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The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as
evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering several
distinct classes of network topology, including clustered networks, networks with distance-dependent connectivity, and those with broad
degree distributions. To our surprise, we found that all of these qualitatively distinct topologies could account equally well for all reported
nonrandom features despite being easily distinguishable from one another at the network level. This apparent paradox was a conse-
quence of estimating network properties given only small sample sizes. In other words, networks that differ markedly in their global
structure can look quite similar locally. This makes inferring network structure from small sample sizes, a necessity given the technical
difficulty inherent in simultaneous intracellular recordings, problematic. We found that a network statistic called the sample degree
correlation (SDC) overcomes this difficulty. The SDC depends only on parameters that can be estimated reliably given small sample sizes
and is an accurate fingerprint of every topological family. We applied the SDC criterion to data from rat visual and somatosensory cortex
and discovered that the connectivity was not consistent with any of these main topological classes. However, we were able to fit the
experimental data with a more general network class, of which all previous topologies were special cases. The resulting network topology
could be interpreted as a combination of physical spatial dependence and nonspatial, hierarchical clustering.
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Introduction
The organization of cortical microcircuits varies across brain ar-
eas and species and undergoes continual plastic modifications

(Trachtenberg et al., 2002; Zuo et al., 2005; Le Bé and Markram,
2006; Hofer et al., 2009). However, these circuits also exhibit
certain regularities, the canonical example of which is a well de-
fined vertical organization into layers. The existence of conserved
connectivity principles suggests the notion of a neocortex com-
posed of a juxtaposition of similarly structured building blocks
(Szentágothai, 1978; Mountcastle, 1997; Silberberg et al., 2002),
which are dynamically adjusted to respond to the precise de-
mands of every subsystem.

Intracellular recording techniques can detect synaptic con-
nections between pairs of neurons in cortical slices directly
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Significance Statement

The connectivity of cortical microcircuits exhibits features that are inconsistent with a simple random network. Here, we show that
several classes of network models can account for this nonrandom structure despite qualitative differences in their global prop-
erties. This apparent paradox is a consequence of the small numbers of simultaneously recorded neurons in experiment: when
inferred via small sample sizes, many networks may be indistinguishable despite being globally distinct. We develop a connectivity
measure that successfully classifies networks even when estimated locally with a few neurons at a time. We show that data from rat
cortex is consistent with a network in which the likelihood of a connection between neurons depends on spatial distance and on
nonspatial, asymmetric clustering.
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(Mason et al., 1991; Markram et al., 1997; Holmgren et al., 2003;
Song et al., 2005; Perin et al., 2011). A limitation of these tech-
niques is that they currently allow for the study of only small
groups of neurons simultaneously. Therefore, circuit reconstruc-
tions require an inference process from partial data. Despite this,
experimental studies have brought to light some fundamental
common principles; for example, connections tend to be sparse,
with connection rates between pyramidal neurons in the range of
5–15% (Mason et al., 1991; Markram et al., 1997; Holmgren et al.,
2003; Le Bé and Markram, 2006; Wang et al., 2006; Ko et al.,
2011). Interestingly, there is increasing evidence that the connec-
tivity between pyramidal neurons is far from the Erdös–Rényi
(ER) model, in which connections appear independently with a
fixed probability p. These so-called “nonrandom” features in-
clude an excess of reciprocal connections, which can be quanti-
fied by the ratio between the number of bidirectional connections
and the expected number of such connections in ER networks
with equivalent connection rates (R). R has been reported to be
�2– 4 in visual cortex (Mason et al., 1991; Song et al., 2005; Wang
et al., 2006), 3– 4 in somatosensory cortex (Markram et al., 1997;
Le Bé and Markram, 2006), and 4 in mPFC (Song et al., 2005;
Wang et al., 2006). In addition, there is an overrepresentation
of highly connected motifs (Song et al., 2005; Perin et al.,
2011) and the connection probability between neuron pairs
increases with the number of shared neighbors (Perin et al.,
2011). Some initiatives are seeking to leverage these data to
construct realistic microcircuit models for numerical simula-
tion (Hill et al., 2012; Markram et al., 2015; Ramaswamy et al.,
2015; Reimann et al., 2015). Conversely, a recent theoretical
study has shown that some of these features arise naturally in
network models that maximize the number of stored memo-
ries (Brunel, 2016).

Here, we studied several broad classes of network structure
that could potentially explain the observed nonrandomness.
These include clustered networks (Litwin-Kumar and Doiron,
2014), spatially structured networks (Holmgren et al., 2003;
Perin et al., 2011; Jiang et al., 2015), and networks defined by
strong heterogeneity in the number of incoming and outgoing
connections of neurons (Roxin, 2011; Timme et al., 2016).

Surprisingly, all of these network classes were compatible with
the reported nonrandomness. In fact, we found that networks
with qualitatively distinct global structure could yield similar sta-
tistical features when all of the available information came from
the study of small groups of neurons, as in electrophysiological
experiments in slice. However, we found that a particular com-
bination of motifs, known as the sample degree correlation
(SDC), provides a unique fingerprint for each network class
based only on the analysis of small samples of neurons. Using the
SDC, we showed that microcircuit data from rat somatosensory
cortex (Perin et al., 2011) and from rat visual cortex (Song et al.,
2005) were incompatible with any of these network classes.
Rather, the data led us to develop a more general network class
that reduces to the previous models under certain constraints.
Our results suggest that the nonrandom features of cortical mi-
crocircuits reflect a combination of spatially decaying connectivity
and additional nonspatial structure, which, however, is not simple
clustering.

Materials and Methods
Network models
All of the networks are treated as directed graphs with N neurons. We
assume that the network’s size N is large and that the network is sparse,
meaning that its connection density p is “small.” We use the following

notations: i ¡ j: a connection exists from neuron i to neuron j; i � j: a
connection exists from i to j but not from j to i; and i 7 j: there is a
bidirectional connection between i and j.

ER. Connections are generated independently with probability p.
ER bidirectional (ER-Bi). Connections between a pair of neurons (i, j)

are generated independently according to the following:

P�i7 j� � pbid,
P�i � j� � P� j � i� � puni/2. (1)

The sparseness and the number of bidirectional connections relative to
random are as follows:

p � pbid �
puni

2
, R �

pbid

p2 . (2)

Clusters (Cl). Each neuron belongs to one or more clusters and
cluster membership is homogeneous across the network. This means
that, for any neuron i, the number of other neurons that share a
cluster with i is almost constant. More precisely, if ni denotes the
number of neurons that are at least in one of the clusters of i, then the
following is true:

�Var�ni�

��ni�
¡ 0 (3)

as N ¡ �. The typical example is a network with a fixed number of
clusters C �� N where each neuron belongs to one cluster that is chosen
uniformly at random. In this case, ni � Binomial(N 	 1, 1/C), so

�Var�ni�

��ni�
� �C � 1

N � 1
� 0. (4)

Connections are generated independently with probability p
 when neu-
rons are in the same cluster and p	 otherwise, p	 � p
. Defining f
 and
f	 � 1 	 f
 as the expected fraction of pairs in the same and in different
clusters, respectively, p and R are as follows:

p � f
p
 � f	p	, R �
f
p


2 � f	p	
2

p2 . (5)

