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6-Band and [3-Band Neural Activity Reflects Independent
Syllable Tracking and Comprehension of Time-Compressed
Speech

Maria Pefkou,'* ©“Luc H. Arnal,"* ©“Lorenzo Fontolan,? and Anne-Lise Giraud!
'Auditory Language Group, Department of Neuroscience, University of Geneva, Biotech Campus, 9 Chemin des Mines, 1202 Geneva, Switzerland, and
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Recent psychophysics data suggest that speech perception is not limited by the capacity of the auditory system to encode fast acoustic
variations through neural vy activity, but rather by the time given to the brain to decode them. Whether the decoding process is bounded
by the capacity of 0 rhythm to follow syllabic rhythms in speech, or constrained by a more endogenous top-down mechanism, e.g.,
involving 3 activity, is unknown. We addressed the dynamics of auditory decoding in speech comprehension by challenging syllable
tracking and speech decoding using comprehensible and incomprehensible time-compressed auditory sentences. We recorded EEGs in
human participants and found that neural activity in both 6 and y ranges was sensitive to syllabic rate. Phase patterns of slow neural
activity consistently followed the syllabic rate (4 -14 Hz), even when this rate went beyond the classical 0 range (4 - 8 Hz). The power of 6
activity increased linearly with syllabic rate but showed no sensitivity to comprehension. Conversely, the power of 3 (14 -21 Hz) activity
was insensitive to the syllabic rate, yet reflected comprehension on a single-trial basis. We found different long-range dynamics for 6 and
B activity, with B activity building up in time while more contextual information becomes available. This is consistent with the roles of 6
and B activity in stimulus-driven versus endogenous mechanisms. These data show that speech comprehension is constrained by
concurrent stimulus-driven 6 and low-vy activity, and by endogenous 3 activity, but not primarily by the capacity of 0 activity to track the
syllabic rhythm.
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Speech comprehension partly depends on the ability of the auditory cortex to track syllable boundaries with 6-range neural
oscillations. The reason comprehension drops when speech is accelerated could hence be because 6 oscillations can no longer
follow the syllabic rate. Here, we presented subjects with comprehensible and incomprehensible accelerated speech, and show that
neural phase patterns in the 6 band consistently reflect the syllabic rate, even when speech becomes too fast to be intelligible. The
drop in comprehension, however, is signaled by a significant decrease in the power of low-f3 oscillations (14 -21 Hz). These data
suggest that speech comprehension is not limited by the capacity of 6 oscillations to adapt to syllabic rate, but by an endogenous

decoding process. j

ignificance Statement

Chater, 2016). This process is facilitated by iteratively generating
predictions about what is going to be said next, and it is hence
easy for our brain to individualize and understand words in con-
nected speech even in adverse listening conditions (Davis et al.,
2005). 6 (~4-8 Hz) Oscillatory entrainment to the acoustic en-
velope could play a crucial role in speech encoding by both en-

Introduction

As continuous speech unfolds in time, the neural language system
must segment the acoustic signal into meaningful linguistic units
(Poeppel etal., 2008; Giraud and Poeppel, 2012; Christiansen and
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abling the detection of syllable boundaries (Hyafil et al., 2015)
and by providing for syllables a phase-informed neural code that
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facilitates higher-level linguistic parsing (Luo and Poeppel, 2007;
Luo et al.,, 2010; Ghitza, 2012, Peelle et al., 2013; Doelling et al.,
2014). Yet, whether speech is comprehensible or not, 6 phase-
locking between stimulus and neural responses is present, nota-
bly when speech is time-reversed (Howard and Poeppel, 2010).
Hence, the importance of speech-envelope tracking by 6 oscilla-
tions in comprehension remains unclear.

Psychophysics data have recently put the syllable temporal
format at the center of the speech-comprehension process.
Speech becomes unintelligible when compressed by a factor of
=3 (Nourski et al., 2009). However, if time-compressed speech is
chunked into 40 ms (low-vy range) units, and silent gaps are in-
serted between the compressed speech segments, comprehension
can be partly restored (Ghitza and Greenberg, 2009). This effect
occurs even when speech is heavily compressed, e.g., by a factor
of 8, provided that the reconstructed syllable-like rhythm stays
<9-10 syllable-like units/s (Ghitza, 2014). Speech comprehen-
sion seems therefore limited by syllabic decoding at a maximal
0-range rate of 9-10 Hz, but not by the acoustic information
encoding capacity. Importantly, these findings suggest that de-
coding time is essential for speech comprehension.

