response was used to separate incor-
rect choices arising from failures in reasoning, from those due to nonspecific
“off-task” mind wandering (Smallwood and Schooler, 2015).

Neuroimaging acquisition and preprocessing. At the Centre for Ad-
vanced Imaging, The University of Queensland, imaging data were col-
lected using a 7 T Siemens MR scanner fitted with a 32-channel head coil.
For both resting-state and task fMRI, whole-brain echo-planar images
were acquired using a multiband sequence (acceleration factor, 5;
Moeller et al., 2010). In each of the two resting scans, 1050 volumes were
collected (�10 min each). In the each of the three runs of the task, 1250
volumes were collected (�12 min each) with the following parameters:
voxel size, 2 mm 3; TR � 586 ms; TE � 23 ms; flip angle, 40°; FOV, 208
mm; 55 slices. Structural images were also collected to assist functional
data preprocessing. These images were acquired using the following pa-
rameters: MP2RAGE sequence; voxel size, 0.75 mm 3; TR � 4300 ms;
TE � 3.44 ms; 256 slices (Fig. 1a).

Imaging data were preprocessed using an
adapted version of Matlab (MathWorks, RRID:
SCR_001622) toolbox Data Processing Assis-
tant for Resting-State fMRI (DPARSF V 3.0; Chao-
Gan and Yu-Feng, 2010; RRID: SCR_002372).
Both resting-state and task data were prepro-
cessed with the same pipeline (except where
noted). DICOM (Digital Images and Commu-
nications in Medicine) images were first con-
verted to Nifti format and realigned. T1 images
were reoriented, skull-stripped [FMRIB (Ox-
ford Centre of Functional MRI of the Brain)
Software Library Brain Extraction Tool (FSL
BET); RRID: SCR_009472], and coregistered
to the Nifti functional images using statistical
parametric mapping (SPM8; RRID: SCR_007037)
functions. Segmentation and the DARTEL
(diffeomorphic anatomical registration through
exponentiated lie algebra) algorithm were used to
improve the estimation of non-neural signal in
subject space and the spatial normalization (Ash-
burner, 2007). From each gray matter voxel, the
following signals were regressed: undesired linear
trends, signals from the six head-motion param-
eters (three translation, three rotation), white
matter, and CSF (estimated from single-subject
masks of white matter and CSF). The CompCor
method (Behzadi et al., 2007) was used to regress
out residual signal unrelated to neural activity
(i.e., five principal components derived from
noise regions-of-interest in which the time series
data were unlikely to be modulated by neural
activity). Global signal regression was not
performed due to the ongoing controversy as-
sociated with this step (Saad et al., 2012;
Caballero-Gaudes and Reynolds, 2017). This
choice may increase motion artifacts in the
data (Ciric et al., 2017). For this reason, we
employed a strict head-motion censoring ap-
proach (see below). Single-subject functional
images were subsequently normalized and
smoothed using DARTEL (4 mm 3). Data pro-
cessing steps also involved filtering (0.01– 0.15
Hz) at a low-frequency component of the
BOLD signal known to be sensitive to both
resting-state and task-based functional con-
nectivity (Sun et al., 2004), therefore allowing
comparison of both resting-state and task data.

Head movement. Participants with head dis-
placement �3 mm in �5% of volumes in any

one scan were excluded. In addition to gross head movement, it has also
been shown that functional connectivity can be influenced by small
volume-to-volume “micro” head movements (Van Dijk et al., 2012;
Power et al., 2014). To ensure micro– head-movement artifacts did not
contaminate our findings, both resting-state and task-based data with
frame-to-frame displacements of �0.40 mm were censored (Power et al.,
2014). Participants with �85% of data remaining in any condition were
excluded.

Functional connectivity network construction. For each subject, region-
ally averaged time series were extracted for 264 spheres of 5 mm radius
sampled across cortical and subcortical gray matter. Spheres were posi-
tioned according to an existing brain parcellation, based on task activa-
tions induced by a wide range of behavioral tasks (Power et al., 2011).
This parcellation and associated network definitions were generated
from a large cohort of participants (N � 300), and has the advantage of
being independent of the imaging data obtained in the current study.

For both sets of resting-state data (Pre-task and Post-task), functional
connectivity was estimated using a temporal Pearson correlation be-
tween each pair of time series (Zalesky et al., 2012). This resulted in a

Figure 1. Experimental design and sequence of displays in a typical trial of the LST. a, fMRI session outline. Participants
completed resting-state scans before and after three runs of task imaging. b, Examples of each reasoning complexity condition. The
correct answers are square, cross, and cross, respectively, for the Binary, Ternary, and Quaternary problems illustrated. c, Example
trial sequence. Each trial contained a jittered fixation period, followed by an LST item, a second jittered fixation period, a response
screen, and a confidence rating scale. In Null trials, the motor response screen had one geometric shape replaced with an asterisk,
representing the correct button to press.
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264 � 264 connectivity matrix for each subject.
For the task-based functional connectivity
analyses, we used a regression approach (Cole
et al., 2014) rather than psychophysiological
interactions (PPIs) as others have used
(McLaren et al., 2012; Cocchi et al., 2014;
Gerchen et al., 2014). We opted for this ap-
proach rather than PPIs due to our interest in
assessing connectivity across both rest and task
states. For each brain region of interest, a task
regressor composed of the condition onsets
modeled as boxcar functions convolved with a
canonical hemodynamic response function
was regressed from the time series. This step
was taken to remove variance associated with
task-related coactivation (Cole et al., 2014).
Then, after accounting for the hemodynamic
lag, the residual time series from each 5 s rea-
soning period was concatenated to form in
each brain region a condition-specific time series of interest. A Pearson
correlation was performed on the resulting regional time series for each
condition separately, resulting in a 4 (condition) � 264 � 264 connec-
tivity matrix for each subject. Finally, both resting-state and task-based
matrices were converted to z scores. Analysis decisions such as z normal-
ization and thresholding were employed so as to be consistent with
previous, related work aimed at assessing dynamic reconfiguration of
connectivity patterns as a function of task demands (Cole et al., 2014;
Power et al., 2011). Such choices do, however, affect the resulting graph
metrics (Rubinov and Sporns, 2011). Thus, unless otherwise noted [see
network-based statistic (NBS) analysis, below], weighted graphs of pro-
portional densities from the top 5% to the top 30% of connections were
considered for analysis. Such network densities have been shown to pro-
vide robust functional brain-network characterizations (Garrison et al.,
2015) and are similar to those used in previous, related work (Power et
al., 2011).

