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Cognitive functions arise from the coordination of large-scale brain networks. However, the principles governing interareal functional
connectivity dynamics (FCD) remain elusive. Here, we tested the hypothesis that human executive functions arise from the dynamic
interplay of multiple networks. To do so, we investigated FCD mediating a key executing function, known as arbitrary visuomotor
mapping, using brain connectivity analyses of high-gamma activity recorded using MEG and intracranial EEG. Visuomotor mapping was
found to arise from the dynamic interplay of three partly overlapping cortico-cortical and cortico-subcortical functional connectivity
(FC) networks. First, visual and parietal regions coordinated with sensorimotor and premotor areas. Second, the dorsal frontoparietal
circuit together with the sensorimotor and associative frontostriatal networks took the lead. Finally, cortico-cortical interhemispheric
coordination among bilateral sensorimotor regions coupled with the left frontoparietal network and visual areas. We suggest that these
networks reflect the processing of visual information, the emergence of visuomotor plans, and the processing of somatosensory reaffer-
ence or action’s outcomes, respectively. We thus demonstrated that visuomotor integration resides in the dynamic reconfiguration of
multiple cortico-cortical and cortico-subcortical FC networks. More generally, we showed that visuomotor-related FC is nonstationary
and displays switching dynamics and areal flexibility over timescales relevant for task performance. In addition, visuomotor-related FC
is characterized by sparse connectivity with density <<10%. To conclude, our results elucidate the relation between dynamic network
reconfiguration and executive functions over short timescales and provide a candidate entry point toward a better understanding of
cognitive architectures.
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Executive functions are supported by the dynamic coordination of neural activity over large-scale networks. The properties of
large-scale brain coordination processes, however, remain unclear. Using tools combining MEG and intracranial EEG with brain
connectivity analyses, we provide evidence that visuomotor behaviors, a hallmark of executive functions, are mediated by the
interplay of multiple and spatially overlapping subnetworks. These subnetworks span visuomotor-related areas, the cortico-
cortical and cortico-subcortical interactions of which evolve rapidly and reconfigure over timescales relevant for behavior.
Visuomotor-related functional connectivity dynamics are characterized by sparse connections, nonstationarity, switching dy-
namics, and areal flexibility. We suggest that these properties represent key aspects of large-scale functional networks and
cognitive architectures. j

ignificance Statement

Introduction

The dynamic coordination of neural activity over large-scale net-
works is thought to support cognitive functions (Varela et al,,
2001; Bressler and Menon, 2010; von der Malsburg et al., 2010).
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Growing evidence from fMRI has shown that spontaneous and
task-related activity is composed of multiple and spatially over-
lapping subnetworks that dynamically evolve over tens of sec-
onds to minutes (Hutchison et al., 2013; Yeo et al., 2014; Allen et
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al., 2014; Calhoun et al., 2014; Cole et al., A
2014; Zalesky et al., 2014; Hansen et al.,
2015). Indeed, dynamic network recon-
figuration has been suggested to repre-
sent a fundamental neurophysiological
process supporting executive function
(Bassett et al., 2011; Braun et al., 2015).
A hallmark of executive function is the
ability to rapidly associate arbitrary ac-
tions to visual inputs and internal goals.
This ability, known as arbitrary visuomo-
tor mapping, recruits a large-scale net-
work comprising the sensorimotor and

frontoparietal circuits, in addition to me- N

Baseline

2-3s

Brovelli et al. ® Visuomotor Functional Connectivity Dynamics

- YES

| LATE

Stimulus Delay Outcome
1s 1s 1s

dial prefrontal areas and basal ganglia
(Wise et al.,, 1996; Murray et al., 2000;
Passingham et al., 2000; Wise and Murray,
2000; Hadj-Bouziane et al., 2003; Petrides,
2005). In the current study, the goal was to
investigate whether visuomotor mapping
results from the dynamic interplay of
multiple subnetworks. More precisely, we
tested the hypothesis that multiple sub-
networks reconfigure in a dynamic fash-
ion over timescales relevant for executive
behaviors.

To do so, we exploited the high-
gamma activity (HGA; ranging from ~60
to 150 Hz), which reflects population-
level local neural activity (Ray et al., 2008;
Ray and Maunsell, 2011). In humans,
power modulations in the HGA range are
commonly recorded using MEG and in-
tracranial EEG to map task-related brain
regions (Brovelli et al., 2005; Crone et al.,
2006; Vidal et al., 2006; Ball et al., 2008;
Jerbi et al., 2009; Darvas et al., 2010;
Lachaux et al., 2012; Cheyne and Ferrari,
2013; Ko et al., 2013). In addition, high-
gamma-power modulations can be used
to characterize functional connectivity
(FC) among brain regions supporting
executive functions (Brovelli et al.,
2015).

Here, we predicted visuomotor mapping to reflect an initial
activation of visual circuits mediating the processing of sensory
input, followed by frontoparietal and motor networks for visuo-
motor integration and motor planning. We tested these hypoth-
eses in a group of healthy participants during MEG recordings by
combining FC analysis of atlas-based HGA with methods from
network science and graph theory. In particular, we investigated
the presence of multiple visuomotor-related spatiotemporal pat-
terns through the analysis of FC dynamics (FCD). Intracranial
assessment of HGA activations from MEG was also performed in
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A, Arbitrary visuomotor mapping task. B, MarsAtlas: cortical parcellation displaying the anatomical gradients both in
the rostrocaudal and dorsoventral directions; for a detailed description, see Auzias et al. (2016). €, MarsAtlas: single-subject
exemplar volumetric representation displaying subcortical regions included in the atlas: nucleus accumbens, amygdala, hip-
pocampus, globus pallidus, putamen, caudate nucleus, and thalamus.

three epileptic patients performing the same task during stereo-
EEG (SEEG) recordings.