However, that the decoding process operates optimally when
the syllabic rate is within the 6 range of neural activity (Ghitza,
2014) does not mean that it is underpinned by 6 activity. Using a
neurocomputational model, Hyafil et al. (2015) showed that 6
activity can provide a reliable on-line signaling of syllable bound-
aries. Yet, in this model, it is the information conveyed by low-y
(25—40 Hz) activity within a 0 cycle that is informative about
speech content. The model is instructive but arguably incom-
plete, as it does not emulate top-down, predictive, decoding pro-
cesses informed by our linguistic knowledge (Sohoglu et al., 2012;
Davis and Johnsrude, 2007). Using magnetoencephalography,
Park et al. (2015) showed that neural activity originating in pre-
frontal areas influences oscillation coupling in the auditory cor-
tex during speech perception. Such top-down processes in speech
perception likely involve yet another brain rhythm, distinct from
those that encode syllable boundaries (0) and the phonemic con-
tent (low-v), that is the B (15-25 Hz) range. These findings are
highly plausible as the B rhythm is generically involved in top-
down perceptual processes (Engel and Fries, 2010; Arnal and
Giraud, 2012), in particular during speech perception (Fontolan
etal., 2014).

In summary, speech processing by stimulus-driven 6 and y
neural activity accounts, both experimentally and theoretically,
for how speech is encoded in the auditory cortex, but not for how
it is decoded by higher-order brain structures. In this study, we
examined whether speech comprehension is constrained by the
capacity of 6 rthythm to track the syllabic rhythm and segment
speech into decodable elements, or by the capacity of endogenous
oscillatory mechanisms to decode the speech elements. We chal-
lenged both stimulus-driven speech-tracking and endogenous
speech-decoding processes by using time-compressed speech,
which increases the amount of input information per time unit,
while leaving all other stimulus parameters unchanged. Using
these stimuli, we contrasted the neural dynamics associated
with a linear tracking of syllable duration, with speech com-
prehension dynamics that show a sudden drop at a compres-
sion rate of three.

Materials and Methods

Participants. Nineteen native French speakers (eleven females) partici-
pated in a study involving behavioral and EEG measurements (data from
two participants could not be analyzed due to excessive movement and
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low impedances during EEG recordings). All participants were right-
handed (mean age: 24.9; =5 SD) without history of hearing impairment
or dyslexia, gave written informed consent to participate in the study,
and received financial compensation for their participation. The study
was approved of by the local ethics committee (Commission Cantonale
d’Ethique dans la Recherche).

Stimuli and procedure. The stimuli belonged to a corpus of 356 French
sentences that were constructed such that every set of four sentences
amounted to a small story. Each sentence was semantically meaningful,
grammatically simple, with no more than one embedded clause (Hervais-
Adelman et al., 2015). The sentences were recorded in a soundproof room
by a male native French speaker and digitized at a 44.1 kHz sampling rate.
The root mean square (RMS) of all stimuli was computed and stimuli
whose RMS was higher or lower than 3 SDs from the mean were normal-
ized to the mean RMS of the initial set. They were then time-compressed
by factors of 2 or 3 using the Waveform Similarity Based Overlap-Add
algorithm (Verhelst and Roelands, 1993), which maintains maximal
similarity of the time scale of the modified waveform to the original
one without modifying the pitch (Fig. 1A). The duration of the time-
compressed versions of each sentence was, therefore, equal to half and
one-third of the natural sentence duration, with a slightjitter (0.13 ms for
compression rate 2 and 0.02 ms for compression rate 3, on average)
across sentences. Finally, all stimuli were low-pass filtered at 10 kHz
using a fifth-order Butterworth filter.

Each participant performed both the behavioral experiment and the EEG
one (Fig. 1C,D) performed on the same day, in a randomized order. To
control for a potential task presentation order effect, eight participants
started with the behavioral experiment and nine with the EEG experiment.