Analysis overview. We undertook three complementary analyses to
identify functional network reorganization due to increasing relational
complexity. First, we calculated and compared community partitions
that arose in each of the resting-state and task conditions. Following this,
we performed an analysis to identify changes in connectivity associated
with performance of the LST using the NBS (Zalesky et al., 2010), a
sensitive statistical tool that controls for type-I error at the network level.
To assess the functional and behavioral impact of the connectivity
changes identified in the previous two analyses, we calculated changes in
global efficiency (Achard and Bullmore, 2007) for each functional mod-
ule detected. Moreover, to assess the behavioral implications of the ob-
served network changes, we correlated metrics of changes in module
efficiency with performance accuracy on the LST. When appropriate,
nonparametric statistics were used for repeated-measures comparisons
(Friedman test), follow-up tests (Wilcoxon signed rank), and measures
of effect size (Kendall’s coefficient of concordance, W ).

Community detection. A module is a group of nodes in a graph that
contains stronger connections within module than expected in an appro-
priate random network null model. A modularity partition represents
the subdivision of a graph into nonoverlapping modules (Fortunato,
2010). The degree of modularity in a network can be characterized by the
Q index (Newman and Girvan, 2004), which represents the density of
within-module connections relative to an appropriate random network
null model. The aim of community detection is to isolate a module
partition that maximizes Q according to the following equation:

Q��� �
1

2m�
ij

	aij � �pij
���i� j�

This is the modularity equation, where aij represents the weight of the

edge between i and j, pij �
kikj

2m
represents the expected number of links

according to the so-called configuration null model (Newman et al.,
2001), where ki is the degree of node i; in this case the null preserves the

node degree while forming connections at random. Meanwhile, 2m rep-
resents the total number of connections in the network; �i denotes the
community to which node i is assigned; and the Kronecker � function,
�(�i�j), is 1 if �i � �j and 0 if otherwise. Finally, � is the resolution
parameter; when � � 1, larger communities are resolved; if � � 1, smaller
communities are resolved.

In the present study, modules were identified using the Louvain greedy
algorithm (Blondel et al., 2008) implemented in the Brain Connectivity
Toolbox (BCT; Rubinov and Sporns, 2010; RRID: SCR_004841). The
resolution parameter was set to unity (� � 1). Testing across several
levels of � showed consistent results. For clarity, we highlight the BCT
scripts used throughout Materials and Methods. There are multiple pos-
sible module partitions that maximize Q for each graph, resulting in
community assignments that vary across each run of the algorithm
(Good et al., 2010; Sporns and Betzel, 2016). To resolve this variability,
we used a consensus approach (Lancichinetti and Fortunato, 2012),
whereby module partitions are calculated a number of times (10 3 itera-
tions, for each participant and condition) and used to calculate an
agreement matrix (agreement.m). The agreement matrix represents the
tendency for each pair of nodes to be assigned to the same module across
iterations. Finally, the agreement matrix was subjected to an independent
module partitioning (consensus_und.m), resulting in an individual-level
module partition for each participant in each condition. In this step, the
resolution parameter was also set to unity (� � 1), representing the level
at which the agreement matrix was thresholded before being subjected to
the consensus procedure. For example, � � 1 thresholds the matrix such
that only nodes consistently partitioned into the same community across
all permutations are included. Testing across several levels of � showed
consistent results. A general community structure including motor-sensory,
auditory, visual, default-mode, and frontoparietal/cingulo-opercular mod-
ules was entered into the algorithm as the initial community partition. In our
data, this choice decreased computation time, presumably because the ini-
tial community structure was associated with a Q value that was close to
the true maximum. Module reconfiguration results were replicated using
different community affiliation priors, including variations of the origi-
nal community partitions (Power et al., 2011; Cole et al., 2013) and
purely data-driven methods (i.e., no community affiliation input).

The procedure for group-level modular decomposition was imple-
mented in a similar fashion to the individual-level decompositions
described above. The critical difference was that instead of creating an
individual-level agreement matrix, the agreement matrix represented the
tendency for each pair of nodes to be assigned to the same module across
participants. The same consensus procedure followed, resulting in a sin-
gle module partition for each condition for the group of 49 participants.
Resolution parameters were kept identical to the previous individual-
level modularity analysis.

Significance testing for within-participant differences in modular struc-
ture. To investigate differences in the nodal composition of modules
across conditions, we used the variation of information metric (VIn;
Meilă, 2007), an information-theoretic measure of partition distance

Figure 2. Behavioral results for the LST visualized as box-and-whisker plots. Here the boxes represent the median and inter-
quartile ranges, and the whiskers show the minimum and maximum values. a, Accuracy as a function of reasoning complexity.
b, Reaction time as a function of reasoning complexity. Significance markers indicate p � 0.001.
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(partition_distance.m). To ascribe statistical significance to differences
in partition structure, we used a repeated-measures permutation proce-
dure to compare real VIn values to appropriate null distributions (Dwyer
et al., 2014). Specifically, half of the participants’ condition labels were ran-
domly switched in the contrast of interest (e.g., Binary vs Ternary). This
resulted in two new sets of individual-level module structures for the con-
trast (albeit with shuffled data). The shuffled module structures were then
subjected to the previously used pipeline to generate group-level module
partitions. Finally, VIn was used to quantify the difference between these
partitions. This procedure was repeated 104 times to build a null distribution
for each contrast of interest, with which the real data were compared.