In our simulations, each neuron belongs to one cluster which is chosen
uniformly at random, so the expected cluster size is N/C and:

f
 �
1

C
. (6)

Clusters with heterogeneous membership (Cl-Het). Each neuron belongs
to zero, one, or more clusters, but now cluster membership is heteroge-
neous across neurons, which means that Equation 3 does not necessarily
hold. Connections are defined as in the previous model. In our simula-
tions, we have considered networks with C �� N clusters where each
neuron has a probability pc � 1/C of belonging to any given cluster.
Therefore, neurons can be simultaneously in different clusters and clus-
ters may have nonempty overlap. p and R are given by Equation 5, as
before, but now the expected fraction of pairs in the same cluster is as
follows:

f
 � 1 � �1 � pc
2�C. (7)

Defining again ni as the number of neurons that are at least in one of the
clusters of i, then:

��ni� � �N � 1� f
,

Var�ni� � �N � 1���N � 2��2f
 � 1 � �pc
3 � 2pc

2 � 1�C�

� �N � 1� f

2 � f
�, (8)

so, if C is fixed and N is large, then:
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�Var�ni�

��ni�

� ��N � 2��2f
 � 1 � � pc
3 � 2pc

2 � 1�C� � �N � 1� f

2 � f


�N � 1� f

2

¡ �� pc
3 � 2pc

2 � 1�C � 2f
 � 1

f

2 � 1 � 0.6 (9)

for C � 2. This means that there is a non-negligible variability across
neurons in terms of cluster membership, which has important conse-
quences for the statistics that we will consider later.

Distance (Dis). Connections are made independently with a probabil-
ity that decays with the distance rij between the neurons i and j as follows:

P�i ¡ j�rij � r� � p�r�. (10)

And:

p � �p�r�
, R �
�p2�r�


p2 , (11)

where �
 denotes an average over the distribution of distances in the
network. We assume that distances are homogeneously distributed in the
network; that is, that the proportion of neurons that are a given distance
away from a neuron does not vary substantially from i to i. This condition
is analogous to Equation 3 for clustered networks. When it does not hold,
the model belongs to the Cl-Het class in terms of the properties studied
here.

Degree (Deg). We consider networks defined by a given joint in-/out-
degree distribution f�in, out��k, k��. One realization of the model is obtained by
generating a degree sequence ��Ki

in, Ki
out��i�1

N from N independent instan-
tiations of f(in, out) and uniformly selecting one network among the
family of directed graphs that have ��Ki

in,Ki
out�� i�1

N as their degree
sequence.

Because the number of edges in any directed network equals the sum of
the in-degrees and the sum of the out-degrees, the expectation of the
in-degree and the out-degree have to be equal:

�K
 :� �K in
 � �Kout
. (11)

The sparseness is as follows:

p �
N�K


N�N � 1�
�

�K


N
(12)

in the large N limit.
In this model, the connection probability once the network degrees are

known can be approximated by the following:

P�i ¡ j�Kj
in � k, Ki

out � k�� �
kk�

N�K

(13)

and because, once conditioned to the degrees of neurons i and j, i¡ j, and
j ¡ i can be considered independent events,

R � �1 � �
�� in

2 �out
2

�K
2 �2

, (14)

where �in
2 , �out

2 and � stand for the in-/out-degree variances and the Pear-
son correlation coefficient of individual in-/out-degrees, respectively.

Modulator (Mod) model. It is possible to consider a very general class of
network models in which each neuron i has an associated parameter xi

and the connections are made independently with probability:

P�i ¡ j�xi � x, xj � y� � g� x, y�, (15)

where �xi�i�1
N are independent and identically distributed random vari-

ables. All the previous models except the ER-Bi can be interpreted, at least
locally, as particular cases of this model.

In clustered networks (Cl and Cl-Het), xi denotes the cluster member-
ship of neuron i, whereas in the Dis model, xi represents the “position” of
neuron i. In both of these cases, the connection probability depends on a
notion of distance between pairs, so the function g is symmetric: g(x, y) �
g(y, x). Moreover, in a random sample of the Cl and Dis models, coexis-
tence in a cluster or distance can be assumed to be independent from pair
to pair, as long as the sample size is small compared with the network size.
In the Cl-Het model, this is not the case by virtue of the neuron-to-
neuron heterogeneity in cluster membership: the likelihood of a connec-
tion from a neuron i is highly dependent on the number of other neurons
in the network that share a cluster with i (the quantity ni defined before).
Because this quantity varies significantly from neuron to neuron, con-
nections from neuron i cannot be assumed to appear independently. In
the particular case in which the clusters of neuron i are chosen indepen-
dently with a fixed probability, this heterogeneity is captured by the
number of clusters to which each neuron belongs, which can be consid-
ered the effective modulatory variable.

In the Deg model, the connection probability from neuron i to neuron
j once the degrees are known can be approximated by Equation 13.
Additional connections from neuron i can be assumed to be made inde-
pendently as long as k �� 1. This independence assumption can be ex-
tended up to a group of n neurons as long as the degrees are large compared
with n and n �� N. Then, the Deg model becomes a special case of the Mod
model in which xi � �xi

in, xi
out� is the 2D vector of the degrees of i and

g�x, y� � g1�x�g2�y�, where g1�a, b� �
b

�N�K

, g2�a, b� �

a

�N�K

.

Generation of distance-dependent networks
In the simulations of Figures 1, 2, 3, 4, 5, and 6A, we considered neurons
arranged in periodic rings where r � �0, 1, . . . , �N/2�� and:

p�r� � 1 �
1

1 � e2s�r	t�, (16)

which, for s � 0, defines a decreasing sigmoid function with an absolute
slope that is maximal at r � t and its value is 	s. In the simulations of
Figure 6, C and D, we also included 2D periodic lattices where
r � �0, 1, . . . , ��N/2�� and p(r) was given by Equation 16.

Generation of networks from a prescribed in-/out-degree distribution
To generate networks according to the Deg model, we have used the
following method: given a joint distribution defined by f̃�in, out�, we inde-
pendently assign to each node i a pair �K̃i

in, K̃i
out�. Then, we create each

connection i ¡ j independently with probability
K̃j

inK̃i
out

N�K̃

. The final de-

grees in the network satisfy �Ki
in�K̃i

in
 � K̃i
in and �Ki

out�K̃i
out
 � K̃i

out.
Despite the resulting degree distribution in the network is no longer
given by f̃�in, out�, the statistics �K
 and Cov�Kin, Kout� are preserved (as-
suming that N is large and K̃in/out �� N). The degree variances become
larger, in particular �in/out

2 � �̃in/out
2 � �K̃
, and this results in the cor-

relation coefficient being smaller, � 	 �̃.
In all our simulations, the variables K̃in, K̃out followed Gamma distri-

butions with a shift of magnitude D � 0. In almost all our simulations,
they had to be positively correlated and we defined them in the following
way: if X � Gamma�
1, �� and Y, Z � Gamma�
2, �� (
, � � 0) are
independent random variables, we set the following:

K̃ in � D � X � Y
K̃out � D � X � Z. (17)

K̃in and K̃out follow D-shifted Gamma�
 � 
1 � 
2, �� distributions
and their correlation coefficient is �̃ � 
1/
. In Figure 2B, we also
constructed networks with negative degree correlation. In this case we
first generated K̃in and K̃out independently and then we inversely ordered
the two sequences �K̃i

in� i�1
N and �K̃i

out� i�1
N . By reordering a fraction of

values in one of the two sequences we could adjust the correlation
coefficient.
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Parameter values for Mod networks shown in Figure 8
For all three networks, N � 100, p � 0.3. In the Dis model, the modulatory
variable represents spatial position and g is a function of the distance �x 	 y�.
The ordering of neurons in the adjacency matrix corresponds to their posi-
tion in a ring. In the Cl-Het model, x and y represent the number of clusters
to which presynaptic and postsynaptic neurons belong and g is a symmetric
function. In particular, g�x, y� � p
�1 � f	�x, y�� � p	f	�x, y�,
where f	 (x, y) is the probability that the two neurons do not coincide in

a cluster given x, y. Explicitly, f	�x, y� �
�C � x�!�C � y�!

