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Abstract

Motivation: Genetics hold great promise to precision medicine by tailoring treatment to the individual

patient based on their genetic profiles. Toward this goal, many large-scale genome-wide association

studies (GWAS) have been performed in the last decade to identify genetic variants associated with

various traits and diseases. They have successfully identified tens of thousands of disease-related var-

iants. However they have explained only a small proportion of the overall trait heritability for most

traits and are of very limited clinical use. This is partly owing to the small effect sizes of most genetic

variants, and the common practice of testing association between one trait and one genetic variant at

a time in most GWAS, even when multiple related traits are often measured for each individual.

Increasing evidence suggests that many genetic variants can influence multiple traits simultaneously,

and we can gain more power by testing association of multiple traits simultaneously. It is appealing to

develop novel multi-trait association test methods that need only GWAS summary data, since it is

generally very hard to access the individual-level GWAS phenotype and genotype data.

Results: Many existing GWAS summary data-based association test methods have relied on ad hoc

approach or crude Monte Carlo approximation. In this article, we develop rigorous statistical meth-

ods for efficient and powerful multi-trait association test. We develop robust and efficient methods to

accurately estimate the marginal trait correlation matrix using only GWAS summary data. We con-

struct the principal component (PC)-based association test from the summary statistics. PC-based

test has optimal power when the underlying multi-trait signal can be captured by the first PC, and

otherwise it will have suboptimal performance. We develop an adaptive test by optimally weighting

the PC-based test and the omnibus chi-square test to achieve robust performance under various

scenarios. We develop efficient numerical algorithms to compute the analytical P-values for all the

proposed tests without the need of Monte Carlo sampling. We illustrate the utility of proposed meth-

ods through application to the GWAS meta-analysis summary data for multiple lipids and glycemic

traits. We identify multiple novel loci that were missed by individual trait-based association test.

Availability and implementation: All the proposed methods are implemented in an R package

available at http://www.github.com/baolinwu/MTAR. The developed R programs are extremely effi-

cient: it takes less than 2 min to compute the list of genome-wide significant single nucleotide poly-

morphisms (SNPs) for all proposed multi-trait tests for the lipids GWAS summary data with 2.5 mil-

lion SNPs on a single Linux desktop.

Contact: baolin@umn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Genetics hold great promise to precision medicine that tailors the

treatment to the individual patient by considering their genetic pro-

files. Many large-scale genome-wide association studies (GWAS)

performed in the past decade have successfully identified thousands

of common genetic variants associated with various traits and dis-

eases. But for many traits, in total they have explained a small pro-

portion of the overall heritability (Manolio et al., 2009; Visscher

et al., 2017). It is expected that many more genetic variants remain

to be identified. These GWAS are primarily based on the paradigm

of ‘single trait single variant association test’ even with multiple

traits measured for each individual. There is increasing evidence

showing that genetic variants can influence multiple traits simultan-

eously, and we can gain great power by studying multiple traits sim-

ultaneously (see, e.g . Broadaway et al., 2016; Ferreira and Purcell,

2009; Galesloot et al., 2014; Maity et al., 2012; O’Reilly et al.,

2012; Seoane et al., 2014; Stephens, 2013; Tang and Ferreira,

2012; Wu and Pankow, 2016; Zhu et al., 2015). Ideally, we can re-

analyze those existing GWAS data published in the last decade using

the multi-trait association test approach to identify more novel gen-

etic variants. However due to privacy concerns and various logistical

considerations, it is generally very hard to access the individual-level

GWAS phenotype and genotype data, which creates a barrier to fur-

ther mine these existing data to extract more information.