Pairwise functional connectivity analysis. The NBS (Zalesky et al., 2010;
RRID: SCR_002454) was used to identify changes in pairwise functional
connectivity at rest and during the task. For the first contrast, a paired
t test was performed between the Pre-task and Post-task resting-state
data. For the second contrast, a one-way repeated-measures ANOVA was
used to compare all four task states (Null, Binary, Ternary, Quaternary).
For the analysis, unthresholded functional connectivity matrices were
used as input into the NBS. Briefly, all possible pairs of connections
[(264 � 263)/2 � 34,716] were tested against the null hypothesis, endow-
ing each connection with a test statistic, which was subsequently thresh-
olded. Here an exploratory F statistic of 20 (equivalent to a t statistic of
4.47) was used as the threshold, though additional exploratory analyses
showed that networks arising using higher or lower t thresholds resem-
bled the original results. This threshold was adopted because it allowed
the detection of effects of medium size while discarding small or spurious
effects. Familywise error (FWE)-corrected p values were ascribed to the
resulting networks using a null distribution obtained by 5000 permuta-
tions. Only components that survived a network-level threshold of p �
0.001 (FWE corrected) were declared significant. This analysis allowed us
to identify subnetworks that significantly increased or decreased their
functional connectivity across relational reasoning task conditions, pro-
viding complementary results to the graph analyses.

Network efficiency analysis. Global efficiency is defined as the inverse of
the average characteristic path length between all nodes in a network
(Latora and Marchiori, 2001). Assuming that information follows the
most direct path, global efficiency provides an index for parallel infor-
mation transfer in a network (Rubinov and Sporns, 2010). In the context
of functional brain networks, global efficiency is thought to be an index
of increased capacity for information exchange (Achard and Bullmore,
2007). The link between indices of global efficiency and global neural

information transfer is, however, not yet clear. Nevertheless, a number of
studies have shown that high global brain-network efficiency can
enhance neurophysiological (de Pasquale et al., 2016; Cocchi et al.,
2017) and cognitive processes (Bassett et al., 2009; van den Heuvel et al.,
2009; Shine et al., 2016).

Here we wanted to investigate differences in network communication
within module, and determine how such difference might relate to be-
havior. To do so, we computed global efficiency for each participant, in
each condition, for the three major modules identified in the initial mod-
ularity analysis (using efficiency_wei.m from the BCT). Importantly,
matrix thresholding was performed after dividing the modules to ensure
any efficiency effects were not due to differences in degree across mod-
ules. Finally, we computed the difference in efficiency between the most-
difficult and least-difficult conditions (i.e., Quaternary vs Null) and
correlated this change in efficiency with overall accuracy scores on the
LST.

Figures and visualization. Figures were generated with a combination
of Matlab and on-line network visualization tools [alluvial diagram
(http://www.mapequation.org/apps/MapGenerator.html) and the con-
nectogram (http://immersive.erc.monash.edu.au/neuromarvl/].

Results
Behavioral results
A nonparametric Friedman test revealed a significant effect of
reasoning complexity on both LST accuracy (�2 � 86.20, Kendall’s
W � 0.88, p � 0.001) and reaction time (� 2 � 63.71, W � 0.65,
p � 0.001; Fig. 2). Bonferroni-corrected follow-up Wilcoxon
signed-rank test comparisons revealed that accuracy was signifi-
cantly higher for the Binary condition (mean, 34.96; SD, 1.04)
than for both the Ternary condition (mean, 31.63; SD, 3.52; z �
5.59; p � 0.001) and the Quaternary condition (mean, 22.78; SD,
6.71; z � 6.10; p � 0.001). Accuracy was also higher for Ternary
items than for Quaternary items (z � 5.74, p � 0.001). The reac-
tion time results followed a similar pattern, such that responses
were faster in the Binary condition (mean, 771.60 ms; SD, 201.60
ms) than in the Ternary (mean, 844.20 ms; SD, 217.30 ms; z �
�4.62; p � 0.001) and Quaternary (mean, 933.70 ms; SD, 205.00
ms; z � �5.83; p � 0.001) conditions. Likewise, reaction times in

Table 1. Variation of information statistics

Contrast

Network density

5% 10% 15% 20% 25% 30%

VIn p VIn p VIn p VIn p VIn p VIn p

Pre-task rest
Post-task rest 0.056 0.878 0.065 0.863 0.109 0.656 0.098 0.836 0.124 0.552 0.092 0.944
Null 0.146 0.013 0.139 0.077 0.124 0.397 0.189 0.009* 0.198 0.005* 0.186 0.029
Binary 0.148 0.006* 0.179 0.001* 0.218 0.001* 0.219 �0.001* 0.216 0.007* 0.209 0.023
Ternary 0.166 0.002* 0.194 �0.001* 0.226 �0.001* 0.226 0.001* 0.221 0.002* 0.215 0.002*
Quaternary 0.148 0.009* 0.189 �0.001* 0.225 �0.001* 0.22 �0.001* 0.221 �0.001* 0.203 0.008*