During the behavioral experiment (Fig. 1C), participants were asked to
repeat each of the 20 heard sentences per condition (compression factor
1-3). Following the method described by Davis and colleagues (2005),
speech comprehension was measured by computing the percentage of
correctly repeated words per trial, which reflects how well participants
understood the sentence overall. A word was scored as correct if it was
pronounced correctly, but scored as incorrect if reported in the wrong
order. Words reported in the correct order were scored as correct even if
intervening words were absent or incorrectly reported.

In the EEG experiment (Fig. 1D), participants manually rated subjec-
tive comprehension on a 1-5 scale (totally incomprehensible to fully
comprehensible) This enabled us to minimize muscle artifacts (no oral
response) and to maximize the number of trials. Each participant lis-
tened to 64 sentences per condition in the EEG experiment. Stimuli
appeared as single sentences in the behavioral experiment but were con-
catenated into sets of four story-like combinations for the EEG experi-
ment. Each stimulus appeared only once without repetitions throughout
the two experiments (behavior and EEG) and was presented in a pseu-
dorandomized order for each participant. Speech rate was blocked into
groups of four sentences in both the behavioral and the EEG task. Indi-
vidual comprehension scores (accuracy and reports in behavioral and
EEG experiments, respectively) were averaged per subjects and condition
and entered in a repeated-measures ANOVA with compression rate
(three levels: uncompressed, compressed by 2, and compressed by 3) asa
within-subjects factor. To assess whether subjects’ ratings reliably re-
flected comprehension, we also computed the correlation between the
subjective comprehension scores collected during the EEG experiment
and the percentage of correctly reported words during the behavioral
experiment.

EEG recording and data analysis. Brain electrical responses were re-
corded with a 256-electrode Electrical Geodesics HydroCel system (Elec-
trical Geodesics). The signal was recorded continuously and digitized ata
sampling rate of 1000 Hz. By default, the recording system sampled at
20 kHz before applying an analog hardware antialiasing filter with a
cutoff frequency of 4 kHz and down-sampling the signal to 1000 Hz, and
applying a low-pass Butterworth filter with a cutoff of 400 Hz. The ref-
erence electrode was the Cz, situated at the vertex. Electrode impedances
were checked at the beginning of the session and after the end of each
recording blocks, and were <30 k() at the beginning of each block.

EEG data were analyzed using custom Matlab (Mathworks) scripts as
well as the Cartool software (Brunet et al., 2011). Data were first down-
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Stimuli and experimental design. 4, Stimulus waveforms. The waveform of the French phrase “Le ministre a visité le pays pour la premiere fois” (“The minister visited the country for the

first time”) in the three experimental conditions, namely in its original form (i.e., compression factor equal to 1) and time-compressed by a factor of 2 and 3. B, Syllable duration. Distribution of the
duration of syllables across the three compression factors. As expected, this distribution shifts toward the left as the compression factor increases. €, Experimental design (behavioral task).
Experimental design for the behavioral task. Each trial began with a fixation cross, followed by the presentation of the auditory stimulus. Participants were asked to repeat the stimulus.
D, Experimental design (EEG task). Experimental design of the behavioral task during the EEG recording. Each trial began with a fixation cross, followed by the presentation of the auditory stimulus.

Participants were asked to rate the comprehension of the stimulus on a 1-to-5 scale.

sampled to 200 Hz and a set of 204 electrodes was selected for further
analysis (channels covering the cheeks were excluded). All blocks of the
EEG experiment were concatenated and an independent components
analysis (ICA) was computed on the whole dataset using the Infomax
routine from the Matlab-based EEGLAB toolbox (Delorme and Makeig,
2004). Components corresponding to eye blinks and electrical line-noise
were removed. The resulting data were filtered between 0.75 and 80 Hz
using fifth-order Butterworth bandpass filters. An additional bandstop
filter between 49.9 and 50.1 Hz was applied to remove residual 50 Hz line
noise. Noisy electrodes showing poor contact with the scalp were identi-
fied through visual inspection and interpolated (4 over 204 electrodes
on average across participants). To obtain epochs of equal length for all
conditions, the EEG data were segmented into epochs starting 1 s
before the sound onset and ending 5 s after, which corresponded to
the shortest time-compressed stimulus. Importantly, in the time-
compressed conditions, the amount of linguistic information con-
tained in the fixed-length 5 s poststimulus epoch was therefore two or
three times higher than in the uncompressed speech, depending on
the compression factor. The segmented data were then rereferenced
to the average reference.