Nevertheless most published GWAS have made the association

test summary statistics publicly available. They include, e.g. the minor

allele frequency (MAF), the estimated effect sizes with their SEs, and

significance P-values for each single nucleotide polymorphism (SNP)

analyzed in a GWAS. One viable solution is to develop new associ-

ation test methods that depend on only these GWAS summary data

(Pasaniuc and Price, 2017). For example, for the single variant-based

association test, the GWAS meta-analysis (Evangelou and Ioannidis,

2013) is typically conducted based on the summary statistics, which

can be as efficient as analyzing individual-level data across all studies

(Lin and Zeng, 2010). Similar methods have been developed for meta-

analysis of the rare variant set association across studies (Hu et al.,

2013; Lee et al., 2014). For joint association test of a single variant

with multiple traits, Stephens (2013) and Zhu et al. (2015) proposed

methods using only individual GWAS summary statistics and GWAS

meta-analysis summary results. The key insight of these approaches is

that for a single variant, the summary Z-statistics across different traits

share the same correlation as the traits (Stephens, 2013). This has

motivated the widely used estimate based on the sample correlations

of genome-wide summary Z-statistics, which implies that ideally only

independent SNPs should be used in calculating the sample correlation

matrix, and further nearly all of them are null SNPs. Therefore some

forms of variant filtering based on the linkage disequilibrium (LD) and

P-value are needed. We have found that using the empirical correla-

tions can produce significantly biased estimates for polygenic traits.

Recently there have been some research adopting the LD score regres-

sion to estimate the trait correlation using GWAS summary data

(Baselmans et al., 2017; Turley et al., 2018). In this work, we conduct

thorough investigation of the impact of trait correlation estimation,

and show that the LD score regression can produce much more accur-

ate estimates than the empirical correlation matrix. Using the empiric-

al correlations can lead to increased false positives in the downstream

association test. We further propose some efficient and adaptive multi-

trait association test methods that have robust performance under a

wide range of trait–gene association models.

The rest of the article is organized as following. We introduce

the proposed multi-trait association test methods in Section 2.

Section 3 is devoted to simulation studies and Section 4 presents

comprehensive analyses results of GWAS meta-analysis summary

data for multiple lipids and glycemic traits. We end the article with

a discussion in Section 5. All technical derivations are delegated to

the Supplementary Material.

2 Materials and methods

Throughout the following discussion, we mainly focus on analyzing

summary association statistics for multiple traits from a single co-

hort (either a single GWAS or GWAS meta-analysis). The proposed

methods can be readily extended to partially overlapped GWAS (see

Supplementary Section S1.3 for technical details). We take a two-

step approach to conduct the summary statistics-based multi-trait

association test: first, we estimate the trait correlation matrix using

the summary statistics of all SNPs; second, with the estimated cor-

relation matrix, we test the association of each SNP with multiple

traits using developed methods detailed as follows.

2.1 Estimate trait correlation from summary statistics
When testing the marginal association of a SNP with multiple con-

tinuous traits, its summary Z-statistics across traits asymptotically fol-

low the multivariate normal distribution with correlation, denoted as

R ¼ ðqikÞ, equal to the trait correlation matrix (see Stephens, 2013,

Zhu et al., 2015 and Supplementary Section S1.1). This has moti-

vated the commonly used approach of empirically estimating R using

the sample correlation of genome-wide summary Z-statistics, which

implies that ideally only independent SNPs should be used in calculat-

ing the sample correlation matrix (therefore some LD pruning is

required), and further nearly all of them are null SNPs (hence some P-

value filtering is required). For traits of polygenic nature, as shown in

Bulik-Sullivan et al. (2015a), in addition to the variant LD and trait

dependence, both the trait heritability and genetic correlation contrib-

ute to the correlation of summary Z-statistics.

Consider a cohort of N samples with K quantitative outcomes,

and assume we have the summary Z-statistics ðz1j; . . . ; zKjÞ for test-

ing the marginal association of each trait with SNP j ¼ 1; . . . ;M. We

can check that

EðzijzkjÞ ¼
ðN þ 1Þqg;ik

M
lj þ qik; (1)

where qik is the correlation between the ith and kth outcomes, lj
denotes the LD score for SNP j (sum of its LD r2 with all other

SNPs), qg;ik measures the between trait genetic covariance. For traits

of polygenic nature, there could be significant genetic heritability

and covariance, leading to potentially non-ignorable qg;ik. Naively

using the sample correlation of summary Z-statistics will then lead

to biased estimates of R. We can obtain more accurate estimates of

R by regressing the pairwise product of summary statistics (zijzkj) on

lj, as shown previously (Baselmans et al., 2017; Turley et al., 2018).