Materials and Methods

Experimental procedure and data acquisition

Experimental conditions and behavioral tasks. Eleven healthy participants
and three epileptic patients accepted to take part in our study. Healthy
participants were right handed and the average age was ~23 years (SD =
3.8 years); 4 were females and 7 males. All gave written informed consent
according to established institutional guidelines and local ethics commit-
tee, and received monetary compensation (€50). Three patients (one
right-handed female age 29, two right-handed males age 29 and 43)
undergoing presurgical evaluation of drug-resistant epilepsy (Epilepsy
Unit, La Timone Hospital, Marseille, France) participated in this study.
They all gave their informed consent before their participation. The
SEEG study was approved by the institutional review board of the French
Institute of Health. Healthy participants and patients performed the
same behavioral task. Participants were asked to perform an associative
visuomotor mapping task in which the relation between visual stimulus
and motor response is arbitrary and deterministic (Wise and Murray,
2000; Brovelli et al., 2015). As shown in Figure 1A, the task required
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participants to perform a finger movement associated to a digit number:
digit “1” instructed the execution of the thumb, “2” for the index finger,
“3” for the middle finger, and so on. Maximal reaction time was 1 s. After
a fixed delay of 1 s after the disappearance of the digit number, an out-
come image was presented for 1 s and informed the subject whether the
response was correct, incorrect, or too late (if the reaction time exceeded
1s). Incorrect and late trials were excluded from the analysis because they
were either absent or very rare (i.e., maximum two late trials per session).
The next trial started after a variable delay ranging from 2 to 3 s (ran-
domly drawn from a uniform distribution) with the presentation of an-
other visual stimulus. Each participant performed two sessions of 60
trials each (total of 120 trials). Each session included three digits ran-
domly presented in blocks of three trials. The average reaction time was
0.504 * 0.004 s (mean *= SEM).

Anatomical, functional, and behavioral data acquisition in healthy
participants. Anatomical MRI images were acquired for healthy partici-
pant using a 3 T whole-body imager equipped with a circular polarized
head coil. High-resolution structural T1-weighted anatomical image
(inversion-recovery sequence, 1 X 0.75 X 1.22 mm) parallel to the ante-
rior commissure—posterior commissure plane, covering the whole brain,
were acquired. MEG recordings were performed using a 248 magnetom-
eters system (4D Neuroimaging Magnes 3600). Visual stimuli were pro-
jected using a video projection and motor responses were acquired using
a LUMItouch optical response keypad with five keys. Presentation soft-
ware was used for stimulus delivery and experimental control during
MEG acquisition. Reaction times were computed as the time difference
between stimulus onset and motor response. Sampling rate was 2034.5
Hz. Location of the participant’s head with respect to the MEG sensors
was recorded both at the beginning and end of each session to exclude
sessions and/or participants with large head movements. For each session
and participant, the displacement between the beginning and end of a
session was computed. A supine position was chosen to minimize head
movements. This cutoff was decided by considering the spatial distance
between sources (5 mm), as described in the following sections. None of
the participants moved >3 mm during all sessions. Therefore, all partic-
ipants were considered for further analysis.

Anatomical, functional, and behavioral data acquisition in epileptic pa-
tients. The surgical treatment of drug-resistant epilepsy may require di-
rect intracerebral recording of cortical activity IEEG in multiple brain
areas to localize the epileptic tissue to be removed. Before SEEG, all
patients had high-resolution MRI performed with a 3 T Siemens Magne-
tom scanner, including a 3D T1-weighted acquisition. Intracerebral
multiple contacts electrodes (10—15 contacts, length: 2 mm, diameter:
0.8 mm, 1.5 mm apart) were implanted using a stereotactic method. A
postoperative computerized tomography (CT) scan without contrast
was used to verify the absence of bleeding and the location of each re-
cording lead. During this presurgical evaluation period, patients were
asked to participate in our behavioral protocol at the Timone Hospital.
They were seated in a Faraday cage and stimuli were presented on a
display monitor at 70 cm to patient’s eyes with an angular size of 1.26°.
Presentation software was used for stimulus delivery and experimental
control during SEEG acquisition. Motor responses were acquired using a
five-button response pad. SEEG signals were acquired on referential
montage with a sampling frequency of 1000 Hz and an acquisition band-
pass filter between 0.1 and 200 Hz.

Brain parcellation

To map brain activations and FC patterns to specific anatomical brain
networks, single-subject brain parcellation can be created from macro-
anatomical information, such as primary and secondary sulci using ei-
ther volume-based (Lancaster et al., 2000; Tzourio-Mazoyer et al., 2002)
or surface-based (Van Essen and Drury, 1997; Fischl et al., 2002; Desikan
et al., 2006) algorithms. Recent developments now allow single-subject
cortical parcellation complying with a model of anatomofunctional gra-
dients in the rostrocaudal and dorsoventral directions (Auzias et al.,
2013) optimized for functional mapping using HGA (Auzias et al., 2016).
Such an approach allows group-level analyses and comparison between
individual patients and healthy participants in control group. We created
a whole-brain parcellation including cortical (Fig. 1B) and subcortical
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(Fig. 1C) regions based on macro-anatomical information. The identifi-
cation of the cortical regions requires several processing steps. After
denoising using a nonlocal means approach (Coupé et al., 2008), T1-
weighted MR-images were segmented using the FreeSurfer “recon-all”
pipeline (http://freesurfer.net). Gray and white matter segmentations of
each hemisphere were imported into the BrainVisa software and pro-
cessed using the Morphologist pipeline procedure (http://brainvisa.info).
White matter and pial surfaces were reconstructed and triangulated
and all sulci were detected and labeled automatically (Mangin et al.,
2004; Perrot et al., 2011). A parameterization of each hemisphere
white matter mesh was performed using the Cortical Surface Toolbox
(http://brainvisa.info/web/cortical_surface.html). This resulted in a 2D
orthogonal system defined on the white matter mesh constrained by a set
of primary and secondary sulci (Auzias et al., 2013). This parameteriza-
tion naturally leads to a complete parcellation of the cortical surface, the
MarsAtlas model (Auzias et al., 2016).

