Table 2.
Comparing the best machine learning classifier and DA considering 11 drugs
Drugs |
DA
|
Best method
|
|||||
---|---|---|---|---|---|---|---|
Sensitivity | Specificity | AUC | Feature set + Classifier | Sensitivity | Specificity | AUC | |
INH | 91.95 ± 1.04 | 98.71 ± 0.22 | 94.95 ± 0.54 | F1 + LR – L2 | 92.19◊ ± 0.94 | 98.38 ± 0.29 | 97.89◊ ± 0.38 |
EMB | 83.31 ± 1.62 | 95.17 ± 0.38 | 89.24 ± 0.85 | F1 + LR – L2 | 92.12◊ ± 0.98 | 91.89 ± 0.84 | 96.25◊ ± 0.54 |
RIF | 91.70 ± 1.19 | 98.73 ± 0.22 | 95.22 ± 0.59 | F1 + LR – L2 | 92.27◊ ± 1.25 | 97.45 ± 0.63 | 98.08◊ ± 0.32 |
PZA | 43.11 ± 2.97 | 98.46 ± 0.27 | 70.78 ± 1.46 | F1 + LR – L2 | 88.12◊ ± 2.65 | 88.91 ± 1.66 | 93.89◊ ± 0.80 |
SM | 82.80 ± 1.90 | 97.19 ± 0.44 | 89.99 ± 0.99 | F1 + LR – L2 | 87.40◊ ± 1.98 | 94.15 ± 1.23 | 95.15◊ ± 0.56 |
AK | 65.21 ± 5.32 | 99.70 ± 0.24 | 82.46 ± 2.70 | F1 + SPCA + LR – L2 | 77.23◊ ± 6.96 | 89.84 ± 3.05 | 91.37◊ ± 2.36 |
MOX | 62.97 ± 6.60 | 98.80 ± 0.68 | 80.89 ± 3.32 | F1 + GBT | 76.84◊ ± 9.29 | 87.19 ± 8.21 | 90.27◊ ± 2.96 |
OFX | 65.07 ± 3.92 | 99.31 ± 0.28 | 82.19 ± 1.98 | F1 + GBT | 79.06◊ ± 6.94 | 90.88 ± 6.38 | 92.33◊ ± 1.49 |
KAN | 72.31 ± 5.40 | 97.61 ± 0.65 | 84.96 ± 2.68 | F1 + LR – L2 | 80.41◊ ± 6.48 | 93.48 ± 4.93 | 92.49◊ ± 2.93 |
CAP | 59.68 ± 5.84 | 93.87 ± 0.88 | 76.78 ± 2.96 | F1 + SPCA + LR – L2 | 64.44◊ ± 6.02 | 92.74 ± 2.52 | 85.46◊ ± 2.02 |
CIP | 46.65 ± 10.10 | 99.24 ± 0.89 | 72.95 ± 5.17 | F1 + LR – L2 | 79.86◊ ± 9.98 | 85.37 ± 7.65 | 89.53◊ ± 4.06 |
Note: Sensitivity, specificity and AUC (mean ± standard error) is reported. Wilcoxon signed-rank test was used to calculate the P-value of each method compared with the DA and ◊ indicate s P < 0.01.