To reduce the impact of large summary statistics, it has been a com-

mon practice to filter out those large summary statistics (Bulik-Sullivan

et al., 2015a), which however is less efficient and can potentially lead

to biased estimation. We propose to use a robust linear regression to in-

corporate all summary statistics: instead of removing those large sum-

mary statistics, we minimize their absolute differences in the regression.

2.2 Multi-trait association test
For simplicity of notation, denote the estimated correlation matrix

as R, and consider a single SNP with the across-trait summary
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statistics vector Z ¼ ðz1; . . . ; zKÞT . We can construct the following

principal component (PC)-based association test (denoted as ET),

B ¼ ðZTu1Þ2=d1, where d1 is the largest eigenvalue and u1 is the cor-

responding eigenvector computed from R. We can check that B

asymptotically follows the v2
1 distribution. The ET performs well

when the first PC captures majority of the association signals across

multiple traits. Alternatively we can use the omnibus test (OT),

Q ¼ ZTR�1Z, which can detect any deviation from the null. We

note that Turley et al. (2018) also adopted the OT Q to detect

multi-trait SNP association. Multi-trait test can boost the associ-

ation test power by leveraging the widespread pleiotropy (Solovieff

et al., 2013). We can show that the proposed ET can capture the

mediated pleiotropy, while the OT performs well under general plei-

otropy (Please see Supplementary Section S3 for more details). Q

asymptotically follows the v2
K distribution. Q generally has robust

performance under different disease models. To obtain optimal test

power, we can consider the adaptive test (denoted as AT) based on

their weighted average, Aq ¼ ð1� qÞQþ qB, and use the minimum

P-value, T ¼ minqPðAqÞ, as the test statistic. Here PðAqÞ denotes the

P-value of Aq. We develop an efficient algorithm to quickly and

exactly compute the analytical P-value of AT. The key idea is that

we can decompose Q into two orthogonal components

Q ¼ Bþ ðQ� BÞ, where Q – B follows the v2
K�1 distribution.

Hence Aq ¼ ð1� qÞðQ� BÞ þ B, and we can then compute the AT

P-value efficiently based on an 1D numerical integration ( see

Supplementary Section S2 for more details).

3 Results

3.1 Simulation study
3.1.1 Marginal trait correlation estimation

We first evaluate the estimation of between trait correlations using

the GWAS summary statistics. We consider three continuous poly-

genic outcomes and set the genetic and environment correlation

matrices based on the lipids data as Rg ¼ ð0:08;�0:59; 0:39Þ; Re ¼
ð�0:19;0:77;�0:50Þ (here we only list the three pairwise correla-

tions; see Supplementary Section S3.1 for details). We assume the

same heritability h2 for three traits and the marginal trait correlation

matrix R is then h2Rg þ ð1� h2ÞRe.

To mimic a true genome-wide LD structure in the simulation, we

use the 9713 European GWAS samples from the Atherosclerosis

Risk in Communities Study (ARIC; dbGaP: phs000280.v3.p1) and

consider approximately 1.2 million HapMap3 common SNPs. We

select M¼6100 independent causal SNPs that are �400 KB apart.

We further divide these causal SNPs into two sets: Mb of them have

genetic covariance h2Rg=ð2MbÞ with the rest having h2Rg=ð2MsÞ.
Here Ms ¼M�Mb and we consider Mb ¼200 in our numerical

studies. Hence, a small subset of SNPs will have relatively large ef-

fect sizes, while the majority of them have modest effect sizes.