C!�C � x � y�!
if x 
 y � C

and 0 otherwise (where C is the total number of clusters in the network).
Neurons in the adjacency matrix have also been ordered according to the
number of clusters to which they belong. In this example, C � 5 and each
neuron was assigned to each cluster with a fixed probability, so the frac-
tion of neurons that belong to k � �0, 1, . . . , C� clusters is not uniform.
This is why the width of the different domains of the adjacency matrix
and the g plot do not coincide. In the Deg model, (x1, x2) represents the
in-degree and out-degree of the presynaptic neuron and (y1, y2) are the
degrees of the post-synaptic neuron. g�x1, x2, y1, y2� � c x2 y1, so g is
separable with respect to the presynaptic and postsynaptic variables. We
show different projections of g: g(x1,	,	, y2) (top left), g(	, x2, 	, y2) (top
right), g(	, x2, y1, 	) (bottom left) and g(x1, 	, y1, 	) (bottom right).
The adjacency matrices result from ordering neurons according to their
out-degree (top) and their in-degree (bottom).

Definition of the model that fits the data
In the proposed model to fit the data of Perin et al. (2011), connections
are created independently with probability P�i¡ j�rij � r, xi � x, xj � y� �
p�r� g�x, y�. The distance dependency has the following form:

p�r� � a � br � cr2, (18)

where r is the normalized distance r �
d � dmin

dmax � dmin
� �0, 1� that is com-

puted from the real distance d in 
m and minimal and maximal distances
derived from the data, dmin � 10 
m, dmax � 350 
m. We took a � 1, b �
	1.04, c � 0.21. The modulatory part is as follows:

g� x, y� � f1� x, y� � f2� x, y�, (19)

where f1 and f2 have the following form:

f� x, y�

� exp��
�2

2�x � 
1�
2 � �1

2�y � 
2�
2 � 2���1

2�2
2�x � 
1��y � 
2�

�1
2�2

2�1 � �2� �
(20)

and their parameters are shown in Table 1. The modulators �xi�i are
independent from neuron to neuron and are drawn from a Gaussian
distribution with mean � 0 and SD � 0.5.

To obtain a distribution of distances in the simulated data close to the
sampled distances in the experiment, we generated samples directly as in the
real experiment. In each sample, the first neuron was located in the origin of
coordinates and the others were sequentially located on the same plane at a
position obtained by drawing a random angle � � �0, 2�� and a radius r
from a Gamma(
, �) distribution, 
 � 3.26, � � 0.08. The radius was then
rescaled as d � d0 � �d1 � d0� � r, d0 � 16 
m, d1 � 250 
m. We
avoided having neurons too close in space by checking, at every step, whether
the last neuron was closer than a limit distance dlim � 14 
m to the already
created neurons in the sample. In this case, we chose a new position.

In-/out-degree correlation in small samples
Given a random sample of a network, we define the SDC as the Pearson
correlation coefficient between in-degrees and out-degrees of individual
neurons in the sample:

SDC �
Cov�ki

in, ki
out�

�Var�ki
in�Var�ki

out�
, (21)

where i represents a random neuron and ki
in, ki

out are the in-degrees and
out-degrees of i in the sample.

To compute the SDC in our models, we first need to introduce the
following statistics. Given any network and random nodes i, j, k, we
define the following:

p :� P�i ¡ j�
R :� P�i7j�/p2

Conv :� P� j ¡ i, k ¡ i�/p2

Div :� P�i ¡ j, i ¡ k�/p2

Chain :� P� j ¡ i, i ¡ k�/p2.

(22)

Note that these quantities do not trivially coincide with the motifs first
defined in Song et al. (2005) and reproduced here in Fig. 2A. For exam-
ple, the occurrence of the convergent motif number 5 above chance in

Fig. 2A can be written 3
P� j¡ i, k¡ i, no other connections�

�puni

2 �2

�1 � puni � pbid�

, where

puni � 2p�1 � pR�, pbid � p2R and the factor 3 accounts for the
different permutations of i, j, k that produce the same topological con-
figuration. The motifs needed to compute the SDC are not conditioned
on the presence or absence of any additional structure in the neuron
triplet, merely the existence of, for example, a convergent motif. There-
fore, our Conv motif is actually a weighted sum of all motifs in Fig. 2A
containing at least one convergent node; that is: 5, 7, 9 –10, and 12–16.

The in-degrees and out-degrees of a node i in a sample of size n can be
expressed as follows:

ki
in � 	

j�i
Xij, ki

out � 	
j�i

Xji, (23)

where Xij � 1 whenever j ¡ i and Xij � 0 otherwise (the sums in (23) are
over the n indices of the neurons in the sample). Explicitly computing the
sample degree variances and the covariance between in-degrees and out-
degrees of neuron i from expression (23) we find:

Var�ki
in� � �n � 1�p��n � 2�p � Conv � 1 � �n � 1�p�

Var�ki
out� � �n � 1�p��n � 2�p � Div � 1 � �n � 1�p�

Cov�ki
in, ki

out� � �n � 1�p��n � 2�p � Chain � pR � �n � 1�p�.

(24)

In the ER-Bi model, the pair to pair independence implies that Conv �
Div � Chain � 1 and:

SDC �
p

1 � p
�R � 1�. (25)

In the Mod model, the quantities p, R, Conv, Div, and Chain can be
rewritten in terms of moments of g:

p � �g� x, y�

R � �g� x, y� g� y, x�
/p2

Conv � �g� x, y� g� z, y�
/p2

Div � �g� x, y� g� x, z�
/p2

Chain � �g� x, y� g� y, z�
/p2,

(26)

where �
 indicates an average over the distribution of x, y, z, which are
independent and identically distributed random variables. We have the
following particular cases:

(1) If g(x, y) is independent of g(x, z), g(z, x), g(z, y), and g(y, z), then
Conv � Div � Chain � 1 and:

Table 1. Parameters of the modulatory function


1 
1 �1
2 �2

2 �

f1 0.0 0.0 0.3 0.3 0.92
f2 	0.5 0.5 0.07 0.07 	0.62
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SDC �
p

1 � p
�R � 1�. (27)

In the Cl and Dis models, the property of being in the same cluster (Cl)
and the distance between a pair (Dis) can be assumed to be independent
from one pair to another when N is large, so (27) is a good approximation
of the sample degree correlation as long as n �� N.