MarsAtlas complies with the dorsoventral and rostrocaudal trends of
cortical organization (Pandya and Yeterian, 1985; Régis et al., 2005) and
provides a good level of both functional segregation and intersubject
matching for functional analysis using single-trial MEG HGA (Auzias et
al., 2016). The resulting cortical surface parcellation was then propagated
to the volume-based gray matter segmentation using a front propagation
from the surface through the volumetric cortex segmentation (Cachia et
al., 2003), thus producing a volume-based parcellation of the entire cor-
tex. The parcels corresponding to the subcortical structures were ex-
tracted using Freesurfer (Fischl et al., 2002). The subcortical structures
included in the brain parcellation were the caudate nucleus, putamen,
nucleus accumbens, globus pallidus, thalamus, amygdala, and hip-
pocampus. The whole-brain parcellation therefore comprised 96 areas
(41 cortical and 7 subcortical areas per hemisphere; Fig. 1). All of these
processing steps can be performed using the BrainVisa neuroimaging
platform (http://brainvisa.info/web/index.html). MarsAtlas is included
in the cortical surface toolbox.

Single-trial HGA in MarsAtlas

Preprocessing and spectral analysis of MEG and SEEG signals. The prepro-
cessing and spectral analyses steps for MEG and SEEG signals were
identical. Concerning SEEG signals, an electrode’s contacts in the epilep-
togenic zone were excluded from the analysis. SEEG contacts outside of
the epileptogenic zone were chosen for analysis. In addition, epochs with
signs of epileptic activity were removed. MEG and SEEG signals were first
down-sampled to 1 kHz, low-pass filtered to 250 Hz, and then segmented
into epochs aligned on finger movement (i.e., button press). Epoch seg-
mentation was also performed on stimulus onset and the data from —0.5
and —0.1 sbefore stimulus presentation were taken as baseline activity
for the calculation of the single-trial HGA. Artifact rejection was
performed semiautomatically and by visual inspection. For each
movement-aligned epoch and channel, the signal variance and z-value
were computed over time and taken as relevant metrics for the identifi-
cation of artifact epochs. All trials with a variance >1.5¥10-24 across
channels were excluded from further search of artifacts. Metrics such as
the z-score, absolute z-score, and range between the minimum and max-
imum values were also inspected to detect artifacts. Channels and trials
displaying outliers were removed. Two MEG sensors were excluded from
the analysis for all subjects.

Spectral density estimation was performed using multitaper method
based on discrete prolate spheroidal (slepian) sequences (Percival and
Walden, 1993; Mitra and Pesaran, 1999). To extract HGA from 60 to 120,
MEG time series were multiplied by k orthogonal tapers (k = 8) (0.15sin
duration and 60 Hz of frequency resolution, each stepped every 0.005 s),
centered at 90 Hz and Fourier-transformed. Complex-valued estimates
of spectral measures, X.,,..,,(t, k), including cross-spectral density matri-
ces, were computed at the sensor level for each trial n, time #, and taper k.

MEG source analysis and HGA. Source analysis requires a physical
forward model or lead field, which describes the electromagnetic relation
between sources and MEG sensors. The lead field combines the geomet-
rical relation of sources (dipoles) and sensors with a model of the con-
ductive medium (i.e., the head model). For each participant, we
generated a head model using a single-shell model constructed from the
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segmentation of the cortical tissue obtained from individual MRI scans
(Nolte, 2003). Lead fields were not normalized. Sources were placed in
the single-subject volumetric parcellation regions. For each region, the
number of sources nSP was computed as the ratio of the volume and the
volume of a sphere of radius equal to 3 mm. The k-means algorithm (Tou
and Gonzalez, 1974) was then used to partition the 3D coordinates of the
voxels within a given volumetric region into 1S clusters. The sources were
placed at the center of each partition for each brain region. The head
model, source locations and the information about MEG sensor position
for both models were combined to derive single-participant lead fields.
The orientation of cortical sources was set perpendicular to the cortical
surface, whereas the orientation for subcortical sources was left
unconstrained.

Adaptive linear spatial filtering (Van Veen et al., 1997) was used to
estimate the power at the source level. The dynamical imaging of coher-
ent sources (DICS) method was used, a beam-forming algorithm for the
tomographic mapping in the frequency domain (Gross et al., 2001),
which is well suited for the study of neural oscillatory responses based on
single-trial source estimates of band-limited MEG signals (for a series of
reviews, see Hansen et al., 2015). At each source location, DICS uses a
spatial filter that passes activity from this location with unit gain while
maximally suppressing any other activity. The spatial filters were com-
puted on all trials for each time point and session and then applied to
single-trial MEG data. DICS allows the estimate of complex-value spec-
tral measures at the source level, X" ...(t, k) = A(t) XL,,..(t, k), where
A(t) s the spatial filter that transforms the data from the sensor to source
level and XI,,.,.(t, k) is the complex-valued estimates of spectral mea-
sures, including cross-spectral density matrices, computed at the sensor
level for each trial n, time ¢, and taper k (for a detailed description of a
similar approach, see Hipp et al., 2011). The single-trial high-gamma
power at each source location was estimated by multiplying the complex
spectral estimates with their complex conjugate, and averaged over tapers
K Plee(®) = (X ee(t, k) X2 ,co(8, k)%), where angle brackets refer to the
average across tapers and * to the complex conjugate. Single-trial power
estimates aligned on movement and stimulus onset were log transformed
to make the data approximate Gaussian and low-pass filtered at 50 Hz to
reduce noise. Single-trial mean power and SD in a time window from
—0.5and —0.1 s before stimulus onset was computed for each source and
trial and used to z-transform single-trial movement-locked power time
courses. Similarly, single-trial stimulus-locked power time courses were
log transformed and z-scored with respect to baseline period to produce
HGAs for the prestimulus period from —1.6 to —0.1 s with respect to
stimulation for subsequent FC analysis. Finally, single-trial HGA for each
brain region of MarsAtlas was computed as the mean z-transformed
power values averaged across all sources within the same region.