Stimuli and data analysis. To assess the effect of speech compression on
oscillatory neural dynamics across frequencies, we first extracted the
time-frequency (TF) decomposition of both the acoustic stimuli and the
EEG data using Morlet wavelets (m = 7) in a frequency range between
1 and 40 Hz, with a 1 Hz resolution. The envelopes of the acoustic
stimuli were extracted by applying full-wave rectification and a
second-order Butterworth low-pass filter at 30 Hz. Power values were
then computed by taking the modulus of the complex TF values. EEG
data were baseline-corrected for each frequency using the average
power across a time window from —750 to —100 ms before the stim-
ulus onset.

To assess the effect of compression rate on the power and phase of
neural responses, we used two distinct measures: cross-spectral density
(CSD) and phase coherence. CSD provided a measure of the power
shared by the acoustic and the EEG signals at each frequency, while phase
coherence enabled us us to look at whether the two signals were phase-
locked in time at a given frequency. Both CSD and phase coherence
analyses were performed on a subset of 5 “auditory” electrodes, selected
on the basis of a functional localizer experiment, performed after the
main experiment. During the functional localizer experiment, partici-

pants listened to 200 pure tones and were instructed to rest but keep their
eyes open and fixate on a cross on the screen. These data were prepro-
cessed in the same way as the data collected for the main task and the
evoked response was computed by averaging all clean trials. For each
participant, we then identified the five electrodes showing the largest
N100 amplitude. These “auditory” electrodes were used for the CSD and
phase coherence analyses under the assumption that the on-line tracking
of syllabic onsets takes place in primary auditory regions (Nourski et al.,
2009). This selection of electrodes maximized the sensitivity of subse-
quent analyses to exogenously, stimulus-driven signals.

CSD was estimated with the power spectral density function (cpsd.m)
in Matlab, using Welch’s averaged modified periodogram method in
steps of 0.33 Hz. For each trial and electrode, we computed the CSD
between the acoustic stimulus and the corresponding brain responses for
each frequency step. We then defined three frequency ranges of interest,
corresponding to the mean syllabic rate of each condition. Within each
frequency range, we used one-tail 7 tests to check whether averaged CSD
values were statistically higher for the corresponding condition com-
pared with each one of the other two (see Fig. 3A).

To compute phase coherence, we first determined the stimulus syllable
rate by counting the average number of peaks in the envelope of the
stimulus waveform per second, rounded to the closest integer. We then
filtered both the stimulus and the EEG data using a third-order Butter-
worth bandpass filter at this frequency (=1 Hz) and computed the
Hilbert transform of both signals and the mean resultant vector length of
their phase difference. This yielded one value per subject for discrete
syllable rates ranging from 4 to 14 Hz with 1 Hz steps (see Fig. 3B; values
from all subjects are plotted as the distribution of syllabic frequencies was
not the same across subjects). We then investigated whether neural re-
sponses entrained more at specific frequencies (e.g., in the 6 band) or
whether they similarly entrained to stimuli regardless of the syllable rate.
We tested a linear and a quadratic relationship between the stimulus-
averaged syllable frequency rate and the phase coherence at the same
frequency. We reasoned that a significant linear relationship between
syllabic rate and phase coherence should indicate privileged phase align-
ment for stimuli whose syllable rate is low or high. Furthermore, a neg-
ative quadratic relationship (inverted u-shape) between syllabic rate and
phase coherence should indicate a privileged phase alignment for stimuli
whose syllable rate falls within the 6 band. We thus fitted two polyno-
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mials, of degree 1 and 2, to the individual data and, using ¢ tests, tested
whether linear and quadratic coefficients were reliably different from
zero across subjects.