We consider h2 ¼ 0:1; 0:3; 0:5 in the simulations, and compare

two approaches for estimating R: (i) the sample correlation matrix of

summary Z-statistics (excluding genome-wide significant SNPs),

denoted as R̂
s
; (ii) the proposed robust LD score regression, denoted as

R̂
r
; The LD scores are pre-computed based on the 1000 Genomes

Project European samples (Abecasis et al., 2012). The LD score regres-

sion of Bulik-Sullivan et al. (2015a) performs slightly worse than the

robust LD score regression for estimating both trait and genetic corre-

lations. We provided complete results at the Supplementary Section

S3.1. Table 1 summarizes the bias and root-mean-square error (RMSE)

computed over 100 simulations. The robust LD score regression-based

approach performs much better than the naive sample correlation-

based estimates, which had much larger biases. The biased trait correl-

ation estimates can lead to inflated or conservative Type I errors for

the down-stream multi-trait association tests (see Supplementary

Section S3.1)

3.1.2 Multi-trait association test

We evaluate the performance of proposed tests compared with the

following tests: (i) the minimum marginal P-value across traits

(denoted as minP); (ii) the sum of Z-statistics (denoted as SZ) along

the line of fixed effects meta-analysis; (iii) the sum of squared Z-sta-

tistics (denoted as SZ2) along the line of heterogeneity effects meta-

analysis; (iv) an adaptive test based on weighting SZ and SZ2

(denoted as AZ) in the same vein as the proposed AT. Specifically

AZ is defined based on the minimum P-values of ð1� qÞSZ2þ
qSZ2 over q 2 ½0; 1�. We develop an efficient algorithm to quickly

compute its analytical P-value without the need of resampling (see

Supplementary Material for details); (v) the metaUSAT method of

Ray and Boehnke (2018), which is based on adaptively weighting

the OT and SZ2 tests. We found inflated Type I errors of

metaUSAT in our numerical studies (see Supplementary Material

for details) and used a revised implementation with proper Type I

error control in our comparison (denoted as MUSAT in the follow-

ing discussion).

We first evaluate the Type I errors of proposed tests by simulating

1010 random vectors from Nð0;RÞ for K¼5 traits. Here R is a com-

pound symmetry correlation matrix with correlation r 2 ð0; 0:2; 0:5;
0:8Þ. Table 2 summarizes the empirical Type I errors at the significance

Table 1. Bias and RMSE of estimating marginal correlations R
among three traits

Bias RMSE

R12 R13 R23 R12 R13 R23

h2 ¼ 0:1 R̂
s

0.002 –0.027 0.018 0.012 0.030 0.022

R̂
r

–0.002 0.000001 –0.0003 0.011 0.016 0.014

h2 ¼ 0:3 R̂
s

0.009 –0.058 0.039 0.017 0.062 0.044

R̂
r

–0.001 –0.004 0.003 0.014 0.020 0.018

h2 ¼ 0:5 R̂
s

0.010 –0.061 0.043 0.022 0.068 0.049

R̂
r

–0.0005 –0.008 0.006 0.019 0.028 0.024

Note: h2 is the overall heritability; R ¼ h2Rg þ ð1� h2ÞRe. R̂
s

is the sample

correlation-based estimate, and R̂
r

is the LD score regression-based estimate.

Table 2. Ratio of empirical Type I errors divided by the significance

level a estimated over 1010 simulations for the three proposed tests

(OT, ET and AT)

a 10�6 10�7 5� 10�8 10�8

OT r¼ 0 1.01 (0.01) 1.02 (0.03) 1.03 (0.05) 0.94 (0.10)

r¼ 0.2 1.01 (0.01) 1.02 (0.03) 1.03 (0.05) 1.16 (0.11)

r¼ 0.5 1.02 (0.01) 0.99 (0.03) 1.05 (0.05) 1.13 (0.11)

r¼ 0.8 1.01 (0.01) 1.00 (0.03) 1.07 (0.05) 1.11 (0.11)