SEEG localization and HGA. Electrodes were localized using the CTMR
toolbox (Hermes et al., 2010). Briefly, postimplant CT scans were coreg-
istered and resliced to the MRI coordinate scans of each subject using
SPM12. A manual procedure was then performed to mark the electrodes
in the co-registered CT space using the CTMR toolbox. The coordinates
of each electrode were transformed to MRI space (1 mm resolution).
Because bipolar derivations were used, the coordinates of the midpoint
between pairs of adjacent electrodes were computed. A cube of 5 mm in
size was placed at these positions (i.e., at the position of the bipolar
derivation) and each voxel of the cube (1 mm resolution) was labeled
according to MarsAtlas. The location of each bipolar derivation was then
labeled according to the label associated to the largest number of voxels
within the cube. Bipolar derivations labeled in the white matter were
excluded from further analyses.

Similarly to MEG HGA estimation, single-trial power estimates in the
high-gamma range (60-120 Hz) aligned on movement and stimulus
onset were log transformed and low-pass filtered at 50 Hz to reduce
noise. Single-trial estimates of high-gamma power were z-transformed
with respect to baseline period from —0.5 and —0.1 s before stimulus
onset. Finally, single-trial HGA for each labeled brain region of MarsAtlas
was defined as the mean z-transformed power values averaged across all
electrodes within the same region.
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Single-trial FCD measures

Power modulations in the high-gamma range reflect the activity of local
neural populations (Ray et al., 2008; Ray and Maunsell, 2011). Here, we
assume that tracking statistical dependencies between HGA from differ-
ent brain regions provides information about how local processing units
coordinate at the large-scale level during cognitive tasks. The goal is not
infer the mechanisms mediating interareal communication. This would
require complementary approaches based on the study of role of neural
oscillations and synchrony for interregional communication (Fries,
2015; Buzsaki and Schomburg, 2015). Rather, the aim was to map task-
related FCD onto anatomical circuits. Given the sparseness of brain
regions sampled with SEEG, FCD was performed exclusively for whole-
brain MEG data.

Linear correlation analysis was used to study the FC between brain
regions. To quantify the evolution of FC over time (i.e., FCD), the Pear-
son’s correlation coefficient between pairs of HGA signals over sliding
windows of 500 ms stepped every 10 ms was computed. The same pro-
cedure was performed across all pairs of brain regions and for each trial.
This resulted in a4D FCD matrix (i.e., regions X regions X time points X
trials) representing the evolution of linear correction across all pairs of
brain areas from —0.7 to 0.7 s around movement onset. The single-trial
FCD matrix was also computed during the prestimulus period, from
—0.8 to —0.1 s before stimulus onset for baseline. Statistical analyses
searched for significant modulations in movement-related FCD with
respect to those in the prestimulus interval.

Statistical analysis

Linear mixed effect (LME) model. Statistical inference of single-trial
HGAs was performed using an LME model approach at the group
level. A LME model was used because they are particularly suited for
the analysis of data collected from multiple subjects (or sessions) for
which it is important to take into account interindividual variability.
These models formalize the relation between a response variable and
independent variables using both fixed and random effects. Fixed
effects model the response variable in terms of explanatory variables
as nonrandom quantities. For example, experimental conditions re-
lated to population mean may be considered as fixed effects. Random
effects are associated with individual experimental units drawn at
random from a population, which may correspond to different par-
ticipants in the study (or experimental sessions). In other words,
whereas fixed effects are constant, random effects are drawn from a
prior known distribution. A LME model is generally expressed in
matrix formulation as follows:

y=XB+Zb+e (1)

where y is the n-by-1 response vector and 7 is the number of observa-
tions, x is an n-by-p fixed-effects design matrix, and B is the fixed-effect
vector of p-by-1, where p is the number of fixed effects, z is an n-by-q
random-effects design matrix, and b is a g-by-1 random-effects vector,
where g is the number of random effects and e is the n-by-1 observation
error. The random-effects vector, b, and the error vector, e, were assumed
to be drawn from independent normal distributions. Parameter esti-
mation was performed using maximum likelihood method, using the
fitlme.m function in the Statistical Toolbox of MATLAB (The Math-
Works). To test for significant modulations in single-trial HGA and
FCD measures around movement onset with respect to the baseline
period, a random-intercept and random-slope LME model was used
as described by the following:

y(t) = Bo(t) + Bi(t) x; + byi(t) + byj(1) z; + (1) (2)

where y(t) = [yu(1), 7(2); - - o Yu(1D); YnA L D2, s+« s Yups D]

For MEG data analysis, y,(j) was a vector containing the baseline
neural activity (i.e., the HGA from single brain regions or FCD values for
single pairs of regions) for all trials and sessions (i.e., data from both
sessions were concatenated, because they were acquired in uninterrupted
succession) for subject j = 1,2 .. .. np, where np is the number of partic-
ipants at time instant ¢. Note that t does not refer to trials, but rather the
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time within each trial. y,,(j, ) was a vector including brain activity
across all trials for subject j at time ¢ with respect to movement onset.