To disentangle the effect of linear syllabic rate increase and nonlinear
comprehension decrease (see Fig. 4A4) in the power of neural responses in
each frequency band, we used a general linear model (GLM). This anal-
ysis was performed on single-trial power values, averaged across time, per
frequency for each subject and electrode, using the two regressors: mean
syllable rate and comprehension. The mean syllable rate was measured
for each specific trial, estimated by the average number of peaks in the
envelope of the stimulus waveform. Comprehension corresponded to
the score provided by the subject for that specific trial. Both regressor
values were z-scored per subject before computing the GLM. The GLM
analysis assessed the part of the variance in neural responses explained by
each regressor across electrodes and frequencies, independent of the ef-
fect of the other one (see Fig. 4C,D). As comprehension ratings are partly
explained by syllable rate, we sought to explore the part of the variance
solely associated with comprehension. To do so, we regressed out the
effect of syllable rate from the comprehension ratings and computed the
GLM using the residual scores. To reduce the dimensionality of the data,
we averaged f3 values across electrodes and performed t tests across sub-
jects for each regressor and each frequency (see Fig. 4C,D). We identified
frequency-selective clusters reaching a p < 0.05 significance threshold
(corrected for multiple comparison using nonparametric statistics; see
below). To control whether the resulting effects of syllable rate and com-
prehension significantly differed from each other, we compared the
respective 3 values against each other (see Fig. 4D, bottom). We then
investigated how these frequency-selective effects evolved across time by
computing the GLM per frequency band and time bin using an averaged
sliding window of 50 ms, with 20 ms steps (see Fig. 5A). The time course
of the corresponding parameter estimates—i.e., the normalized best-

fitting regression coefficients, expressed in 8 values—measured the sen-
sitivity of single-trial EEG signals to each of the regressors across time.
B Values were tested against zeros per time window for each regressor
and frequency band of interest using ¢ tests across subjects. 8 Values for
syllable rate and comprehension were also tested against each other using
t tests across subjects (see Fig. 5A).

Statistical tests performed on the CSD and phase coherence analyses,
as well as the parameters estimated with the GLM, were corrected for
multiple comparisons using a cluster-based nonparametric approach
(Maris and Oostenveld, 2007). Each statistical test performed was com-
pared with 1000 permutations of the same test where we randomly shuf-
fled the condition labels within subject.

Results

We primarily assessed the effect of time compression on sentence
comprehension. The analysis revealed a significant main effect of
compression rate (F, 5o, = 65.45, p < 0.001, partial n° = 0.4) on
the accuracy of reported word in the behavioral task. Post hoc tests
revealed that while there was no significant difference between
compression factors 1 and 2 (¢ = 1.0929, p = 0.29) perfor-
mance significantly differed between compression factors 1 and
3, as well as between 2 and 3 (¢, = 8.35, p < 0.001 and t;4, =
8.41, p < 0.001, respectively; all post hoc tests are Bonferroni-
corrected). These results confirmed a drop in performance for
speech compressed by a factor of 3, compared with a factor of 1 or
2 (Fig. 2A, top). Plotting these data as a function of the syllabic
rate (Fig. 2A, bottom) confirmed that comprehension drops
when speech rate exceeds ~10 syllables per second (Ghitza,
2014).
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We also analyzed the comprehension ratings made by partic-
ipants at the end of each trial, during the EEG experiment. As
expected, this analysis revealed a main effect of compression rate
(F5.50) = 80.54, p < 0.001, partial n* = 0.49). Similarly to the
analysis described above, we performed post hoc tests (Bonferroni-
corrected), and found that there was no significant difference in
perceived comprehension between compression factors 1 and 2
(te) = 1.85, p = 0.08), but a significant difference between com-
pression factors 1 and 3, as well as between factors 2 and 3 (¢, =
9.06, p < 0.001 and ¢, = 9.16, p < 0.001 respectively; Fig. 2B,
top). Comprehension (subjective) reports followed the same pat-
tern as comprehension measures (Fig. 2B, bottom), confirming
the reliability of this metric to assess the correlates of comprehen-
sion in our EEG data. This qualitative observation was supported
by the strong correlation between the two metrics across stimuli
(r =0.78, p < 0.001).