Post-task rest
Null 0.117 0.231 0.154 0.019 0.098 0.81 0.153 0.084 0.185 0.015 0.191 0.018
Binary 0.128 0.099 0.185 0.001* 0.176 0.033 0.181 0.074 0.212 0.01* 0.203 0.018
Ternary 0.16 0.006* 0.204 �0.001* 0.194 0.006* 0.203 0.003* 0.2 0.016 0.22 0.001*
Quaternary 0.128 0.083 0.189 0.002* 0.195 0.005* 0.202 0.001* 0.2 0.005* 0.211 0.001*

Null
Binary 0.028 1 0.121 0.245 0.162 0.199 0.1 0.698 0.1 0.674 0.106 0.534
Ternary 0.094 0.711 0.133 0.237 0.193 0.023 0.13 0.645 0.119 0.567 0.132 0.246
Quaternary 0.052 0.987 0.117 0.272 0.181 0.04 0.14 0.539 0.132 0.467 0.132 0.291

Binary
Ternary 0.096 0.681 0.154 0.159 0.097 0.801 0.1 0.485 0.093 0.571 0.11 0.306
Quaternary 0.038 0.998 0.121 0.375 0.086 0.91 0.111 0.507 0.106 0.484 0.108 0.387

Ternary
Quaternary 0.082 0.747 0.084 0.894 0.041 1 0.051 0.986 0.061 0.943 0.051 0.969

* indicates contrasts where p �0.01. VIn, Variation of information.
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Figure 3. Modular structure as a function of reasoning complexity in the LST. a, Alluvial “flow” demonstrating the network affiliations (Power et al., 2011) compared with the Pre-task resting-state (Rosvall
et al., 2009). Each individual streamline represents a node in the network, colored by its original resting-state affiliation as shown on the left (Power et al., 2011). b, VenAtt, Ventral attention; DorAtt, dorsal
attention; Sc, subcortical; Aud, auditory; Co, cingulo-opercular; Sal, salience; Fpn, fronto-parietal; Vis, visual; Sm, sensorimotor; Dmn, default-mode. Changes in modular structure across the experimental
conditions. Visual and frontoparietal modules merged to form a task-related module during Binary, Ternary, and Quaternary conditions of the LST. Results for 15% network density are shown, but statistics were
performed across several thresholds. c, Anatomical rendering of the task-related modules in the Quaternary condition. Each sphere is color-coded by its initial resting-state module allegiance. d, VIn values (black
markers) compared with a null distribution (gray markers: fifth–95 th percentile in bold line; first–99 th percentile shown in tails) for the three main contrasts across all network densities. Only the right-most
contrast(BinaryvsPre-taskrest)showedaconsistentdifferencebetweenpartitions.e,ComparisonofVInvaluesacrossvisual,sensory, frontoparietal,anddefault-modemodules ineachtaskconditioncompared
with rest across all network densities. The frontoparietal module was consistently more variable in relation to other modules. Error bars represent 95% confidence intervals.
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the Ternary condition were significantly faster than those in the
Quaternary condition (z � �4.79, p � 0.001).

As expected, there was a significant positive correlation be-
tween scores on the Raven’s Advanced Progressive Matrices, a

measure of fluid intelligence, and overall
accuracy on the LST (r � 0.44, p � 0.002).
By contrast, for the visual search task,
there was no correlation between reaction
time cost and LST score (N � 43, r �
�0.09, p � 0.58). A Steiger z test (Lee and
Preacher, 2013) demonstrated that these
two correlations were significantly differ-
ent from one another (N � 43, z � �2.90,
p � 0.003), confirming that LST perfor-
mance is linearly related to an established
measure of fluid intelligence, but not to a
widely used test of visual attention (Treis-
man and Gelade, 1980).

Participants’ confidence was assessed
on each trial. Importantly, we included an
explicit rating for when participants had
not attempted the reasoning problem due
to an attention lapse, mind wandering, or
fatigue. Averaging across all conditions,
the mean number of such lapses was �1 of
36 trials (mean across conditions, 0.47 tri-
als; SD across conditions, 0.98 trials). We
can thus conclude that overall, partici-
pants were able to engage as instructed in
cognitive reasoning across all three levels
of relational complexity in the LST.

Functional brain
module reconfiguration
Modularity analysis revealed four major
modules in the baseline (Pre-task) re-
sting-state. For clarity, these modules are
represented in reference to Power and col-
leagues’ (2011) initial network affilia-
tions. The modules broadly correspond to
the sensory, default-mode, visual, and
frontoparietal networks.

VIn analysis (Meilă, 2007) revealed a
significant difference in the community
structure of Binary, Ternary, and Quater-
nary conditions compared with the Pre-
task resting-state (mean statistics across
thresholds are reported in text; Table 1;
VIn � 0.20, p � 0.006; VIn � 0.21, p �
0.001; VIn � 0.20, p � 0.003, respectively)
and Post-task resting-state (VIn � 0.18,
p � 0.039; VIn � 0.20, p � 0.005; VIn �
0.19, p � 0.016). The difference between
rest and reasoning states was associated
with the emergence of a single, conjoined
frontoparietal-visual (FPV) module that
was composed of several large-scale net-
works identified by Power et al. (2011).
The transitory nature of the FPV module
was confirmed by its switch back to its
original configuration in the Post-task
resting-state (i.e., after completion of the
LST). Figure 3b shows a representation of

the reconfiguration of modules across experimental conditions.
There was no significant difference between the Pre-task and
Post-task resting-state community structure (VIn � 0.09, p �
0.788). There was also no consistent difference between the Pre-

Figure 4. Change in pairwise functional connectivity associated with reasoning complexity. a, Connectogram representation of significant
changesinpairwisefunctionalconnectivitythatscaledwithrelationalcomplexity.Edgecolorsindicatedirectionofcorrelationchangeacrossrelational
complexity.Warmcolorsrepresentincreasesinconnectivityandcoolcolorsrepresentdecreases in connectivity. Lighter colors represent higher F
statistics. Network nodes, plotted as circles, are colored by their initial resting-state networks (Power et al., 2011). Outside the connecto-
gram, the colored bars represent the modules identified in the previous analysis of data from the Quaternary condition: sensory (orange),
default-mode (red), and FPV modules (green-blue). b, Each individual connection in the subnetwork (averaged across subjects) plotted as
a function of reasoning complexity. Average values for positive and negative connections are shown as bold lines.
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task and Post-task resting-state communities and the Null task
condition (VIn � 0.16, p � 0.08; VIn � 0.15 p � 0.196, respec-
tively). These main effects were broadly replicated across all
thresholds tested (Fig. 3c).