(2) If g is symmetric, that is, g(x, y) � g(y, x), then Conv � Div �
Chain and:

SDC �
p

1 � p
�R � 1� �

1 � pR

1 � p �1 �
�n � 1�p�1 � p�

�Var�ki
in�Var�ki

out��.

(28)

This is the case of the Cl-Het model. Note that, in the Cl/Dis models, g is
also symmetric, so this expression for SDC is a generalization of Equation
27, which is recovered whenever �Var�ki

in�Var�ki
out� � �n � 1�p�1 � p�.

(3) If g is multiplicative, that is, g�x, y� � g1�x�g2�y�, then Chain 2 �
R and:

SDC � �n � 1�
p2�n � �R � 1���R � 1�

�Var�ki
in�Var�ki

out�
. (29)

The degree model fits within this case.
Notice that, because the SDC can be explicitly calculated from p, R,

Conv, Div, and Chain, network models that have the same p, R, Conv, Div,
and Chain but differ in higher-order statistics that cannot be distin-
guished by means of the SDC.

Experimental design and statistical analysis
Implementation of the SDC criterion on a random network generator. In
Figure 6, C and D, we applied the SDC criterion on networks generated
randomly according to the models ER-Bi, Cl/Dis, Cl-Het, and Deg. We
chose a network class and values for p � �0.05, 0.23� and R � �1.5, 4.1�
uniformly at random. In the ER-Bi model, these parameters determine
puni and pbid. If the chosen class was Cl/Dis, we chose one of these two
models with equal probability. In the Cl case, we selected the number of
clusters randomly and then computed p
 and p	 to get the desired p and
R. In the Dis case, we chose a dimension (1 or 2) randomly and then
placed neurons in periodic lattices of the given dimension. Then, we
determined the parameters s and t of Equation 16 to fit p and R. If the
selected model was Cl-Het, we did exactly the same as in the Cl case.
Finally, in the Deg model, we chose D and � � 0 randomly and then
found �, 
1, and 
2 to fit p and R.

To classify a network according to the SDC, we took m random sam-
ples of size n� � 12 each. From them, we estimated p, R, Conv, Div, and
Chain (Eq. 22) and computed the connection probability as a function of
the number of common neighbors. From p, R, Conv, Div, and Chain, we
predicted �2 � �Var�ki

in�Var�ki
out� and Cov�ki

in, ki
out� for any sample size

n through Equation 24. We compared the resulting SDC (seen as a func-
tion of n) with the SDC that would result in each of the model classes
given the observed p, R, and � 2 (Eqs. 27–29). We determined which of
these relationships between SDC and n better described the results by
computing the sum of the squared distances between the actual SDC and
the model predictions while varying n. The range of n values used to
make this comparison is arbitrary. We chose n � �3, . . . , 12�, but the
results are essentially the same for other choices. Because the formula for
the Cl-Het model generalizes the formula for ER-Bi/Cl/Dis, the SDC of a
network of the class ER-Bi/Cl/Dis will be fitted equally well by these two
formulas. Therefore, whenever the best fit corresponded to the Cl-Het
class, we further investigated whether the SDC increased significantly
with n by computing the slope of its linear regression and deciding if it
was larger than a critical value s*, which had been determined previously
by means of simulations. If the slope was smaller than s*, then the
network was reclassified as ER-Bi/Cl/Dis. Finally, to distinguish be-
tween ER-Bi and Cl/Dis networks, we determined whether the con-
nection probability in the n� samples increased significantly with the
number of common neighbors. Again, this was done by computing a

linear regression and comparing the slope with a previously defined
threshold.

We further checked that the same algorithm works if � 2 and
Cov�ki

in, ki
out� are calculated directly for each n on n-neuron samples in-

stead of being estimated from p, R, Conv, Div, and Chain. The n-neuron
samples in this case are subsamples of the original samples of size n�. The
only limitation of this procedure is that the original sample size n� has to
be large enough to make it possible to compute � 2 for n in the desired
range, whereas the estimation of p, R, Conv, Div, and Chain only requires
three-neuron samples. A study based on sampling from triplets or qua-
druplets, however, would not allow us to distinguish between the ER-Bi
and Cl/Dis classes using the common neighbor rule.

Implementation of the SDC criterion on data. To apply the SDC crite-
rion on the experimental data from Perin et al. (2011), we considered all
of the possible subsamples of the original samples. For each subsample
size, we used in-degrees and out-degrees of all the neurons to compute
�2 � �Var�ki

in�Var�ki
out� and Cov�ki

in, ki
out�. Because the expected SDCs

for each model class are functions of p, R, and � 2, which in a real situation
are estimated quantities, they are prone to estimation errors, as well as the
real SDC. We estimated the data SDC, the predicted SDC for the model
classes and their standard errors by means of the bootstrap method with
1000 resamplings, as detailed below. We created 1000 artificial samples
with replacement from the set of in-/out-degrees for each sample size.
From each of these samples, we computed � 2. The mean of this collec-
tion of values gives the estimated � 2 and the SD, a measure of the SE. The
same was done to estimate the real SDC and its SE. We estimated the
mean and SE for p, R and the different functions of p, R that participate in
Equations 27–29 in a similar way (in this case, by resampling over the
different neuronal pairs in the network). For formulas that involve both
� 2 and p, R (i.e., Eqs. 28 and 29), we computed the upper bounds of the
resulting errors from the previous partial errors.

We repeated the same procedure considering the predicted � 2 and
Cov�ki

in, ki
out� from p, R, Conv, Div, and Chain, where these statistics were

computed using all of the information in the original samples (i.e., using
all the pairs and triplets). The results were almost identical.

It is important to notice that this exhaustive data analysis might intro-
duce biases in the estimation of Conv, Div, Chain, � 2, and SDC because
the triplets and the nodes involved in computing in-/out-degrees par-
tially overlap. To cope with this, we used exactly the same procedure in all
of the analyses of Figures 6, 7, and 9. The fact that the classification
algorithm is fairly accurate even when the number of studied samples is
small (see Fig. 6C) indicates that such correlations do not play a very
important role. Despite this, we wondered whether the deviation in � 2

from the Cl/Dis model seen in the data could be due to these effects and
not to the fact that the real underlying structure deviates from this simple
model. To investigate this issue, we simulated networks with the same
distance-dependent component exhibited by the data with an additional
modulatory component based on clustering. The repetition of many
replicas of the real experiment on this model indicated that the observed
deviation of � 2 is statistically significant ( p � 0.05, data not shown). This
suggests that the discrepancy from a symmetric Mod model is not due to
sparse sampling or correlations derived from data overlaps.

The analysis of the data from Song et al. (2005) was done by computing
Conv, Div, and Chain directly from the statistics of three-neuron motifs.