To assess whether 6 neural activity could track the syllabic
structure in speech, we first computed the CSD between the
acoustic stimuli and the neural data (Fig. 3A). We then compared
CSD values between conditions in their respective syllabic rates.
CSD was higher for noncompressed sentences compared with
sentences compressed by a factor of 2 (t,4) = 3.59,p < 0.001) and
3 (t(6) = 4.45, p < 0.001) at 3-5 Hz. Similarly, sentences com-
pressed by 2 yielded higher CSD values between 7 and 9 Hz,
compared with noncompressed stimuli (¢.,5, = 4.01, p < 0.001)
and stimuli compressed by a factor of 3 (¢, = 3.85, p < 0.001).
Finally, for frequencies between 10 and 14 Hz, CSD values were
higher for sentences compressed by 3 compared with noncom-
pressed sentences (4 = 6.34, p < 0.001) as well as sentences
compressed by 2 (t,5) = 3.88, p < 0.001). To rule out the possi-
bility of preferential phase-locking for one specific subfrequency
band (e.g., the 4-9 Hz 6 band), we tested the significance of the
inverted U-shaped distribution on the phase-coherence values
(see Materials and Methods), which indicated no significant
trend (¢,5) = 1.03, p=0.12). We also tested for linear behavior
and found a significant negative linear trend (t,4) = —3.24,p =
0.002), suggesting better phase alignment for stimuli with a low
versus high syllable rate. Finally, for each participant, we regressed

comprehension scores against the phase-coherence values, to test
whether comprehension accounted for the negative linear rela-
tionship between phase-coherence and syllabic rate. We found
that this was not the case, as the resulting regression parameter
estimates failed to reach significance when tested against zero
across subjects () = 1.56, p > 0.1).

Using a linear model approach, we then investigated the rela-
tive effect of time compression and the correlate of comprehen-
sion on the neural responses across frequencies. We first observed
a significant effect of syllabic rate in the 6 (4 Hz) and low-y
(27-28 Hz) range (Fig. 4C), showing that increasing the speech
compression rate resulted in an increase in 6 power and a reduc-
tion in low-y power. On the other hand, the comprehension
regressor revealed that neural responses in the 8 (14-21 Hz)
range were larger for sentences compressed by a factor of 1 and 2
(comprehensible), than for sentences compressed by a factor of 3
(incomprehensible; Fig. 4D). Despite the presence of power in «
frequencies (Fig. 4B; centered around 10 Hz), no significant effect
of syllable duration or comprehension was observed in this fre-
quency band.

To further investigate the temporal dynamics of these effects
in the 6 (4 Hz), B (14-21 Hz), and low-7y (27-28 Hz) frequency
bands, we ran a GLM with syllable rate and comprehension as
regressors across time (Fig. 5A). We first observed that 6 power
increased (relative to prestimulus baseline) linearly with syllable
rate during the first 2 s of auditory stimulation (Fig. 54, left). We
also found that low--y power decreased as a function of compres-
sion rate. This effect started shortly (~1 s) after the beginning of
the stimulus and did not last (Fig. 5A, middle). The time course of
the regression parameter estimates in the 3 band (Fig. 54, right)
on the other hand, demonstrates that neural responses in this
band increased for the least-compressed conditions compared
with sentences compressed by a factor of 3. This shows that when
speech is comprehensible, there is an increase in 3 power (start-
ing ~1 s after the onset and lasting until the end of the sentences),
whereas this effect is abolished when sentences are too heavily
compressed.
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comprehension, as a function of frequency. Effects are shown at p << 0.05, without correction for multiple comparisons for displaying purposes. The bottom plots in Cand D represent the estimated
regression parameters averaged across all electrodes for mean syllable rate and comprehension, respectively. Shaded areas indicate SEM. *p << 0.05, ***p << 0.001. The dashed black line
corresponds to the averaged betas estimated through 1000 permutations and the shaded gray areas represent the SEM of the parameters estimates generated by permuting the data. Black stars on
the dashed line in D, bottom plot, correspond to the frequencies where the estimated regression parameters for syllable rate and comprehension significantly differ from each other. Scalp
topographies of the estimated parameters are shown for each significant effect.
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Figure 5.  Time course of the effects of syllable rate and comprehension. 4, Regressions time courses. Time course of the estimated regression parameters averaged in the 6 (4 Hz; left), low--y
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Discussion where comprehension started to drop. Our data confirm that 6
neural activity can track the syllabic rhythm when the speed of

Our data overall suggest that 6/low-vy and 8 oscillatory signals
speech varies (Ahissar et al., 2001), but does not support that 9 Hz

reflect distinct functional processes concurrently at play during
speech perception. Specifically, they show that the syllable rate  is the upper limit of the tracking process (Ghitza, 2014). Our
was consistently tracked by low-frequency neural phase patterns.  results, hence, do not confirm that speech decoding is limited by
Although this neural activity flexibly adapted to syllable rate be-  the ability of 6 rhythm to track the syllabic structure of speech.