Having established a difference in community structure, we
sought to test the relative contribution of each module to the
observed reconfiguration. To do so, we implemented a similar
strategy to that of Braun and colleagues (2015), whereby VIn was
calculated at the individual-community level for our nodes of
interest, and compared using repeated-measures statistics. Thus,
we compared visual, sensory, frontoparietal, and default-mode
modules across all network densities for the Binary–Rest, Ternary–
Rest, and Quaternary–Rest contrasts (conceptually similar to
follow-up parametric statistics). Results revealed that the fronto-
parietal module had higher VIn values (i.e., larger differences in
community structure) than visual (mean p value across thresh-
olds, p � 0.001), sensory (p � 0.001), and default-mode modules
(p � 0.001; Fig. 3d) across all contrasts.

Finally, the index of modularity, Q, was compared across con-
ditions. This index of modularity increases as more intramodular
connections are found than expected by chance (Newman and
Girvan, 2004). Nonparametric Friedman tests revealed a sig-
nificant difference in Q across conditions (mean statistic across
thresholds, � 2 � 51.48, p � 0.001). Bonferroni-corrected
follow-up tests were performed to compare each task state (Null,
Binary, Ternary, Quaternary) with each resting-state (Pre-task
and Post-task). Results revealed that Q was significantly lower in
the Ternary (mean Q � 0.39) and Quaternary conditions (mean
Q � 0.39) when compared with both Pre-task (mean Q � 0.44, z �
3.74, z � 4.07, p � 0.001) and Post-task resting-states (mean Q �
0.45, z � 4.49, z � 4.52, p � 0.001). No effect was found when
comparing Null or Binary conditions with rest. Complementing
the observed changes in community structure, analysis of Q
scores highlights a significant reduction in modularity compared
with the resting-state, but only in the task conditions that im-
posed higher demands on cognitive reasoning.

NBS analysis
To further refine our account of module reconfiguration, we
assessed changes in whole-brain connectivity using the NBS (Za-
lesky et al., 2010). In line with the result from the first analysis,
a paired t test between Pre-task and Post-task resting-states
revealed no significant differences. Our second contrast, a one-
way repeated-measures ANOVA was performed comparing all
four reasoning complexity conditions (Null, Binary, Ternary,
Quaternary).

A subnetwork comprising 63 nodes and 85 edges changed
in response to reasoning complexity demands (p � 0.001, FWE
corrected at the network level; Fig. 4). Most edges within the subnet-
work demonstrated increased functional connectivity (86% of
edges; Fig. 4, warm colors), but a number of edges also demon-
strated a decrease in positive correlations with increasing reason-
ing complexity (Fig. 4b). Consistent with our previous work on
changes in functional connectivity during complex reasoning
(Cocchi et al., 2014; Hearne et al., 2015), the network was largely
composed of nodes encompassing frontoparietal (17%), subcor-
tical (19%), cingulo-opercular (12%), and default-mode net-
works (24%; Power et al., 2011; Table 2). Moreover, nearly all
edges (95%) were across-network. Two further visual–parietal
subnetworks were identified by the NBS, consisting of two and
three nodes respectively (not visualized).

Table 2. Significant pairwise changes in functional connectivity associated with
increasing relational complexity

MNI

RSN Mod Anatomy Degreex y z

�7 �52 61 Sshand FPV Precuneus 12
4 �48 51 Mem FPV Precuneus 10

47 10 33 Fpn FPV Precentral gyrus 7
�2 �35 31 Mem Dmn Middle cingulate cortex 6

�34 3 4 Co Sens Middle insula 6
23 10 1 Sc FPV Putamen 6
49 8 �1 Co Sens Superior temporal pole 5

�11 �56 16 Dmn Dmn Calcarine gyrus 5
�2 38 36 Dmn Dmn Medial superior frontal gyrus 5

�42 �55 45 Fpn FPV Inferior parietal cortex 5
�45 0 9 Co Sens Rolandic operculum 4

52 �59 36 Dmn Dmn Angular gyrus 4
�35 20 51 Dmn Dmn Middle frontal gyrus 4

9 �4 6 Sc FPV Thalamus 4
�2 �13 12 Sc FPV Thalamus 4

�47 11 23 Fpn FPV Inferior frontal gyrus (operculum) 4
�42 45 �2 Fpn FPV Inferior frontal gyrus (orbital) 4

54 �28 34 Co Sens Supramarginal gyrus 3
8 �48 31 Dmn Dmn Posterior cingulate cortex 3

13 30 59 Dmn Dmn Superior frontal gyrus 3
11 �39 50 Sal Sens Middle cingulate cortex 3
15 �77 31 Vis Sens Cuneus 3

�41 6 33 Fpn FPV Precentral gyrus 3
�53 �49 43 Fpn Dmn Inferior parietal cortex 3
�44 2 46 Fpn FPV Precentral gyrus 3

3 �17 58 Sshand Sens Supplementary motor area 2
65 �33 20 Aud Sens Superior temporal gyrus 2