ET r¼ 0 1.01 (0.01) 0.99 (0.03) 0.96 (0.04) 0.96 (0.10)

r¼ 0.2 1.00 (0.01) 0.97 (0.03) 0.97 (0.04) 0.90 (0.09)

r¼ 0.5 1.00 (0.01) 0.97 (0.03) 0.95 (0.04) 0.89 (0.09)

r¼ 0.8 1.00 (0.01) 0.97 (0.03) 0.99 (0.04) 1.04 (0.10)

AT r¼ 0 0.96 (0.01) 0.99 (0.03) 1.00 (0.04) 0.98 (0.10)

r¼ 0.2 0.96 (0.01) 0.99 (0.03) 1.01 (0.04) 0.89 (0.09)

r¼ 0.5 0.96 (0.01) 1.01 (0.03) 1.08 (0.05) 0.88 (0.09)

r¼ 0.8 0.97 (0.01) 1.05 (0.03) 1.11 (0.05) 0.89 (0.09)

Note: Listed within parentheses are the SEs.
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levels a ¼ 10�6;10�7;5� 10�8;10�8. Overall all proposed tests con-

trolled the Type I errors well. We have done more studies under various

simulation settings and checked that the proposed tests properly con-

trolled the Type I errors (please see Supplementary Section S5).

We evaluate the power of different methods under 5� 10�8 signifi-

cance level based on simulating 107 random vectors from NðD;RÞ,
where R is a correlation matrix with R12 ¼ �0:11;R13 ¼ �0:36;

R23 ¼ 0:23. We consider setting D as fixed values, and randomly simu-

lating D from Nð0;3Þ and uniform distributions, Uð�5; 5Þ;Uð0; 5Þ.
For fixed D, we decompose D ¼

X3

j¼1
djuj with ðu1; u2;u3Þ being the

three eigenvectors of R. When the signal vector D is completely cap-

tured by the first PC (i.e. d2 ¼ d3 ¼ 0), the PC-based test ET has the op-

timal power. Table 3 shows the estimated power under various settings.

The first setting favors ET, which performs much better than OT.

However ET is sensitive to the signal distribution, and performs much

worse when the top PC has weak association signal. The minimum P-

value-based test (minP) performs well when one of the traits dominates

the association signal, but otherwise it generally has suboptimal per-

formance. The SZ test performs well when all marginal effects follow

the same directions. The SZ2 test is relatively more robust and performs

well with multiple large marginal effects. In contrast, both OT and AT

have very robust and consistent performance over all settings. The

adaptive test AT can truly combine the strength of both OT and ET

and outperform both tests when they have comparable powers.

Overall, the first four tests (minP, SZ, SZ2 and AZ) do not explicitly

account for the trait correlations, and generally have less favorable per-

formance. We can compute their analytical P-values very efficiently.