yond the upper limit of the classical 6 rhythm (=14 Hz), we The observation that #-band (4 Hz) power increases with syl-
assume from a functional viewpoint that it corresponds to a “6”  labic rates suggests, however, that compression selectively affects
oscillation, because it showed distinct dynamics from the frequency-  oscillatory responses in this band. One interpretation for this
stable a peak centered on 10 Hz (Fig. 4B). Importantly, the = could be that speech compression steepens the slope of syllable
syllable-tracking process was detected beyond 9 Hz, the point  onsets, enhancing evoked responses in the 6 band. This is sup-
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ported by the early latency of this effect (Fig. 5A), suggesting that
high compression rates boost early evoked responses, and that the
0 band essentially reflects exogenous bottom-up processes. Pre-
vious works have related 6-band activity to comprehension and
top-down mechanisms (Peelle et al., 2013; Park et al., 2015), but
unlike here the acoustic manipulations in those studies were such
that they did not permit the distinction between comprehension
impairments resulting from a failure of the auditory system to
encode the stimulus and those resulting from a higher-level de-
coding process. In light of these previous studies, the current data
could suggest that entrainment in the 6 band is a necessary but
not sufficient condition for speech comprehension.

Our data also indicate that speech compression linearly re-
duced early low-+y responses (Fig. 4C). Low-7y (~30 Hz) rhythm
approximately corresponds to the range of phonemic rate in
speech and has been proposed to contribute to the encoding
of fast temporal cues in auditory cortical neurons (Giraud and
Poeppel, 2012). The early latency of the effect (Fig. 5A) and the
bilateral temporal topography (compatible with an auditory
evoked pattern; Fig. 5B) of brain responses in that frequency
range suggests that time-compressing speech degrades phonemic
encoding in the y band. That low-vy (27-28 Hz) activity appears
stronger at normal speech rates could indicate that phonemic
information is most efficiently represented at its natural rate in
the auditory system. The low-y (20—40 Hz) range enables the
encoding of discrete acoustic events individually (Joliot et al.,
1994; Miyazaki et al., 2013) in the time range of the key phonemic
cues (25-50 ms), while at higher speech rates phonemic informa-
tion may be fused. However, given that y-band responses can be
observed for stimulus rates =100—150 Hz in the auditory cortex
(Brugge et al., 2009; Nourski et al., 2013), it is possible that the
denser information present in compressed speech is encoded by
higher vy frequencies, which are simply less easily detectable by
surface EEG measurements. In this view, the y-power decrease
we observe could be explained by the limited spectral sensitivity
of EEG signals >40 Hz (the EEG spectrum typically follows a
power law 1/f, where 1 = a = 2). At any rate, linear changes in
y-band responses cannot explain the abrupt, nonlinear compre-
hension drop observed for speech compressed by a factor of 3.
This suggests that speech comprehension is not limited by
bottom-up sampling/encoding, but more likely by additional en-
dogenous processes involved in the downstream processing of
the encoded information.

Contrasting with the linear relationship between compression
rate and low-y power, B (14-21 Hz) power decreased in a non-
linear way with compression, and accounted for comprehension
ratings at the single-trial level. Interestingly, this effect built up
~1.5 s after sentence onset and was sustained until the end of
analyzed epochs. Given the established role of 3 oscillations in
top-down predictive mechanisms (Schubert et al., 2009; Engel
and Fries, 2010, Arnal and Giraud, 2012; Fontolan et al., 2014;
Volberg and Greenlee, 2014; Bastos et al., 2012; Sedley et al,,
2016), we interpret this effect in the context of generative models
of perception (Friston, 2005), where the brain recurrently uses
available sensory information to generate predictions propagat-
ing top-down in the B-frequency channel. This B-band signal
might correspond to the endogenous processes required for com-
prehension that we conjectured earlier. This “top-down” inter-
pretation is supported by the topography of 8 power, which, in
contrast with the auditory evoked topography of low-+y activity
(Fig. 5B), is compatible with a parietal or premotor cortical
source. As previously hypothesized by Arnal and Giraud (2012),
when speech information is conveyed at a comprehensible pace,
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the gradual buildup of 3 activity across time would reflect the use
of contextual information to generate on-line predictions while
the sentence unfolds. On the other hand, the absence of 8 activity
associated with unintelligible sentences suggests that when syl-
labic information is presented too fast, the deployment of top-
down mechanisms is disrupted. This may occur either because
the time between successive syllabic information packets is too
short for the speech-perception system to dynamically deploy
predictions, or simply because the task is too demanding on the
participant’s attentional resources.