For SEEG data analysis, statistical inference was performed at the
single-participant level due to the limited number of patients and limited
sampling of MarsAtlas regions. However, given that the SEEG experi-
ments were composed of two sessions acquired at different times (~1h
interval), we modeled sessions as random effects. y,,(j) was then a vector
containing the baseline neural activity (i.e., the HGA from single brain
regions) for all trials for sessions j = 1,2 at time instant ¢. As before, ¢ did
not refer to trials, but time within each trial. y,,,(j, t) was a vector includ-
ing brain activity across all trials for session j at time ¢ with respect to
movement onset.

The following statistical analysis was similar for both MEG and SEEG
data. The design matrices contain two columns. The first column is a
vector of ones to model the intercept, and thus it was eliminated from
Equation 2. The second column contains negative ones for baseline trials
and ones for event-related trials, therefore modeling the change with
respect to baseline, or slope, and it is referred as x; and z in Equation 2.
Therefore, the first and third terms in the right side of Equation 2 model
the intercepts, which correspond to the mean values between baseline
and movement-related activity. The second and fourth terms model the
slopes, which are the differences between baseline and movement-related
activity. The f,(#) values are fixed across subjects, whereas the b,;(t)
values model the random variations across subjects (for MEG) or ses-
sions (for SEEG). In other words, the parameter 3, (#) models the change
in neural activity (e.g., HGA or FCD for MEG data) with respect to
baseline at each time point ¢ at the group level; the parameter b,;(#)
models the change in neural activity with respect to baseline for each
participant (or sessions) j and therefore explains the across-subjects (or
across-session) variability for MEG and SEEG data, respectively. The
across-subject and across-session variability was considered of no inter-
est for the scope of the current analyses. We thus analyzed fixed effects.
Given the structure of the fixed-effect design matrix, significant differ-
ences in movement-related neural activity with respect to baseline can
thus be inferred by testing whether B, coefficients are significantly
greater than zero. More formally, the significance of movement-related
modulations was inferred using a ¢ test by testing the null hypothesis H,:
B, =o.

Statistical inference was performed for each time point ¢ and each
brain area for the analysis of HGAs. To account for the multiple-
comparisons problem, the false discovery rate (FDR) was controlled
(Benjamini and Yosef, 1995). For mean HGA statistical analyses, the
number of time points and brain regions were corrected for; for FCD
analyses, the number of time points and for the number of pairs of brain
regions were corrected for. To further assess the validity of our results,
the minimum number of consecutive significant time points required to
reject a null hypothesis of absence of a cluster given a chance probability
Po = 0.5 (two possible outcomes, significant or nonsignificant) were
quantified and only those clusters with a duration that exceeded a given
significance level were kept. Details of the calculation are given in the
appendix of Smith et al. (2004).

The statistical analyses of MEG HGA modulations resulted in a group-
level FCD matrix containing time-evolving - and p-values for each brain
region in MarsAtlas (whole-brain analysis). For brain regions covered by
the SEEG implants, the analysis of HGA modulations produced intracra-
nial validation at the single-participant level. The analysis of FCD from
MEG HGA produced - and p-value time courses for all pairs of brain
regions.

Graph theoretical analysis

Strength of functional link (SFL). To gain insight into the topology of the
task-related functional network arising from group-level MEG analyses,
graph theoretical analyses of the FCD matrix containing the p-values
associated with the LME analysis were performed. The weight or strength
of the evidence of a functional link was defined as the minimum Bayes
factor (BF) associated with such p-values (Goodman, 1999b). The ratio-
nale behind the transformation of p-values to minimum BFs is an at-
tempt to move toward statistical measures that can be better interpreted
(Goodman, 1999a). The BF is a convenient measure of the strength of
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statistical evidence and it can be computed from p-values as BF,, < —1/
(e p In(p)) if p-values satisfy the relation p < 1/e, in which e ~ 2.72. This
estimate provides an upper bound (BF,,) on the BF, and it can be
thought as providing an “optimistic” limit of the BF for a given p-value
(Goodman, 2001; Stephens and Balding, 2009). BFs were log trans-
formed to give a measure that quantifies the strength in the evidence of
the presence of a functional link between two brain regions, SFL = log,,
BF,,. The SFL matrix has the same dimensions of group-level FCD matrix
(i.e., regions X regions X time points). A value between 1 and 2 can be
interpreted as providing strong to very strong evidence of a functional
link (i.e., increase in correlation with respect to baseline), whereas a value
>2 is interpreted as decisive.

Analysis of time-averaged and time-dependent SFL. A caveat of FC
analysis is the dependence of functional links on the threshold chosen
for statistical significance. Therefore, to explore how graph theoreti-
cal measures vary according to significance levels, the SFL matrix was
multiplied with different binary masks obtained from the FDR cor-
rection of the FCD matrix over a wide range from highly significant
values (Prpr-corrected = 9 < 0.001) to nonsignificant (g < 0.99999).
Note that a FDR-adjusted p-value is denoted as a g-value. This pro-
duced several thresholded SFL matrices, each one associated with a
given level of significance.

As a first analysis, the mean SFL matrices were computed over time,
thus giving an adjacency matrix (regions X regions) representing the
mean strength between brain regions at different significance levels. The
density D (the ratio between the number of functional links and
the number of possible connections) was computed as a function of the
g-value. In addition, to identify the most important brain regions in
average SFL graph, the strength of each region (sum of functional links of
a region) and two indicators of centrality, such as the eigenvector cen-
trality EC, defined as the absolute value of the eigenvector associated with
the largest eigenvalue of the adjacency matrix W and it measures the
importance of a region, and the between-ness centrality (BC), which is
equal to the fraction of all shortest paths that pass through a given region,
so0 it measures the number of times a region that acts as a “bridge” were
computed. These measures were, however, computed only at g < 0.05.
Finally, to evaluate the evolution of density of the thresholded FCD, it
was computed for each time slice rather over the averaged FCD. Graph
theoretical measures were computed using the Brain Connectivity Tool-
box (Rubinov and Sporns, 2010).