Results
Canonical network models for cortical circuits
We asked ourselves to what extent simple, canonical models of
network topology could reproduce the salient statistics from ac-
tual cortical circuits in slice experiments. The simplest possible
sparsely connected network model is the so-called ER network,
for which connections between neurons are made with a fixed
probability p. However, data show that cortical circuits are not
well described by the ER model and, in particular, the occurrence
of certain cortical motifs is above what would be expected from
ER. Therefore, we consider other candidate network models that
go beyond ER (Fig. 1). First, we consider an ER network with
additional bidirectional connections (ER-Bi). This model has just
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two parameters: the probability of a unidirectional connection
puni and that of a bidirectional connection pbid. The second model
is a network with C clusters in which cluster membership is ho-
mogeneous across neurons (Cl). The probability of connection
between neurons within the same cluster is p
 and, between clus-
ters, it is p	 � p
. The third network has C clusters and hetero-
geneous membership (Cl-Het), in which neurons belong to a
variable number of clusters. The probability of connection within
and between clusters is as for the Cl model. The fourth network

has distance-dependent connectivity
(Dis), that is, the probability of connec-
tion between two cells at a distance r is
p(r), which is a decreasing function of r.
The fifth network model is defined by
the distribution of in-degrees and out-
degrees (Deg), with mean degree �K
,
variances �in

2 , �out
2 , and degree correlation

� (see Materials and Methods for details).

Representation of two- and three-
neuron motifs relative to random
We first investigated whether the devia-
tion in the number of two-neuron motifs
relative to random that has been reported
previously (Song et al., 2005) could be ex-
plained by any of the models presented
here. Given the sparseness p of a network
model (i.e., the expected number of con-
nections divided by the total number of
possible connections), we denote by R the
expected number of reciprocal connec-
tions relative to that in ER(p), which can
be calculated for each model as shown in
Table 2 (see Materials and Methods for
details). The expected number of unidi-
rectionally connected and unconnected
pairs is then determined uniquely once p
and R are known.

Once p has been fixed, all models can
account for a wide range of values in R,
including the specific values reported in
Song et al. (2005); Wang et al. (2006); Ma-
son et al. (1991); Markram et al. (1997);
and Le Bé and Markram (2006) (Fig.
2B,C; in Fig. 2C, we have used the values
of p and R reported in Song et al., 2005).
The numbers of three-neuron motifs rel-
ative to ER-Bi are also qualitatively similar
across models and consistent with exper-
iment, with the exception of ER-Bi, which
has no additional structure beyond two-
neuron motifs (Fig. 2C, bottom).

An important question to be addressed
here is to what extent the experimental
results are sensitive to the sampling pro-
cedure. Data are collected through simul-
taneous patch-clamp recordings and thus
can only record from a small number of
cells at a time. The motif counts are local
properties whose averages do not depend
on the sample size, but the results can be
highly variable if the number of samples
studied is not large enough. To mimic the

experiment by Song et al. (2005), we computed p and R, not only
from the study of the whole network, but also through 163 sam-
ples of four neurons per network over five networks. As shown in
Figure 2, B and C (gray bars), the estimates of the two-neuron
motif counts are quite close to the real counts in networks of N �
2000 neurons, which suggests that the magnitudes p and R are
well approximated even when only a small fraction of the total
network is known. Although the results of three-neuron motifs

Figure 1. Schematic representation of the models: connectivity (left), adjacency matrix (middle) and in-/out-degree distribu-
tion (right). The nodes in the left column are arranged according to the ForceAtlas algorithm using Gephi software (Bastian et al.,
2009). The size of each node is proportional to the sum of its degrees and the direction of the connections has been omitted for
simplicity. In all the networks, N � 100, p � 0.15, r � 2. A, An ER network in which the fraction of bidirectional connections can
be varied independent of the sparseness. B, A network with clusters. C, A network with clusters in which the cluster membership
is heterogeneous. D, A network with distance-dependent connectivity. E, A network with prescribed joint degree distribution.
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were approximately consistent between the full analysis and that
from small sample sizes, they were much more variable than the
two-neuron motifs.

Nonetheless, at least in the example networks shown in Fig.
2C, it seems that the particular distribution of triplet motifs
might provide a means of classifying the different models. In
subsequent sections, we will show that there is a particular com-
bination of dual and triplet motifs from which we can extract
information about the network class independently of the choice
of other parameters.

Connection probability as a function of the number of
common neighbors
A common neighbor to neurons i and j is a third neuron that is
connected to both i and j. Perin et al. (2011) have shown that the
probability of connection between pairs of cortical neurons in-
creases with the number of common neighbors that they have
(the so-called “neighbor rule”). Figure 3 (top) shows the connec-
tion probability as a function of common neighbors for examples
from each model class from the analysis of a network of N � 2000
neurons where p and R are close to the values reported in Perin et
al. (2011). In the ER-Bi model, as in the classical ER model, all the
pairs are connected independently and according to the same
rule, so the number of common neighbors does not provide any
information about the “laws” controlling a given connection. All
of the other models, however, exhibit the common neighbor rule
for a general choice of the network parameters. Interestingly, the
precise shape of this dependence is quite distinct for different
models, indicating that it might provide a signature for inferring
the full network structure from this one measure. However, these
qualitative differences between models largely vanish when real-
istic sample sizes are analyzed (Fig. 3, bottom). It is important to
keep in mind that the curves shown in Figure 3 are for a particular
choice of network from each model class; the exact shape of the
curves will depend on that choice. In general, we can say that,
given small sample sizes, one will observe a monotonically in-
creasing dependence of the connection probability on the num-
ber of common neighbors for all models but ER-Bi. Specifically,
for clustered (distance dependent) models, neuron pairs with
more common neighbors are more likely to belong to the same
cluster (be closer together), which increases the probability of
connection. In the Deg model neuron pairs with more common
neighbors are more likely to have large degrees, which again in-
creases the probability of connection.

Degree distributions and higher-order connectivity
Figure 4A (top) shows the in-degree distributions exhibited by
example networks from the different models for physiological
values of p and R. For both the Cl-Het and Deg models, the
distribution differs dramatically from that of the equivalent ER
network. Nonetheless, and as was the case with the common
neighbor rule, when the distributions are constructed from real-
istic sample sizes (here 12), all models are qualitatively similar
(Fig. 4A, bottom). In fact, due to additional degrees of freedom
that both the Cl-Het and the Deg models have, it is possible to
define networks with a fixed p and R with distributions that are
nevertheless very different (Fig. 4B). In some situations, the dis-
tribution is quite close to ER/ER-Bi cases.

Finally, real data also exhibit a significant overrepresentation
of densely connected groups (Perin et al., 2011). We therefore
also studied the distribution of the number of connections in
small groups of neurons and found that all models, with the
exception of ER-Bi, could account for these findings (Fig. 5).

Method for distinguishing between network models using
measures from small sample sizes
We sought a measure, based on small sample sizes, that would
allow us to distinguish between the classes of topological models
defined here. In other words, we looked for a way to infer general
topological properties of the network when only local informa-
tion is available. We found such a measure in the sample in-/out-
degree correlation:

SDC �
Cov�ki

in, ki
out�

�2 , (30)

where �2 � �Var�ki
in�Var�ki

out� and i represents a random neu-
ron in the sample. The SDC therefore depends on the variances
and covariances of the sample degrees. The in- (resp out-) vari-
ance in turn depends on the occurrence of convergent (resp.
divergent) motifs, whereas the covariance depends on the occur-
rence of chain and reciprocal motifs. All of these quantities can be
calculated analytically for the network classes that we have con-
sidered here and the SDC is finally expressed as a function of p, R,
� 2, and the sample size n.