The PC-based test ET performs well when the top PC captures majority

of the association signals. The SZ test has good performance when all

marginal trait effects follow the same direction. In contrast, both OT

and SZ2 are quadratic tests and have more robust performance. The

adaptive test AT has very robust and consistent performance. We have

conducted more simulation studies investigating the performance of dif-

ferent methods under various settings of different number of traits and

trait dependence. The overall conclusions remain the same. We provide

the complete results at the Supplementary Section S5

3.2 Application
We conduct comprehensive analysis of GWAS meta-analysis results

for multiple lipids and glycemic traits. The proposed tests (OT, ET

and AT) have performed better than the other three competing

methods (minP, SZ, SZ2 and AZ). In the following, we mainly focus

on results for the proposed methods, and leave the complete results

Table 3. Power (%) under 5� 10�8 significance level

D ðd1; d2; d3Þ minP SZ SZ2 AZ MUSAT ET OT AT

(3.59, –2.71, –3.97) (6, 0, 0) 6.45 0.02 28.76 4.32 22.70 30.15 17.00 26.42

(2.56, –4.42, –3.73) (6, 2, 0) 13.21 2.69 38.25 15.15 32.31 30.12 29.86 34.25

(4.82, –3.25, –2.49) (6, 0, 2) 21.14 0.00 38.10 12.70 35.27 30.13 36.46 39.11

(5.33, –2.40, –2.61) (6, –1, 2) 37.72 0.00 40.59 14.83 38.27 30.13 40.14 41.95

(4.63, –0.83, –2.81) (5, –2, 1) 15.60 0.00 15.47 2.96 13.21 9.01 13.77 14.57

(3.22, 2.31, –3.21) (3, –4, –1) 1.49 0.00 7.09 5.20 15.24 0.15 19.97 16.59

(1.52, –4.26, 1.26) (2, 3, 3) 8.32 0.00 2.30 7.29 19.86 0.01 25.41 21.40

(5, 0, 0) (2.99, 2.55, –3.09) 25.94 1.07 5.36 12.69 23.63 0.14 29.76 25.42

(2.71, –5.16, –0.07) (4, 3, 3) 31.43 0.01 21.50 22.78 44.40 1.51 51.68 46.74

(–0.49, –2.71, –4.63) (4, 2, –3) 15.64 30.21 11.83 36.49 27.21 1.51 33.51 29.40

D � Uð0; 5Þ 9.09 35.11 13.55 40.12 35.41 0.17 39.19 36.53

D � Uð�5; 5Þ 9.08 10.11 13.94 24.75 30.43 2.93 33.30 31.60

D � Nð0; 3Þ 20.71 11.14 20.20 27.64 32.08 4.06 34.33 32.91

Note: ET is the PC-based test; OT is the omnibus chi-square test; AT is the adaptive test; minP is the minimum P-value-based test, SZ is the sum of Z-statistics,

SZ2 is the sum of squared Z-statistics, and AZ is the test based on adaptively weighting SZ and SZ2; MUSAT is the revised metaUSAT test. Data are simulated

from NðD;RÞ, where D ¼
X3

j¼1
djuj with ðu1; u2; u3Þ being the three eigenvectors of R.

(a) (b)

Fig. 1. Venn diagram of number of significantly associated loci and SNPs identified by three joint association test methods based on the lipids GWAS summary

data. (a) Number of detected significant loci. (b) Number of detected significant SNPs
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to the Supplementary Material. We note that it is more productive

to treat the proposed tests as a complementary approach to the

existing single trait-based test. We thus present joint association test

results excluding genome-wide significant SNPs for any trait. The

analysis results including all SNPs are provided at the

Supplementary Section S5

3.2.1 Analysis of lipids GWAS results

We analyze the GWAS meta-analysis results for three plasma lipids

(low-density lipoproteins (LDL) cholesterol, triglyceride and total

cholesterol) based on around 100 000 European individuals from

the Global Lipids Consortium (Teslovich et al., 2010). We note that

the Global Lipids Consortium conducted a followup study using a

Metabochip with a small panel of pre-selected SNPs based on 190

000 European samples at Willer et al. (2013), which will be used for

partial validation in our analysis

At the 5�10�8 genome-wide significance level, the omnibus chi-

square test OT identified 44 significant loci, and the PC-based test

ET identified 22 significant loci. The adaptive test AT identified 40

significant loci, including the majority of significant loci identified

by OT and ET. Figure 1a and b compare the number of significant

loci and SNPs identified by the proposed joint tests.

Many of those identified significant SNPs have been found

genome-wide significant in the followup study of Willer et al.

(2013). Table 4 listed the total number of SNPs and loci identified

by three joint association test methods.

Table 5 listed the test results for those identified novel loci that did

not harbor any significant SNPs in both Teslovich et al. (2010) and

Willer et al. (2013). Table 6 listed the significant SNPs identified only

by one of the proposed tests (AT, OT and ET) and their minimum P-

values across three traits in the Teslovich et al. (2010) and Willer et al.

(2013) study (denoted as minP-2010 and minP-2013, respectively).

