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Abstract

Motivation: The emergence of single-cell RNA-sequencing has enabled analyses that leverage

transitioning cell states to reconstruct pseudotemporal trajectories. Multidimensional data sparsity,

zero inflation and technical variation necessitate the selection of high-quality features that

feed downstream analyses. Despite the development of numerous algorithms for the unsupervised

selection of biologically relevant features, their differential performance remains largely

unaddressed.

Results: We implemented the neighborhood variance ratio (NVR) feature selection approach as a

Python package with substantial improvements in performance. In comparing NVR with multiple

unsupervised algorithms such as dpFeature, we observed striking differences in features selected.

We present evidence that quantifiable dataset properties have observable and predictable effects

on the performance of these algorithms.

Availability and implementation: pyNVR is freely available at https://github.com/KenLauLab/NVR.

Contact: ken.s.lau@vanderbilt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Complex tissue systems consist of heterogeneous cell populations,

and single-cell RNA-sequencing (scRNA-seq) is capable of extract-

ing transcriptomic information while preserving this complexity.

Each cell and its respective state become a high-dimensional data

point (Tang et al., 2009). These data encompass nuanced transition-

al cell states, and through pseudotemporal trajectory reconstruction,

these transitional states can be ordered to describe developmental

dynamics (Trapnell et al., 2014). Computational techniques such as

density-dependent k-Nearest Neighbors (k-NN) network traversal,

minimum spanning trees and reverse graph embedding are examples

of trajectory reconstruction approaches utilizing high-dimensional

data (Herring et al., 2018a,b; Qiu et al., 2011, 2017).
However, these algorithmic approaches perform best when pro-

vided with high-quality features, which are often confounded by

artifacts such as gene dropouts, resulting from incomplete transcrip-

tomic sampling, and stochasticity, arising from the amplification of

single-cell scale reaction materials (Kim and Marioni, 2013).

Detectable cell-to-cell variation can also originate from stochastic

gene expression, where an underlying level of randomness is cap-

tured at the time of sample processing (Elowitz, 2002; Raj and van

Oudenaarden, 2008). These sources of variation necessitate machine

learning strategies for the selection of biologically meaningful fea-

tures (Herring et al., 2018a). Unsupervised feature selection algo-

rithms such as neighborhood variance ratio (NVR), dpFeature

(dpF), FindVariableGenes (FVG) and PCA-Based Feature Extraction

(PCAFE) are distinct strategies for achieving this goal in the context

of pseudotemporal analysis (Butler et al., 2018; Qiu et al., 2017;

Taguchi, 2018; Welch et al., 2016). Although feature selection is es-

sential, the assumptions and performance of these algorithms have
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not been systematically evaluated, confounding the applicability of

these methods to different datasets. Here, we examine an underlying

characteristic of high-dimensional data that interacts with these

algorithms with a focus on NVR and dpFeature.

2 Software description

2.1 Implementation
pyNVR (Welch et al., 2016) was implemented in Python 2.7 with

3.7 compatibility. It is available through Github with installation

instructions for multiple operating systems and tutorials with ex-

ample datasets (https://github.com/KenLauLab/NVR). This package

works as an unsupervised feature selection pipeline on quality con-

trolled scRNA-seq data. scRNA-seq count or FPKM data act as

inputs into this pipeline. The pseudocode for NVR is documented

(Supplementary Material S1.1). We benchmarked our Python imple-

mentation of NVR against a previous R implementation across mul-

tiple machines.

2.2 Subject datasets
Datasets used in this study can be found on the NCBI GEO reposi-

tory as GSE102698, GSE52529 and GSE60781 (Herring et al.,

2018b; Schlitzer et al., 2015; Trapnell et al., 2014). These data were

generated using different platforms and biological contexts

(Supplementary Table S1).

2.3 Comparative performance
To compare the performance of NVR and dpFeature (Supplementary

Material S1.2) in a controlled manner, we examined GSE102698, a

dataset generated from the colonic epithelium, and sampled the data

in two ways. First, we sampled the dataset to different cell numbers.