The present study extends previous knowledge by showing
that comprehension not only depends on the tracking of the
speech envelope by 0-range oscillations, but is also reflected in the
buildup of B oscillations, which likely reflects the engagement of
top-down mechanisms. The exact mechanism by which $ oscil-
lations contribute to speech comprehension remains unclear.
One possibility is that they carry temporal predictions about the
timing of the onset of upcoming syllables, which could facilitate
the extraction of relevant information (Arnal, 2012; Arnal et al.,
2015; Kulashekhar et al., 2016; Merchant and Yarrow, 2016). An
alternative hypothesis could be that B oscillations carry more
than timing information (Bastiaansen and Hagoort, 2006; Bas-
tiaansen et al., 2010; Magyari et al., 2014) and provide an infor-
mational substrate for analysis-by-synthesis processes (Halle and
Stevens, 1962; Poeppel et al., 2008). In this view, 3 signals might
facilitate the predictive processing at other linguistic levels of
information (phonemic, semantic, or syntactic organization) ina
generative manner (Lewis and Bastiaansen, 2015; Lewis et al.,
2016) by adaptively tuning lower-tier sensory areas to improve
the decoding of the speech signal’s content. At any rate, our data
suggest that this process requires a certain amount of time
(~100 ms) between syllabic information packets to read out
and synthesize meaningful representations of what is being

(and will be) said.

Perceptual synthesis and multiplexing

The current results suggest that 8 oscillations might constitute
the neural substrate of top-down signals, complementing the
proposed role of 6§ and vy oscillations in speech exogenous encod-
ing (Giraud and Poeppel, 2012; Pasley et al., 2012; Gross et al.,
2013; Hyafil et al,, 2015; Ding et al., 2016). This interpretation
provides additional support to the proposal that feedforward and
feedback signals are transmitted through different frequency
bands. Recent evidence from intracranial recordings (Fontolan et
al., 2014) further suggests that these two processes might alter-
nate in time, meaning that the generation of feed-back signals
would follow the propagation of bottom-up ones every 250 ms on
average (2 up/down cycles per second) in the auditory cortex. The
dynamic alternation of the two processes implies that speech en-
coding and readout take place in a discretized manner. If this
interpretation holds, it would suggest that compressing speech by
a factor of 3 saturates the capacity of the speech-perception pro-
cess by disrupting its top-down/descending phase. This specula-
tion is supported by the observation that the effects of time
compression (up to a factor of 8; Ghitza, 2014) on comprehen-
sion can be reduced if compressed speech packets are presented at
a slower pace, separated by 80 ms periods of silence, which do not
add any speech-related information but only offer more decod-
ing time.

Conclusion
Our results confirm that the neural mechanisms of speech com-
prehension are disrupted when listening to time-compressed
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speech. Although previous studies suggest that successful enve-
lope tracking is necessary to comprehend speech (Nourski et al.,
2009; Doelling et al., 2014), our results suggest that faithful
speech encoding by 6—y oscillators may not be sufficient for com-
prehension. The time-compression paradigm reveals the exis-
tence of a temporal bottleneck for comprehension that critically
depends on the ability to reconstruct the incoming input in a
generative manner. Speech comprehension does not seem lim-
ited by the encoding capacity (at least within the levels of com-
pression used here), but by the time required for reading out the
information after it has been encoded and deploying predictions,
a process possibly instantiated by 6-based syllabification enabling
B-based predictive processes (Arnal and Giraud, 2012). These
mechanisms provide a plausible neurophysiological substrate for
rapidly “recoding” the speech input and building linguistic rep-
resentations in a predictive manner, as conjectured by recent
theoretical views in psycholinguistics (Christiansen and Chater,
2016).
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