3.2.2 Analysis of GWAS results for glycemic traits

We also analyze the GWAS meta-analysis results for two glycemic traits:

fasting glucose and indices of b-cell function (HOMA-B) based on 46

186 non-diabetic European samples conducted by the international

Table 4. Number of significant SNPs and loci identified for the

lipids GWAS summary data

OT ET AT Total

SNPs 491 (74%) 66 (58%) 450 (75%) 543 (72%)

Loci 44 (84%) 22 (64%) 40 (90%) 57 (75%)

Note: listed within parentheses are the percentage of SNPs and loci that

have been found genome-wide significant in the followup study of Willer

et al. (2013).

Table 6. Some significant SNPs identified only by one of the proposed tests (AT, OT or ET)

SNP Chr Gene OT ET AT minP-2010 minP-2013

AT rs3095340 6 KIAA1949 5.37 e-08 1.75 e-07 4.61 e-08 1.27 e-07 4.23 e-07

rs505870 6 SLC22A3 7.41 e-08 5.27 e-08 4.12 e-08 3.34 e-07 1.05 e-09

rs10806731 6 LPA 6.16 e-08 1.13 e-07 4.75 e-08 6.40 e-07 —

rs4808957 19 GATAD2A 5.05 e-08 2.05 e-07 4.52 e-08 9.58 e-07 1.83 e-14

OT rs9938020 16 NFATC3 3.58 e-08 1.74 e-01 7.68 e-08 7.61 e-04 5.32 e-33

rs1529929 16 PPP4R1L 3.27 e-08 3.33 e-01 7.02 e-08 2.09 e-03 7.20 e-20

rs16962767 16 PPP4R1L 4.78 e-08 7.86 e-01 1.02 e-07 1.74 e-02 3.33 e-29

rs1016563 18 PCBP3 3.99 e-08 4.11 e-05 8.55 e-08 7.09 e-08 2.68 e-10

ET rs499921 6 ABLIM1 4.99 e-07 2.70 e-08 5.80 e-08 1.81 e-07 5.07 e-08

rs12667186 7 TOP3B 9.69 e-07 3.14 e-08 6.75 e-08 1.36 e-07 1.08 e-07

rs12676593 8 MYO1E 9.40 e-07 4.73 e-08 1.01 e-07 6.16 e-08 9.13 e-08

rs11075910 16 THSD4 5.66 e-07 3.63 e-08 7.80 e-08 5.93 e-08 2.16 e-08

Note: Listed are the joint test P-values and the minimum marginal test P-values across all traits in Teslovich et al. (2010) and Willer et al. (2013) (denoted as

minP-2010 and minP-2013, respectively).