Detection of functional subnetworks. A critical step in the analysis of
brain networks is the detection of communities, which may correspond
to functional subnetworks. Subnetworks, however, may overlap spa-
tially, such that a given brain region may belong to more than one group.
Link communities, defined as groups of links rather than nodes, provide
an appropriate framework for capturing the relationships between over-
lapping communities while revealing hierarchical organization (Ahn et
al., 2010). To detect time-varying link communities, an approach based
on the analysis of the correlation of edge weights over time, rather than
nodes, was used, similarly to previous works analyzing “cross-links” or
“hyper-edges” (Bassett et al., 2014; Davison et al., 2015).

First, the Pearson linear correlation between significant (at g < 0.05)
pairs of SFL time courses was computed. This produced an adjacency
matrix (number of links in size) representing the temporal correlation
between functional links. Second, the optimal subdivision of such graph
into groups of links was searched for using the Louvain method (Blondel
et al., 2008), which attempts to optimize the “modularity” of a partition
of the network. The Louvain algorithm for modularity maximization is a
nondeterministic heuristic, so it needs to be initialized with random
seeds. In addition, it depends on the resolution parameter vy, which con-
trols over the size and number of communities found (resolution equal
to 1 leads to the standard Louvain method, whereas higher and lower
resolutions produce larger and smaller number of clusters, respectively).
We scanned different resolution parameters from y = 0.5to y = 1.5in
increments of 0.1. At each scale, we ran the Louvain method 250 times to
test whether the nondeterministic nature of the method could produce
nonrobust results. For all pairs of partitions (250*249 in total), similarity,
defined as the z-score of the Rand index (Traud et al., 2011) was com-
puted and averaged across all pairs of partitions. The optimal resolution
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Figure 2.  Statistical map displaying the brain areas associated with a significant increases in HGA with respect to baseline (time point and cluster-level threshold were set to ¢ << 0.001 FDR

corrected). The anatomical labels of subcortical areas are NAc (nucleus accumbens), Amyg (amygdala), Hipp (hippocampus), GP (globus pallidus), Put (putamen), Cd (caudate nucleus), and Thal

(thalamus).

parameter y was associated with the largest average similarity between
partitions. The largest similarity was observed at y = 1. For y = 1, the
consensus partition was studied to identify a single representative parti-
tion from a set of 250 partitions based on statistical testing compared
with a null model. The representative partition is obtained by using a
generalized Louvain algorithm on the thresholded nodal association ma-
trix (Bassett et al., 2013). For our FCD matrix at y = 1, the Louvain
algorithm is extremely stable and the 250 partitions are all identical.
These graph theoretical analyses were performed using the “Consensus
and Comparison Methods” in the Network Community Toolbox
(http://commdetect.weebly.com/).

This approach provides a subdivision of nonoverlapping communities
by maximizing the number of within-group edges and minimizing the
number of between-group edges. Given that community detection was
performed on links, the detected communities represent link communi-
ties in which individual brain areas may participate in multiple overlap-
ping networks. Finally, the mean time course of the SFL averaged across
all links comprising each link community was computed.

Results

Visuomotor-related functional network

The brain regions displaying a significant increase in movement-
related HGA with respect to the mean baseline (averaged from
—0.5 to —0.1 s before stimulus onset) defined the arbitrary
visuomotor-related network (Fig. 2) For cortical regions, the
largest increase in HGA was observed over the left parietal lobe,
primarily over the dorsal (dorsal intraparietal cortex, [IPCd, and
the superior parietal cortex, SPC) and medial (medial superior
and medial parietal cortices, SPCm and PCm, respectively) pari-
etal regions, the dorsal somatosensory areas (Sdl and Sdm) and
the posterior cingulate cortex (PCC). The ventral regions, such as
(IPCv and Sv), displayed a smaller increase relative to the dorsal
and medial territories in the left hemisphere and were not signif-
icant in the right hemisphere. Over the motor, premotor, and
prefrontal areas, the dorsolateral and dorsomedial regions

(PFcdl, PFcdm, PMdl, PMdm, Mdl and Mdm) showed the most
significant increase. In addition, the midcingulate cortex (MCC)
showed significant response bilaterally. The ventral and ventro-
medial prefrontal and orbitofrontal cortices did not display a
strong increase in HGA nor anterior temporal regions. These
cortical modulations are similar to those presented in a previous
study (Auzias et al., 2016), but we replicate them here for
completeness.

The novel finding, however, is the presence of significant
HGA modulations in subcortical areas. The strongest response
was observed in the left hemisphere in the dorsal striatum (cau-
date nucleus and putamen), globus pallidus (GP) and thalamus
(Thal). The thalamus and caudate nucleus displayed a clear bilat-
eral activation, whereas the GP and putamen showed primarily
an activity in the hemisphere contralateral to the motor response.
A significant response was also observed in the right thalamus
and caudate nucleus. No significant increase was seen in other
subcortical areas examined such as the nucleus accumbens,
amygdala, and hippocampus.

Visuomotor-related FCD

The analysis of FCD between all pairs of brain regions of Mars-
Atlas was performed by estimating Pearson’s correlation coeffi-
cients between pairs of single-trial HGA values over sliding
windows of 500 ms stepped every 10 ms. For each participant,
FCD analysis resulted in a 4D matrix (i.e., regions X regions X
time points X trials) representing the evolution of linear correla-
tion across all pairs of brain areas from —0.7 to 0.7 s around
movement onset. Significant modulations in movement-related
FCD with respect to those in the baseline period from —0.8 to
—0.1 s before stimulus onset using an LME approach. Figure 3A
shows the connectivity matrix of the average SFL over time. Note
that p-values were thresholded at g < 0.05 (FDR-corrected) be-
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Figure3.  SFL.A, Mean SFL connectivity matrix averaged over time. B, SFL time course averaged over pairs of areas. The threshold for significant SFL was equal to 2.43. Error bars indicate the 95%

confidence interval.

fore SFL computation, which corresponds to a threshold value of
SFL equal to 2.43. All significant links shows decisive evidence in
FC averaged over time among occipital areas bilaterally with
strong links with parietal regions, in addition to the frontoparie-
tal network. Subcortical regions, especially in the left hemisphere,
showed a strong FC with the rest of the network. Regions in the
temporal lobes, however, were not found to play a key role in the
FC patterns.

