Skip to main content
. 2018 Nov 21;35(13):2276–2282. doi: 10.1093/bioinformatics/bty949

Table 2.

Comparing the best machine learning classifier and DA considering 11 drugs

Drugs DA
Best method
Sensitivity Specificity AUC Feature set + Classifier Sensitivity Specificity AUC
INH 91.95 ± 1.04 98.71 ± 0.22 94.95 ± 0.54 F1 + LR – L2 92.19± 0.94 98.38 ± 0.29 97.89± 0.38
EMB 83.31 ± 1.62 95.17 ± 0.38 89.24 ± 0.85 F1 + LR – L2 92.12± 0.98 91.89 ± 0.84 96.25± 0.54
RIF 91.70 ± 1.19 98.73 ± 0.22 95.22 ± 0.59 F1 + LR – L2 92.27± 1.25 97.45 ± 0.63 98.08± 0.32
PZA 43.11 ± 2.97 98.46 ± 0.27 70.78 ± 1.46 F1 + LR – L2 88.12± 2.65 88.91 ± 1.66 93.89± 0.80
SM 82.80 ± 1.90 97.19 ± 0.44 89.99 ± 0.99 F1 + LR – L2 87.40± 1.98 94.15 ± 1.23 95.15± 0.56
AK 65.21 ± 5.32 99.70 ± 0.24 82.46 ± 2.70 F1 + SPCA + LR – L2 77.23± 6.96 89.84 ± 3.05 91.37± 2.36
MOX 62.97 ± 6.60 98.80 ± 0.68 80.89 ± 3.32 F1 + GBT 76.84± 9.29 87.19 ± 8.21 90.27± 2.96
OFX 65.07 ± 3.92 99.31 ± 0.28 82.19 ± 1.98 F1 + GBT 79.06± 6.94 90.88 ± 6.38 92.33± 1.49
KAN 72.31 ± 5.40 97.61 ± 0.65 84.96 ± 2.68 F1 + LR – L2 80.41± 6.48 93.48 ± 4.93 92.49± 2.93
CAP 59.68 ± 5.84 93.87 ± 0.88 76.78 ± 2.96 F1 + SPCA + LR – L2 64.44± 6.02 92.74 ± 2.52 85.46± 2.02
CIP 46.65 ± 10.10 99.24 ± 0.89 72.95 ± 5.17 F1 + LR – L2 79.86± 9.98 85.37 ± 7.65 89.53± 4.06

Note: Sensitivity, specificity and AUC (mean ± standard error) is reported. Wilcoxon signed-rank test was used to calculate the P-value of each method compared with the DA and indicate s P < 0.01.