Table 5. Novel significant loci identified by the proposed joint test methods

SNP Chr Gene OT ET AT minP-2010 minP-2013

rs6730449 2 DYNC2LI1 5.75 e-07 1.72 e-08 3.72 e-08 1.83 e-07 2.43 e-06

rs762861 4 HGFAC 1.52 e-07 2.74 e-08 4.72 e-08 9.15 e-07 5.04 e-07

rs7705104 5 PELO 2.38 e-08 9.07 e-01 5.12 e-08 1.72 e-02 —

rs10462958 5 TIMD4 7.02 e-07 2.99 e-08 6.42 e-08 2.03 e-07 —

rs499921 6 FRK 4.99 e-07 2.70 e-08 5.80 e-08 1.81 e-07 5.07 e-08

rs12667186 7 SP4 9.69 e-07 3.14 e-08 6.75 e-08 1.36 e-07 1.08 e-07

rs17148062 7 POT1 4.66 e-08 7.65 e-01 9.98 e-08 6.14 e-02 —

rs4455806 8 SOX17 1.29 e-06 4.60 e-08 9.85 e-08 1.84 e-07 5.09 e-08

rs10090964 8 SDCBP 5.78 e-07 2.98 e-08 6.40 e-08 5.09 e-08 7.37 e-08

rs4573621 10 GPAM 4.54 e-08 4.14 e-02 9.72 e-08 2.70 e-04 2.09 e-04

rs4238103 12 LARP4 4.08 e-09 9.05 e-02 4.08 e-09 3.83 e-04 —

rs9600211 13 KLF12 1.57 e-09 1.88 e-01 1.57 e-09 1.52 e-05 —

rs4419034 15 FRMD5 4.87 e-08 4.30 e-01 1.04 e-07 5.05 e-08 1.51 e-06

rs16959082 17 RCVRN 3.67 e-08 5.32 e-02 7.87 e-08 7.44 e-05 4.32 e-01

Note: Listed are the joint test P-values and the minimum marginal test P-values across all traits in Teslovich et al. (2010) and Willer et al. (2013) (denoted as

minP-2010 and minP-2013 respectively).
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MAGIC consortium (Dupuis et al., 2010). Figure 2a and b shows the

venn diagram for the total number of identified significant loci and

SNPs by the proposed joint association test methods at the 5�10�8

genome-wide significance level. The chi-square test OT identified 8 sig-

nificantly associated loci, and the PC test ET identified 13 significant

loci. The adaptive association test AT identified all significant loci identi-

fied by OT and 4 additional significant locus identified by ET.

The comprehensive analysis results of the GWAS summary data

for the lipids and glycemic traits are provided at the Supplementary

Section S5.

4 Discussion

Many GWAS have been conducted in the past decade and success-

fully identified tens of thousands of variants related to various traits.

However there are still significant missing heritability for most traits

and there remain many more genetic variants with small effects to

be discovered. In the post-GWAS era, owing to many difficulties of

sharing raw genotype and phenotype data, it is useful to develop

statistical methods that can leverage the publicly available GWAS

summary data to identify more novel genetic variants. In this article,

we have focused on testing SNP association across multiple traits,

which has been shown to have improved test power than individual

trait-based association test. To properly control the false positives

for multi-trait association test, we need to accurately estimate the

across trait correlations. Our results show that the commonly used

approach of using empirical correlation matrix of summary Z-scores

should be avoided if possible, since it can produce highly biased esti-

mates and lead to significantly inflated Type I errors for polygenic

traits. The LD score regression-based approach could produce more

accurate estimates, and has performed well in our numerical studies.

In GWAS we typically need to test tens of millions of SNPs, and it is

desirable to develop efficient statistical methods. All our proposed

methods are scalable to genome-wide association test: we can quick-

ly compute their analytical P-values without the need of resampling

or permutation.

In this work, we make several contributions to studies of multi-

trait association test using GWAS summary data. We propose a ro-

bust LD score regression to accurately estimate the trait correlation

using only GWAS summary data. Although not a major focus of this

article, the proposed robust LD score regression also provides a

good approach to estimating genetic correlation using GWAS sum-

mary data. We develop powerful, efficient and robust adaptive

multi-trait association test methods based on the summary statistics.

The proposed methods are extremely scalable to genome-wide asso-

ciation test: we can quickly and accurately compute analytical P-val-

ues without the need of Monte Carlo approximation. All our

proposed methods have been implemented in an R package publicly

available online. The Supplementary Material contain the detailed

analysis results for the lipids and glycemic GWAS summary data,

and sample codes to install and use the developed R package.

In this article, we have mainly focused on those efficient and

genome-wide scalable joint association test methods with analytical-

ly computed P-values and proper control of Type I errors, and have

not studied those methods that often require computationally inten-

sive Monte Carlo simulations (see, e.g. Kim et al., 2015; Shim et al.,

2015; Stephens, 2013). As a partial remedy, we have included in the

comparison the efficient tests, SZ, SZ2 and AZ, along the line of

Kim et al. (2015).

In summary, our developed multi-trait association test methods

can be used to further identify novel variants and the robust LD

score regression approach can be used to study the genetic correl-

ation of human traits. Both approaches need only the GWAS sum-

mary data and can help to dissect the genetic architecture of

complex human traits.
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Fig. 2. Venn diagram of the total number of significant loci and SNPs identified

by three multi-trait test methods based on glycemic GWAS summary data.
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