In particular, we can group the five network types into three
classes based on the functional form of the SDC: (1) The ER-Bi,
Cl, and Dis models; (2) the Cl-Het model; and (3) the Deg model
(see Materials and Methods for details). We can additionally use
the common neighbor rule to distinguish between the ER-Bi
(which shows no dependence) and the Cl and Dis models (which
do). Note that all of these classes of networks have SDC ' 0
whenever R � 1, which means that networks that do not show an
overrepresentation of bidirectional connections cannot be
distinguished in terms of the SDC. Therefore, as long as R � 1,
in principle, we can distinguish between all models except for
the Cl and Dis models. This is not surprising given that the Cl
is nothing but a particular case of the Dis in which the distance
is binary.

We applied this “SDC criterion” to networks of size N � 2000
generated randomly according to the four classes of models pre-
sented here (grouping Cl and Dis), with p and R chosen uni-
formly in the ranges [0.05, 0.23] and [1.5, 4.1], respectively. We
then used the SDC to distinguish between the different model
classes by taking samples of size n� � 12. We estimated � 2 and
the SDC over a range of sample sizes n by computing p, R, and the
occurrence of convergent, divergent, and chain motifs (through
the quantities Conv, Div, and Chain defined in Eq. 22; see Fig. 6B

Table 2. Sparseness ( p) and fraction of bidirectional connections relative to
random (R) in the different models

Model p R

ER bidirectional pbid �
puni

2

1

p2 pbid

Clusters f
p
 � f	p	

1

p2 � f
p

2 � f	p	

2 �

Distance �p�r�

1

p2 �p2�r�


Degree
�K


N
�1 � �

�� in
2 �out

2

�K
2 �2

In the models with clusters f	 � 1 	 f
 and f
 is the fraction of neuronal pairs that are in the same cluster. The
brackets � 
 in the Dis model represent averages over the distribution of distances in the network. See the main text
for a description of the other parameters.
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and Materials and Methods for details). An alternative approach
is to generate n-neuron subsamples from the original samples of
size n� and compute � 2 and the SDC directly for each n � n�. We
also checked that the performance is almost the same for the
second method when n� � 12 (data not shown). The advantage of
estimating � 2 and the SDC instead of calculating them directly is
that it allows one to implement the criterion even when the orig-
inal samples are small (e.g., n� � 3, 4). To further distinguish
between the ER-Bi and Cl/Dis classes, we investigated whether

the connection probability increases with
the number of common neighbors in the
n� samples.

The efficacy of this classification crite-
rion increases with the number of samples
considered, m. Figure 6, C and D, shows
the performance as a function of m. The
rate of success is above the chance level
(chance here is 25%) for all models al-
ready for m � 2 samples and reaches
94% for m � 300. As long as the network
size is large compared with the sample
size, the classification accuracy is inde-
pendent of system size (data not
shown). This simply means that it can
be applied to real data without the need
to worry about the true size of func-
tional cortical circuits.

Analysis of the SDC in data from rat
somatosensory cortex
We implemented our SDC criterion in the
data obtained by Perin et al. (2011) from
pyramidal neurons of the rat somatosen-
sory cortex. The data come from 6, 9, 5,
10, and 10 groups of 8, 9, 10, 11, and 12
neurons, respectively. As reported previ-
ously in Perin et al. (2011), these data
show a clear dependency of connection
probability on intersomatic distance. The
estimated connection density and num-
ber of reciprocal connections relative to
random were p � 0.144, R � 2.575. The
analysis of the SDC revealed a relationship
that deviates from any of the previously
defined models (Fig. 7A). Although the
form of the SDC appears close to that of
the Dis model (Fig. 7A, left), the degree
variance from the data � 2, which should
be that of a binomial distribution, differs
strongly from the theoretical value (Fig.
7A, right). Note that the degree variance
for the other two classes of network is a
free parameter and thus here is estimated
directly from the data.

Because the SDC can be extrapolated
when the counts of two- and three-
neuron motifs are known, we calculated
the expected SDC in putative samples of
three to 12 neurons from the motif distri-
bution described in Song et al. (2005)
(Fig. 7B), which corresponds to layer 5 py-
ramidal neurons in rat visual cortex. The
connection density and the number of re-

ciprocal connections relative to random in this case are p � 0.116
and R � 4. The results are qualitatively similar to the ones com-
puted directly from the data of Perin et al. (2011). This suggests
the underlying network structure itself may be similar.

General class of network model
We discovered that all of the models, with the exception of the
ER-Bi model, which could be rejected already by its failure to
capture triplet motifs and the neighbor rule, belong to a more

Figure 2. Counts of two- and three-neuron motifs relative to random models. A, Representation of all the possible two- and
three-neuron motifs. B, Sparseness ( p) and expected number of reciprocal connections relative to random ( R) as a function of a
model parameter. In all of the models except the Deg, an additional parameter was varied (puni, p	, p	, t, respectively) to keep
p constant. In the Dis model, neurons are arranged in a ring and the connection probability as a function of distance r is defined by

the sigmoid function p�r� � 1 �
1

1 � e2s�r	t�, so t is the point where the absolute slope is maximal and 	s is this absolute

slope. C, Counts of all the two- and three-neuron motifs relative to random models (ER and ER-Bi, respectively) in networks with
p � 0.12, R � 4. We used five different networks of size N � 2000 per condition. The computations were performed both on the
whole network and on 163 samples of size 4 per network. Shaded regions and error bars indicate mean � SEM.

Figure 3. Connectionprobabilityasafunctionofthenumberofcommonneighborsforthedifferentmodels, inthewholenetwork(top)
and in samples of size 12 (bottom). In all the cases, N � 2000, p � 0.14, R � 2. The analyses were performed on five networks and the
shaded regions indicate the resulting mean � SEM. In the sample analyses, we took 20 samples per network (100 in total, gray) and 200
samplespernetwork(1000intotal,black).Thedottedlinesshowtheexpectedprobability if itwereindependentofthenumberofcommon
neighbors, as in the ER and ER-Bi models.
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general class of model. Specifically, in
what we dub Modulator (Mod) networks,
the probability of a connection from neuron i
to neuron j is P�i¡ j�xi � x, xj �
y) � g�x, y�, where xi and xj, the modulators,
are properties associated with neurons i and j.
These properties (or sets of properties) might
represent spatial position, axonal/dendritic
length, neuronal type defined by the ex-
pression of some proteins, presence of
neuromodulators in the medium, amount
of input received from other brain areas,
stimulus selectivity, or even information
related to the past history of neurons, to
cite just some possibilities. The Mod
model, therefore, represents any general
scenario in which connections appear
with higher or lower probability depend-
ing on features of the two neurons in-
volved. The models we have considered
so far are special cases of this more general
modulator framework. This is illustrated
in Figure 8, which shows three sample net-
works from the Dis, Cl-Het, and Deg
classes.

In the clustered and distance-depen-
dent models that we have considered,
g(x, y) � g( y, x) is reflection symmetric.
In this case, the modulators are the posi-
tion or membership in a cluster (or group of clusters, e.g., Fig.
8B). It can be shown that any Mod network with a symmetric g
exhibits the same SDC as the Cl-Het model. If, additionally, g(x,
y) can be assumed to be independent from one neuronal pair to
another (as in our Cl and Dis models when a small sample is
considered, where g(x, y) only depends on the distance �x 	 y�; see
Fig. 8A), the formula reduces to the Cl/Dis case. In the Deg
model, g is separable, that is, g� x, y� � g1� x� g2� y�, and the
modulator itself is the pair of in-degrees and out-degrees. The
g function is just the product of the presynaptic out-degree
and postsynaptic in-degree normalized by the appropriate fac-
tor (Fig. 8C). In the Materials and Methods, we show that the
SDC of any Mod network with separable g has the form of the
SDC of the Deg model.