�51 8 �2 Co Sens Insula 2
15 �63 26 Dmn FPV Cuneus 2
11 �54 17 Dmn Dmn Precuneus 2
36 10 1 Co Sens Insula 2

�10 �18 7 Sc FPV Thalamus 2
�22 7 �5 Sc FPV Putamen 2

43 �78 �12 Vis FPV Inferior occipital cortex 2
�42 �60 �9 DorAtt FPV Inferior temporal gyrus 2
�3 26 44 Fpn FPV Superior frontal gyrus (medial) 2

44 �53 47 Fpn FPV Inferior parietal cortex 2
32 14 56 Fpn FPV Middle frontal gyrus 2

�40 �19 54 Sshand Sens Precentral gyrus 1
0 �15 47 Sshand Sens Middle cingulate cortex 1

�10 �2 42 Co Sens Middle cingulate cortex 1
�50 �34 26 Aud Sens Supramarginal gyrus 1

59 �17 29 Aud Sens Postcentral gyrus 1
37 1 �4 Co Sens Insula 1

6 �59 35 Dmn Dmn Precuneus 1
�41 �75 26 Dmn FPV Middle occipital cortex 1

65 �31 �9 Dmn Dmn Middle temporal gyrus 1
43 �72 28 Dmn FPV Middle occipital cortex 1

�3 42 16 Dmn Dmn Anterior cingulate cortex 1
�16 29 53 Dmn Dmn Superior frontal gyrus 1

2 �24 30 Mem Dmn Middle cingulate cortex 1
12 36 20 Dmn Dmn Anterior cingulate cortex 1

6 �24 0 Sc FPV Thalamus 1
12 �17 8 Sc FPV Thalamus 1

�5 �28 �4 Sc FPV Lingual gyrus 1
31 �14 2 Sc Sens Putamen 1
29 1 4 Sc Sens Putamen 1

�31 �11 0 Sc Sens Putamen 1
15 5 7 Sc FPV Pallidum 1
37 �84 13 Vis FPV Middle occipital cortex 1
37 �81 1 Vis FPV Middle occipital cortex 1

�33 �79 �13 Vis FPV Inferior occipital cortex 1
49 �42 45 Fpn FPV Inferior parietal cortex 1

Automated Anatomical Labeling atlas was used to define anatomical regions. RSN, Initial Power et al., 2011, resting-state
network affiliation; Mod, modules defined by modularity analysis in the Quaternary condition (i.e., Figure 3); Co, cingulo-
opercular; Dmn, default-mode; Fpn, frontoparietal; Vis, visual; Sens, sensory; Sc, subcortical; Sal, salience; Aud, auditory;
Mem, memory; Sshand, somatosensory hand; DorAtt, dorsal attention; FPV, fronto-parietal-visual.

8406 • J. Neurosci., August 30, 2017 • 37(35):8399 – 8411 Hearne et al. • Reasoning and Brain Networks



Within-module global efficiency and behavior
Our final analysis sought to investigate changes in global effi-
ciency within each major module evident during the task. Global
efficiency has previously been taken to be an index of increased
capacity for information exchange (Achard and Bullmore, 2007).
Specifically, we were interested in whether each module showed
changes in efficiency, and whether any such changes were related
to reasoning performance.

Nonparametric Friedman tests revealed that both the sensory
(Fig. 5a, orange) and FPV modules (Fig. 5a, green) demonstrated
significant differences in efficiency across conditions (sensory:
� 2 � 44.17, p � 0.001; FPV: � 2 � 77.78, p � 0.001; Fig. 5a). No
such effect was found for the default-mode module (p � 0.23).
Bonferroni-corrected follow-up tests confirmed that the effect
was driven by increased efficiency within all task states compared
with Pre-task and Post-task resting-states (sensory: z range �
2.4 – 4.69, p � 0.02; FPV: z range � 3.78 –5.22, p � 0.001).

We also investigated the relationship between individual dif-
ferences in module efficiency and behavioral performance. To do
so, we correlated reasoning accuracy scores with changes in mod-
ule efficiency between the Pre-task resting-state and the most
complex reasoning condition (Quaternary). Only module effi-
ciency within the FPV module was significantly correlated with
behavior (Fig. 5b; mean statistics across thresholds: r � 0.33, p �
0.026; Spearman’s r’s � 0.27, p � 0.084), such that larger in-

creases in efficiency within the FPV mod-
ule were associated with better reasoning
performance. Neither the default-mode
or sensory modules demonstrated such a
relationship (p � 0.19, p � 0.29, respec-
tively). Further, to probe the reliability of
the above finding, we compared change in
efficiency from Quaternary to the Null-
task state, which yielded a similar result
(r � 0.35, p � 0.021, Spearman’s r’s �
0.30, p � 0.048). The correlation was also
robust to partialling out fluid intelligence
scores based on the Raven’s Matrices test
(r � 0.35, p � 0.025). By contrast, there
was no correlation between performance
in the visual search task and module effi-
ciency (N � 43, p � 0.65), suggesting the
module efficiency– behavior relationships
were specific to the LST. Finally, we also
replicated these results, as well as the fol-
low up VIn results (Fig. 3d), using the
original visual, sensory, default-mode,
and frontoparietal networks defined by
Power and colleagues (2011), instead of
our own data-driven modules.

Discussion
Human reasoning has a quantifiable ca-
pacity limit (Halford et al., 1998). This
limit is thought to arise from the brain’s
ability to reconfigure interactions between
spatially distributed networks (Cocchi et al.,
2014; Parkin et al., 2015; Schultz and Cole,
2016), but recent work has highlighted the
circumscribed nature of such interactions
when compared with whole-brain “rest-
ing” architecture (Cole et al., 2014). In
light of these recent findings, we exam-
ined how global and selective network

properties change from resting to reasoning states, and how such
changes relate to reasoning behavior. We found that complexity-
based limits in reasoning ability rely on selective patterns of con-
nectivity that emerge in addition to a more general task-induced
functional architecture.