To better characterize the evolution of the SFL over time, we
computed the mean SFL across pairs of brain regions displaying a
significant increase in linear correlation (Fig. 3B). The mean time
course displays two peaks of decisive and strong evidence at
~—0.4 and 0.2 s around finger movement. The time intervals
around the two peaks represent moments when FC pattern is
strongest, which correspond to the largest increase in linear cor-
relation between HGA time courses. Given the shape of the
group-level HGA responses shown in Figure 2, the first peak at
—0.4 s reflects the positive covariation in HGA across the whole
network occurring after stimulus presentation and during move-
ment planning (as early as —0.55 in visual areas to ~—0.25 s
before finger movement). Such a common increase in HGA pro-
duces an increase in linear correlation and reflects the emergence
of the FC network. The second peak occurring at 0.2 s reflects a
common return to baseline of the HGA across the whole network
after finger movement (from ~0.05 s to 0.35 s after finger move-
ment). Such a global decrease in HGA from maximal activity
produces an increase in linear correlation, but reflects the disso-
lution of the FC network. Therefore, the two peaks correspond to
the emergence and dissolution of the FC pattern. The decrease in
FC occurring ~—0.12 s to —0.03 s before finger movement cor-
responds to the positive peak of HGA (Fig. 2). Such a decrease in
FC, therefore, does not reflect an absence of HGA, but rather a
maximum of HGA. However, it corresponds to the time interval
when FC lacks any significant covariation. Overall, the analysis of

the FCD time course reveals two key processes such as the cre-
ation and dissolution of FC network.

Graph theoretical analysis of FC network

To gain insight into the properties of the average FC pattern, we
performed graph theoretical analyses of the average SFL matrix
shown in Figure 4A. We investigated graph theoretical measures
of the mean SFL matrices averaged over time at different thresh-
olds (g < 0.001) to nonsignificant (g < 0.99999). Figure 4A
shows the FC network density D (the ratio between the number of
functional links and the number of possible connections) as a
function of threshold g-values. The density of the functional net-
work trivially increase as a function of the threshold; that is, the
more functional links, the higher is the density. The density val-
ues for significant ¢ < 0.05 are <10%, meaning that the func-
tional network is not dense, but sparse. We then computed the
density for each time slice of the FCD. Network density is maxi-
mal (~5%) ~0.4 sand then displays a second peak 0.2 after finger
movement (2% in density), as shown in Figure 4B.

Finally, to identify the most important brain regions in the
average SFL graph, we computed the strength S (sum of func-
tional links of a region), the eigenvector centrality EC, and the BC
atq < 0.05. The strength of a brain area is the simplest measure to
estimate the importance of a node in a network. A natural exten-
sion of strength centrality is eigenvector centrality EC and it
stands on the notion that a node is important if it is linked to by
other important nodes. In fact, a node receiving many links (i.e.,
high strength) does not necessarily have a high eigenvector cen-
trality because it may be linked to node with low strength. There-
fore, EC provides additional information because it computes the
centrality of a node as a function of the centralities of its neigh-
bors. Finally, the BC is equal to the number of shortest paths that
pass through a brain region. Therefore, a region with high BC has
the potential to play a key role in the network. Convergence of
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Table 1. Graph theoretical measures
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S EC BC

Value Region Value Region Value Region
739 Mdm 6.84 Mdm 16.25 Sdm
6.28 Sdm 6.42 Sdm 13.68 Mdm
4.64 Sdl 573 Sdl 9.98 Cu
3.88 PMdI 4.98 Mdl 9.52 VCem
375 VCem 437 PMdI 6.19 Sdl
3.70 Mdl 3.82 d 5.81 Mdl
334 SPC 3.56 VCem 4.80 PMdl
3.25 SPCm 337 SPCm 4.46 IPCd
3.20 Cu 3.20 PFcdm 3.83 SPC
3.3 d 3.05 PCC 34 SPCm

these three metrics provides information about the importance
of different brain regions in the network.

Table 1 shows the brain regions sorted in a descending
order according to S, EC, and BC. The brain areas that com-
monly emerge as relevant across the three measures are the
dorsomedial and dorsolateral sensorimotor regions (Mdm,
Mdl, Sdm), in addition to dorsolateral premotor area (PMdl),
superior parietal regions (SPC, SPCm), and the caudomedial
visual cortex (VCcm).