Therefore, the SDC criterion not only makes it possible to
distinguish between the families Cl/Dis, Cl-Het, and Deg, but also
allows for a classification into three major types of Mod networks
defined by different properties and symmetries. The fact that the
data are not fit by any of the models indicates that real cortical
circuits have features that violate the reflection symmetry and
separability of the function g.

Because the estimated SDC lies in between the predicted SDC
for the Dis/Cl and Cl-Het models (Fig. 7A), one would be
tempted to think that a hybrid network from these two classes
would be compatible with data. Such a model, however, would
still belong to the class of Mod networks with symmetric g and
would therefore exhibit the same SDC as the Cl-Het class
(purple line in Fig. 7A). This suggests that not only is there

Figure 4. In-degree distribution of the different network models. A, In-degree distribution in the whole network (top) versus in-degree distribution in samples of size 12 (bottom) and comparison
with the distributions exhibited by the ER model (dotted lines). The networks and samples used are the same as in Figure 3. The shaded regions indicate mean � SEM. B, In-degree distributions in
samples of size 12 for different networks generated according to the Cl-Het (top) and the Deg (bottom) models, all of them with N � 2000, p � 0.14, R � 2.

Figure 5. Distribution of the total number of connections in samples of sizes n � �3, . . . ,6� for the different models (black)
compared with the distribution obtained in ER bidirectional networks with the same p and R (dashed gray). The parameters are the
same as in Figures 3 and 4. The analyses were performed on five networks per condition and the computations come from 10 5

random samples for each network.
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additional structure in the data beyond
the distance dependence of connection
probabilities, but that this structure is
not simple clustering.

Data are consistent with network with
spatial dependence and
hierarchical clustering
We were able to obtain an excellent fit to
all relevant topological statistics in the
data with a Mod network. Specifically, we
considered a network in which the proba-
bility of connection between pairs was as
follows:

P�i ¡ j�xi � x, xj � y, rij � r�

� p�r� g� x, y�, (31)

where p(r) depends on the physical dis-
tance r between pairs and the modulator
component g(x, y) is not reflection sym-
metric. This model is itself a 2D Mod net-
work in which one dimension is physical
space and the other represents a property
of the neurons not captured by their spa-
tial location (Fig. 9A). We assumed that
the distribution of distances in samples
obtained from the model is close to the
sampled distribution in the data (Fig. 9B,
left) and that the �xi�i modulators are in-
dependent from neuron to neuron and
independent of distances. We assume a
Gaussian distribution of the modulator
and take g(x, y) to be the weighted sum of
the p.d.f. of two bivariate Gaussians, one
of which breaks the reflection symmetry
(for details, see Fig. 9A and Materials and
Methods). This choice is equivalent to
other possible distributions of the modu-

lator as long as g is also appropriated transformed. The model
successfully captures the observed distance dependency of the
connection probabilities (Fig. 9B, right); note in particular that it
reproduces the overrepresentation of reciprocal connections as a
function of distance (Fig. 9B, right inset). A pure Dis model can-
not explain this finding: although the value of R evaluated glob-
ally would be �1, for any given distance it would be identically 1.
Therefore, the increased R as a function of distance is a clear
signature of additional structure, captured here by our modula-
tor function. The Mod model also reproduces the sample degree
correlation and variance (Fig. 9C), as well as the common neigh-
bor rule and the density of connections in groups of few neurons
(Fig. 9D,E).

What is the interpretation of the modulator in this network?
The modulator acts as an identifier for each neuron and neurons
with similar modulators will connect in similar ways. Indeed, if
the modulator is symmetric, we recover a continuous version of a
clustered network with heterogeneous membership (Cl-Het).
Therefore, the symmetric part of g(x, y) (see plot in Fig. 9A) can
be interpreted as clustering: neurons with similar values of x are
more likely to connect to one another than to neurons with dif-
ferent values (although this preference decreases for extreme val-
ues of x). However, the presence of asymmetry in g indicates that
connections between clusters are actually hierarchical. Specifi-

Figure 7. Sample in-/out-degree correlation SDC and geometric mean of the sample degree
variances � 2 as a function of the sample size n. A, Values calculated directly from the data of
Perin et al. (2011). B, Inferred values from the motif counts presented in Song et al. (2005). The
black curves correspond to the observed SDC and � 2, whereas colors show the expected SDC
(� 2) in networks generated according to the studied models with the same p, R, � 2 ( p, R) as in
the data. Shaded regions in A indicate mean � SEM computed with the bootstrap method.

Figure 6. Sample in-/out-degree correlation (SDC) as a measure to distinguish between classes of networks. A, SDC in
samples of 3 to 30 neurons in the different models. In all the networks, N � 2000, p � 0.12, R � 3. We computed the
empirical correlations using 50 and 500 samples per network for each sample size. Every analysis was performed indepen-
dently in five different networks and the shaded region indicates the resulting mean � SEM. B, Schematic representation
of the algorithm proposed to distinguish between the model classes: (1) ER-Bi, (2) Cl/Dis, (3) Cl-Het, and (4) Deg. C, Success
rate of the algorithm performed on randomly generated networks with N � 2000, p � �0.05, 0.23�, R � �1.5, 4.1� as a
function of the number of samples considered m. All the samples had size n� � 12. Each success rate was computed over
2000 experiments. D Frequencies of all the possible input– output combinations in the experiments shown in C for three
choices of the number of analyzed samples. Each frequency is normalized by the frequency of the input model so that the
sum of every row is 1.
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cally, in our example, neurons with low x
are likely to connect to similar neurons
and also to neurons with large x. Con-
versely, neurons with large x are likely to
connect with similar neurons, but not to
neurons with low x. We further checked
that this is actually captured by a model in
which the distance-independent modula-
tory component is based on discrete hier-
archical clustering. It was sufficient to
consider a homogeneous distribution into
three clusters where connection probabil-
ity within cluster 2 is higher than within
clusters 1 and 3 and where connection
probabilities between different clusters
are low except for cluster 1, which has a
strong preference to project to cluster 3, as
in our continuous model (data not
shown). Although these two model ver-
sions are essentially the same, the contin-
uous one incorporates a higher variability
in the modulatory variables that could re-
semble real modulatory mechanisms that
operate through continuous variables
such as concentration of molecules or the
amount of input received from other brain areas. In conclusion,
the data are consistent with a network in which neurons are con-
nected according to the physical distance between them and their
membership in a clustered structure independent of distance,
which itself exhibits hierarchical features.

Discussion
We have presented three major classes of network models that are
compatible with the “nonrandomness” reported so far in cortical
microcircuits (Song et al., 2005; Perin et al., 2011). The first is
based on a similarity principle: pairs of neurons have associated a
notion of distance that modulates the likelihood of the connec-
tions between them in the sense that similar neurons tend to be
connected more frequently than different ones. The connections
appear independently once the distances between neuronal pairs
are known. Distance in this context can represent not only a
spatial proximity, but any other measure of similarity, for exam-
ple, based on input received from other areas or stimulus selec-
tivity. This family also includes networks in which neurons are
classified homogeneously into clusters so that connections form
preferentially between cells that are in the same cluster. In the
second model, neurons are assigned to clusters, but there is het-
erogeneity both in the cluster size and in the number of clusters to
which different neurons belong. Connections form with higher
likelihood between neurons that coincide in any of the clusters.
The third family corresponds to networks in which in-degrees
and out-degrees of single neurons follow a prescribed joint prob-
ability distribution.