We used a nonverbal reasoning task, originally designed to test
predictions from relational complexity theory, to systematically
manipulate reasoning complexity (Halford et al., 1998; Birney et
al., 2006; Birney and Bowman, 2009). In doing so, we replicated
previous behavioral results by demonstrating a reliable reduction
in accuracy and an increase in reaction time as a function of
increased complexity (Birney et al., 2006; Zhang et al., 2009;
Zeuch et al., 2011). Importantly, an analysis of participants’ trial-
by-trial ratings indicated that task errors were related to complex-
ity demands and not such factors as transitory lapses in attention
or disengagement from the task. The behavioral results also con-
firmed previous reports that individual reasoning capacity limits
are correlated with scores on standard measures of fluid intelli-
gence (Birney et al., 2006; Bhandari and Duncan, 2014), such as
Raven’s Matrices.

Parametric increases in relational complexity have previously
been tied to neural activity of segregated regions of the prefrontal
cortices (Christoff et al., 2001; Kroger et al., 2002; Bunge et al.,
2009; Golde et al., 2010), as well as to functional connectivity

Figure 5. Changes in global network efficiency (Eglob) across the identified reasoning task modules. a, Global network efficiency levels
within each module across experiment conditions. Error bars represent 95% confidence intervals. R1, Pre-task rest; B, Binary; T, Ternary; Q,
Quaternary; R2, Post-task rest. b, Correlation between accuracy in the LST and changes in FPV module efficiency during the task. Changes in
network efficiency were correlated with overall reasoning performance, such that increased efficiency correlated with better task perfor-
mance (r � 0.33, p � 0.01). Results are visualized at 15% network density.
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within frontoparietal and cingulo-opercular “multiple-demand” net-
works (Cocchi et al., 2014; Parkin et al., 2015; Crittenden et al.,
2016). Cingulo-opercular connectivity has been associated with
initiating and maintaining task sets (Dosenbach et al., 2006),
whereas the frontoparietal network has been associated with
moment-to-moment cognitive control (Cole and Schneider, 2007).
Here we found that reasoning performance was best explained by
a module composed of brain regions within the frontoparietal,
salience, subcortical, and visual networks. First, functional con-
nectivity and global efficiency of this subnetwork increased in
line with increased reasoning demands (Figs. 4, 5). Second, larger
increases in global efficiency within this module were associated
with higher accuracy in the reasoning task. Finally, edge-wise
connectivity of the frontoparietal network was shown to increase
in line with relational complexity, largely between default-mode
and subcortical networks. These findings are broadly consistent
with previous work showing that enhanced global network effi-
ciency, and connectivity within the default-mode and frontopa-
rietal networks at rest, can predict intelligence and reasoning
performance (Song et al., 2008, 2009; van den Heuvel et al., 2009;
Finn et al., 2015; Hearne et al., 2016). Together, the results confirm
the central role of flexible frontoparietal connectivity in implement-
ing external goal-directed cognitive control (Cole et al., 2013; Cocchi
et al., 2014).

It has been proposed that the cingulo-opercular network can
be further divided to include a separate “salience” system associ-
ated with bottom-up attention (Seeley et al., 2007; Power et al.,
2011). Here we found that the salience network was implicated in
the FPV module but did not show complexity-induced edge-wise
connectivity changes. On the other hand, the cingulo-opercular
network did show edge-wise connectivity changes in line with
reasoning complexity, but was not implicated in the FPV module.
This set of results is consistent with the notion that the cingulo-
opercular network is a control-related counterpart of the frontopa-
rietal network, and suggests that the cingulo-opercular network
might have a distinct role from that of the salience aspect of the
system (Power et al., 2011).

It remains unclear precisely how “resting-state” networks co-
ordinate flexible patterns of integration and segregation as a
function of task complexity. Nevertheless, our findings support a
key role for subcortical structures, such as the thalamus, in me-

diating such relationships (Bell and Shine, 2016; Sherman, 2016).
Specifically, the bilateral putamen and thalamus were implicated
in both subnetworks that increased and decreased functional
connectivity as task complexity increased (Fig. 4b). This finding is
in line with recent descriptions of the thalamus as a “global
kinless” hub, with evidence of activation in multiple cognitive
contexts and strong connectivity across multiple large-scale func-
tional networks (Guimera et al., 2006; van den Heuval and
Sporns, 2011; Hwang et al., 2017). One might argue that these
subcortical regions manage the relationship between task-related
networks to form a coherent modular structure. Further work
will be needed to elucidate the particular role of subcortical re-
gions in this relatively unexplored area (Bell and Shine, 2016).

Functional brain module reconfigurations have previously
been related to performance on a range of higher cognitive tasks,
including learning (Bassett et al., 2011), working memory (Braun
et al., 2015; Vatansever et al., 2015, 2017), and cognitive control
(Dwyer et al., 2014). Here we found that the community archi-
tecture of the brain is flexible, but only in response to large cog-
nitive shifts. For example, resting-state visual and frontoparietal
modules, each of which is composed of several known subnet-
works (Power et al., 2011), merged during the reasoning task
(Fig. 3). Importantly, this reorganization was relatively isolated;
follow-up analyses indicated that the rest of the brain remained
stable across changes in task complexity. In line with this
observation, recent network-based reconceptualizations of
global workspace theory (Dehaene et al., 1998; Kitzbichler et al.,
2011) have suggested that large, task-based module reconfigura-
tions arise to better serve network communication underpinning
behavior. Our work refines this idea by showing that once
resting-state modules reconfigure in response to external task
demands, most connectivity changes occur without interrupting
the newly established modular architecture, as illustrated sche-
matically in Figure 6. Moreover, it is these connectivity changes
within the newly reconfigured modules that seem to be most
related to behavior.