We surmised that relationships within high-density subspaces would

be more robust to data sampling, thus affecting how extensively their

metric space neighborhoods are defined. Second, we directly con-

trolled the distribution of the data by imposing closeness centrality

thresholds on cell sampling (Supplementary Material S1.3,

Supplementary Fig. S1). Closeness centrality, as defined by the nor-

malized sum of the length of the shortest paths between a given node

and all other nodes, is calculated on a density-based k-NN graph

(Lever et al., 2017; Pearson, 1901). Nodes with low closeness repre-

sent disjointed cells comprising separable cell subpopulations, while

those with high closeness occupy more central and inseparable posi-

tions within the graph. As a correlative output, we calculated gene set

similarities by taking their Jaccard indices, describing divergence be-

tween algorithm performance (Levandowsky and Winter, 1971)

(Supplementary Material S1.4). This workflow is further described in

Supplementary Figure S2.

2.4 Pseudotemporal analysis and gene ontology term

enrichment
Given that cell closeness is a controllable parameter affecting

data distribution, we further investigated its effects on downstream

analyses. We performed pseudotemporal analysis on GSE102698

using feature-selected gene sets with p-Creode (Herring et al.,

2018b) (Supplementary Material S1.5). To better understand

the gene sets each algorithm selected for, we performed gene

ontology (GO) term enrichment analysis using WebGestalt as

described by the Zhang group (Supplementary Material S1.6)

(Wang et al., 2017).

3 Results

We noted significant improvements in speed, with an average 14-

fold decrease in runtime, when comparing our Python implementa-

tion against the R implementation (Fig. 1A, Supplementary Table

S2). In applying NVR and dpFeature to distinct scRNA-seq datasets,

we observed striking inconsistencies in the genes selected (Fig. 1B,

Supplementary Table S1). We observed significant, positive linear

relationships (Supplementary Table S3) between gene set Jaccard

index, cell number (� 2.2e-16, Fig. 1C), and cell closeness sampling

thresholds (P¼1.227e-06, Fig. 1D). We observed another perform-

ance divergence in examining their robustness, as defined by the re-

sistance to performance decay given decreasing input data quality

(Supplementary Fig. S3). Given these gene sets, we also observed dis-

tinct differences in GO term enrichment (Supplementary Fig. S4,

Supplementary Table S4). Downstream p-Creode trajectory recon-

struction using low closeness dpFeature gene sets resulted in the

underrepresentation of stem-like developmental projections (Fig.

1E). Additionally, we analyzed two more methods in parallel,

findVariableGenes and PCAFE (Supplementary Material S1.7–S1.

8), and observed significant differences in performance

(Supplementary Figs S5–S7).

Fig. 1. Evaluation of pyNVR performance. (A) Fold difference in runtime be-

tween the Python and R implementations of NVR. (B) Gene set similarity

given different datasets. (C) Gene set similarity and its relationship with cell

number. (D) Gene set similarity and its relationship with closeness threshold-

imposed sampling. (E) Representative p-Creode graphs generated using

genes selected from closeness-thresholded samples. Heatmap overlay and

gating depicts Myc and putative stem-like cell states, respectively
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4 Discussion

We reasoned that the algorithms examined were differentially

impacted by data distributions, through examinations of cell number

and closeness centrality. NVR and dpFeature rely on calculating metric

space neighbors, in the context of graphs and t-Distributed Stochastic

Neighbor Embedding (t-SNE) embeddings, respectively (Qiu et al.,

2017; van der Maaten and Hinton, 2008; Welch et al., 2016). Both

cell number and closeness affect the calculation of neighborhood-

defining radial distances. NVR uses these distances to generate a k-NN

graph. t-SNE, instead, uses these distances to calculate a probabilistic

representation of neighborhoods. Beyond neighborhood representa-

tions, the algorithms also have unique selection criteria.

5 Conclusion

We created an accessible and significantly faster implementation of

NVR feature selection. We present evidence suggesting that the per-

formance of different unsupervised feature selection algorithms di-

verge based on dataset properties such as cell number and closeness.

Downstream pseudotemporal or gene ontological analyses are dem-

onstrably affected by the feature selection algorithm used.
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