Our results show that the three classes of networks can exhibit
both an excess of reciprocal connections relative to random and
the so-called common neighbor rule for a wide range of param-
eters. In the case of networks with a specified degree distribution,
in-degrees and out-degrees must be positively correlated for the
bidirectional connections to be overrepresented, meaning that
neurons that receive more synapses from the network tend to be
the ones that have more outgoing connections; that is, they are
hubs. All of the models can also be similar in terms of the mar-
ginal degree distribution in small samples and are in qualitative

agreement with previously reported results concerning the num-
ber of connections in groups of few neurons. The first important
conclusion of our study is therefore that these “nonrandom”
features, rather than being a footprint of a specific topology,
seem to arise naturally from several qualitatively distinct types
of models.

One of the major difficulties of inferring structural principles
from real data is that functional neuronal networks likely encom-
pass thousands of neurons, whereas simultaneous patch-clamp
experiments, which provide ground truth for synaptic connectiv-
ity, provide samples of only a few neurons at a time. Although the
models presented here are based on very different principles, they
can be almost indistinguishable from one another given only
small sample sizes. Therefore, even structures that are distinct
globally can exhibit similar properties locally. Electron micros-
copy can also in principle provide ground truth connectivity
(Denk and Horstmann, 2004; Bock et al., 2011; Kleinfeld et al.,
2011; Kasthuri et al., 2015), although current throughput is too
small to allow for the reconstruction of microcircuits. Finally,
some studies have sought to infer network connectivity from
observations of the neuronal dynamics (Nykamp, 2007; Pajevic
and Plenz, 2009; Stetter et al., 2012; Sadovsky and MacLean, 2013;
Tomm et al., 2014); the accuracy of such methods generally
depends on the how closely the real data might conform to
specific model assumptions. In cortical cultures, the func-
tional connectivity inferred from transfer entropy measures of
the spiking activity of small assemblies of neurons shows dense
connectivity above that expected from ER (Shimono and
Beggs, 2015; in agreement with Perin et al., 2011). Nonethe-
less, the data acquired through slice electrophysiology still
currently represent the most accurate picture of cortical mi-
crocircuitry available.

A natural question is whether it is possible to define a local
measure, that is, a measure that can be estimated from the study
of small samples, that could be used to distinguish between mod-
els. We have found such a measure in the SDC, the correlation
coefficient between sample in-degrees and out-degrees. The SDC
is, in fact, a particular nonlinear combination of triplet motifs

Figure 8. Examples of modulatory functions g and adjacency matrices of the three main classes of networks described here.
Notice that the row ordering in the adjacency matrices has been inverted to be coherent with the g plot. A, In the Dis model, the
modulators x and y represent the spatial position of presynaptic and postsynaptic neurons, respectively. B, In the Cl-Het model, x
and y represent the number of clusters to which presynaptic and postsynaptic neurons belong and g is a symmetric function. C, In
the Deg model, (x1, x2) represents the the in-degree and out-degree of the presynaptic neuron and (y1, y2) are the degrees of the
postsynaptic neuron. The adjacency matrices result from ordering neurons according to their out-degree (top) and their in-degree
(bottom). See Materials and Methods for details and parameter values of the Mod networks.
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that allows us to classify network models correctly without re-
course to training classifiers numerically. Interestingly, the SDC
depends on precisely those second-order network statistics that
have been used recently to develop dynamical mean-field models
for neuronal networks with structure beyond the ER network
(Zhao et al., 2011; Nykamp et al., 2017).

Note that a machine learning approach to this problem would
require training a classifier on particular instantiations of net-
works from a given network class; each class encompasses a vast
range of possible networks. Therefore, training sets would not
likely be representative of the class as a whole. A major advantage
of our approach, in contrast, is that it allows us to classify net-
works regardless of the details of every model candidate, which
can be difficult to estimate in real situations. For example, in the
Dis model, the exact shape of the function p(r) is irrelevant for
estimating the SDC, which only depends on the overall connec-
tion probability and the overrepresentation of reciprocal connec-
tions. We have also shown that these three model classes are
particular cases of a very general model according to which single
neurons have an associated property that modulates the connec-
tion probability. We call such a property a “modulator.”

We estimated the SDC for distinct datasets from both rat so-
matosensory cortex and rat visual cortex and found that the
structure in those cortical circuits fell outside of all three classes of
model network in a qualitatively similar way (Fig. 7). These ob-

servations therefore suggest that, if the underlying network to-
pology can be interpreted in the Mod framework, then the
modulatory function g(x, y), which defines the probability of
finding a connection from a neuron with modulator x to a neu-
ron with modulator y, can be neither symmetric nor separable.
Finally, we obtained an excellent fit to the first dataset by consid-
ering a more general Mod network in which the probability of
connection between neurons depended both on the physical dis-
tance between them, as well as on an additional modulator unre-
lated to distance. In the second dataset, there is no evidence of
distance dependency of connectivity (Song et al., 2005), but the
qualitative similarity between datasets in terms of the SDC
suggests that a similar nonspatial modulator mechanism
might be common to both of them. The structure of this non-
spatial modulator could be interpreted as hierarchical cluster-
ing, in which connectivity between clusters is asymmetric.
However, we cannot rule out that other choices of modulators,
that would lead to other interpretations, might provide
equally good fits to the data.

The classes of networks that we have explored here are simple
enough to be treated analytically. Nature is certainly more
complex and, clearly, cortical microcircuits are shaped by other
principles, including ongoing synaptic plasticity. We have not
considered these mechanisms here. Nevertheless, independent of
the mechanisms that shape cortical microcircuitry, if the topol-

Figure 9. A modulator network model to reproduce connectivity data from (Perin et al., 2011). A, Schematic of a model to explain the observed data. First, neurons are arranged in space so that
distances between neuronal pairs follow a given distribution (green). Each neuron has also an associated modulator whose distribution is shown in red. Given a distance-decaying probability p(r)
and a function g � g(x, y), connections are created independently with probability P(i ¡ j�rij � r, xi � x, xj � y) � p(r)g(x, y). B, Intersomatic distance distribution and connection probabilities
as a function of distance in the data (black) and in the model (blue). Inset, Number of reciprocal connections relative to random R as a function of distance. The model results come from a single replica
of the real experiment and shaded regions indicate mean � SEM. C, SDC and geometric mean of the sample degree variances � 2 as a function of sample size n in the data (black) and in the model
(blue). The blue-shaded regions indicate quantiles computed from a set of 200 replicas of the real experiment, each performed on an independent network. D, E, Comparison between model and
data in terms of the common neighbor rule (D) and the distribution of the total number of connections (E) in samples of size n. Dashed lines show the prediction for the ER-Bi networks.
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ogy of the resultant network can be reduced to a modulatory
mechanism, then our results show that this modulation involves
both a distance dependence and an additional nonspatial com-
ponent that is asymmetric.
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