Our finding that increased demands on cognitive reasoning
are paralleled by a reduction in network modularity and in-
creased efficiency has now been reported in several different task
contexts (Kitzbichler et al., 2011; Bola and Sabel, 2015; Godwin et
al., 2015; Vatansever et al., 2015; Cohen and D’Esposito, 2016;

Figure 6. Conceptual model of functional networks supporting reasoning and rest states. a, At rest, functional modules are relatively independent. b, External, goal-directed task states are
accompanied by broad module-level changes; a FPV module forms (green), among stable default-mode (red) and sensory-motor modules (orange). c, Increased task demands are accompanied by
specific increases (solid lines) and decreases (dashed lines) in functional connectivity, rather than further modular reconfiguration. Ultimately, in the most complex conditions, the entire network
reaches a similar level of correlation through both integrated and segregated dynamics (Fig. 4b).
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Shine et al., 2016; Westphal et al., 2017; Yue et al., 2017). Using
the NBS, we found that these global changes were supported by
increases and decreases in functional connectivity across multiple
large-scale networks. Interestingly, the default-mode network has
been suggested to act as a “global integrator,” facilitating frontopa-
rietal cognitive control networks during conscious processing of in-
formation (Dehaene et al., 1998; Guldenmund et al., 2012; Leech et
al., 2012; Vatansever et al., 2015). In line with this notion, we found
that default-mode regions, such as the medial frontal cortex, angular
gyri, and posterior cingulate cortex, demonstrated increased func-
tional connectivity with frontoparietal, cingulo-opercular, and vi-
sual networks as task demands increased.

Modulations of visual network connectivity might be related
to the visual nature of the LST, and specifically the requirement
that participants search the 4 � 4 matrix to identify a shape at the
probed location. A previous behavioral study found that partici-
pants’ eye-fixation patterns differed for one-object and two-
object relational problems (Gordon and Moser, 2007), raising the
possibility that changes in relational complexity might be associ-
ated with changes in search patterns (and by extension, associ-
ated network connectivity). We cannot unequivocally rule out
potentially small differences in eye-movement patterns between
complexity conditions in our study, but there are at least two
reasons why such findings are unlikely to be directly relevant
here. First, Gordon and Moser (2007) actively encouraged visual
search by having their participants compare two different picture
stimuli arranged one above the other on a page. By contrast, our
LST paradigm involved the relatively brief presentation of a single
4 � 4 matrix at fixation. Second, the stimuli used by Gordon and
Moser (2007) were visually complex line drawings that included
several different object types that varied in size, shape, and semantic
content across trials. By contrast, our LST stimuli involved a single
matrix containing identical shapes across complexity conditions,
and did not explicitly require active search to solve for the target.
Finally, we found no correlation between performance on a standard
visual search task and reasoning performance or brain-based net-
work efficiency metrics (subset of participants, N�43). If increasing
visual search demands across task conditions was responsible for the
observed network differences, performance on this visual search task
should have correlated with the brain-derived metrics.

In conclusion, our findings suggest that reasoning demands
rely on selective patterns of connectivity within frontoparietal,
salience, cingulo-opercular, subcortical, and default-mode net-
works, which emerge in addition to a more general, task-induced
modular architecture. Further work will be needed to elucidate
the network processes that bring about the intricate and coordi-
nated changes in connectivity patterns at the level of edges,
modules, and the whole brain, in the service higher cognition.
Meanwhile, the current results provide novel insights into the
roles of both specific and global network changes in reasoning.

References
Achard S, Bullmore E (2007) Efficiency and cost of economical brain func-

tional networks. PLoS Comput Biol 3:e17. CrossRef Medline
Ashburner J (2007) A fast diffeomorphic image registration algorithm.

Neuroimage 38:95–113. CrossRef Medline
Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR,

Coppola R (2009) Cognitive fitness of cost-efficient brain functional
networks. Proc Natl Acad Sci U S A 106:11747–11752. CrossRef Medline

Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST
(2011) Dynamic reconfiguration of human brain networks during learn-
ing. Proc Natl Acad Sci U S A 108:7641–7646. CrossRef Medline

Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise cor-
rection method (CompCor) for BOLD and perfusion based fMRI. Neu-
roimage 37:90 –101. CrossRef Medline

Bell PT, Shine JM (2016) Subcortical contributions to large-scale network
communication. Neurosci Biobehav Rev 71:313–322. CrossRef Medline

Bhandari A, Duncan J (2014) Goal neglect and knowledge chunking in the
construction of novel behaviour. Cognition 130:11–30. CrossRef Medline

Birney DP, Bowman DB (2009) An experimental-differential investigation
of cognitive complexity. Psychol Sci Q 51:449 – 469.

Birney DP, Halford GS, Andrews G (2006) Measuring the influence of com-
plexity on relational reasoning: the development of the Latin Square Task.
Educ Psychol Meas 66:146 –171. CrossRef

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre. E (2008) Fast unfolding
of communities in large networks. J Stat Mech Theory Exp 2008:P10008.
CrossRef

Bola M, Sabel BA (2015) Dynamic reorganization of brain functional net-
works during cognition. Neuroimage 114:398 – 413. CrossRef Medline

Bolt T, Nomi JS, Rubinov M, Uddin LQ (2017) Correspondence between
evoked and intrinsic functional brain network configurations. Hum Brain
Mapp 38:1992–2007. CrossRef Medline
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