Dynamic reconfiguration of FC subnetworks

To search for functional subnetworks generating the observe dy-
namics, we performed link community analysis. To do so, we first
computed the Pearson linear correlation between significant (at
q < 0.05) pairs of SFL time courses. Then, we found the optimal
subdivision of such link graph into communities of links using an
algorithm that attempts to optimize the “modularity” of a parti-
tion of the network, named the Louvain method (Blondel et al.,
2008). This approach provides a subdivision of nonoverlapping
communities by maximizing the number of within-group edges
and minimizing the number of between-group edges. Given that
community detection was performed on links, the detected sub-
networks represent link communities, in which individual brain
areas may participate in multiple overlapping networks. The
analysis revealed the presence of three link communities (Fig. 5).
The first link community (LC1) primarily included the visual and
superior and medial parietal regions bilaterally, in addition to the
left dorsomedial and dorsolateral sensorimotor regions (Fig. 5B).
These brain regions form a FC subnetwork emerging ~0.5 s be-
fore finger movement, approximately corresponding to the pro-

cessing of the visual cue (Fig. 5A). The second link community
(LC2) included the left dorsolateral and dorsomedial sensorimo-
tor regions and the dorsal frontoparietal network. Interestingly, it
included the middle and anterior cingulate cortices, the dorso-
medial prefrontal cortex, and the dorstal striatum in the caudate
nucleus (Fig. 5C). LC2 emerged later during the trial and its
maximum of expansion occurred ~100-150 ms after LCI,
—0.35 s before movement. LC3 involved a larger brain network
involving the bilateral sensorimotor regions, the left frontopari-
etal network, and visual areas (Fig. 5D). LC3 showed a strongest
peak after finger movement at 0.2 s, but displayed a peak at —0.4
s. The only regions of the temporal lobe showing significant FC
were the superior and midtemporal cortices in the left hemi-
sphere. However, these regions displayed a relative weak strength
in the observed networks (Fig. 5B-D). Overall, the link commu-
nity analyses allowed us to identify multiple and spatially over-
lapping FC patterns that evolve dynamically during the trial.

We can therefore depict the involvement of key brain regions
in a given link community such as the motor and premotor areas.
Figure 6 shows the contribution of the dorsolateral motor and
dorsal premotor areas, Mdl and PMdl, respectively, in the three
subnetworks as it unfolds over time. Around the presentation of
the visual stimulus, the Mdl primarily participates in the LCI,
which gradually declines over time (blue curve in Fig. 6A,B).
Then, its involvement in LC2 and LC3 increases in parallel, but
peaks earlier for LC2 (red curve in Fig. 6 A, B) rather than for LC3
(green curve). These curves depict the dynamic reconfiguration
of the primary motor area from stimulus onset to motor output.
For the dorsolateral premotor cortex, its contribution peaking for
LC1, followed by LC3 and LC2 (Fig. 6C,D), confirms that the
dynamic engagement in different subnetworks occurs over a
short timescale.

Finally, to quantify the dynamics of reconfiguration among
the three functional subnetworks, we inferred the evolution of
network “flexibility” (following the same ideas developed in
Braun et al,, 2015). We defined the flexibility of a given brain
region as the entropy associated with the probabilities of involve-
ment in the three LCs (shown in Fig. 6 B, D, for Mdl and PMdl,
respectively). Accordingly, node flexibility is maximal for nodes
participating with equal probability in the different LCs and min-
imal for nodes participating in a single LC. Figure 7A shows the
mean dynamics of network flexibility averaged over nodes. Inter-
estingly, it reconfiguration shows a single peak occurring at ~0.4
s before finger movement, which corresponds to the moment
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when the three LCs overlap more strongly in time and space.
Figure 7B shows the mean flexibility averaged over time for the
first five strongest brain regions. The parietal regions (SPC, PCm,
and PPC) display the largest flexibility, together with the dorsal
premotor cortex.

Control analyses and intracranial SEEG validation

The interpretation of FC measures from noninvasive techniques
such as EEG and MEG may suffer limitations, among which vol-
ume conduction and leakage are potential confounds (Bastos and
Schoffelen, 2015). We performed a series of control analyses to
assess the influence of such confounds.

First, we studied the relation between the mean SLF for two
subcortical regions displaying a significant increase in HGA and
FC with cortical regions as a function of their respective distance
to cortical regions. The rationale was to investigate whether vol-
ume conduction and leakage effects could have produced the
observed HGA modulations in subcortical regions and the FC

patterns between deep sources, such as the thalamus and caudate
nucleus and cortical areas. Figure 8 shows that a clear relation
between distance and FC measures (as assessed through the mean
SFL) is lacking for the thalamus (Fig. 8A) and for the caudate
nucleus (Fig. 8B).

Second, we investigated the dipole orientation of all sources
within the thalamus and caudate nucleus. The rationale was that
differences in dipole orientation of nearby regions may suggest
that the estimated HGAs originate from spatially separable brain
structures. We computed the average dipole orientation both for
the thalamus and caudate nucleus. Then, we compared the aver-
age dipole orientations by means of the normalized inner prod-
uct. This measure equals one for identically oriented dipoles
minus one for dipoles pointing in opposite directions and zero
for orthogonal dipoles. The boxplot displayed in Figure 9A de-
picts the distribution of normalized inner products between the
thalamus and caudate nucleus across participants. The values of
normalized inner products span a broad range from —0.45 to
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0.85, with median value around 0.65. Extremely high values of
raw correlation coefficient between subcortical HGAs would also
suggest strong leakage effects. We thus plotted the Pearson cor-
relation coefficient between the HGA at the thalamus and cau-
date nucleus, averaged over sessions and participants (Fig. 9B).
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The value in the prestimulus interval (i.e., ~—0.8 s before finger
movement) was 0.615. The corresponding coefficient of determi-
nation R* was 37,8% (i.e., R* = 0.615 X 0.615 = 0.3782) and
equals the proportion of the variance in HGA shared by the thal-
amus and caudate nucleus.

Finally, to assess the relevance of cortical HGA modulations,
we asked three patients candidate for surgical treatment of drug-
resistant epilepsy to perform the same visuomotor task while
recording SEEG in multiple brain areas. HGA from intracranial
recordings in epileptic patients is largely exploited for cognitive
mapping and represents an optimal opportunity to validate MEG
results. Results from single-patient SEEG cannot be taken as rep-
resentative of the population, contrary to group-level MEG re-
sults. In fact, we cannot exclude that across-subject variability is
due to either physiological and/or pathological factors. However,
SEEG data provide direct measures of intracranial HGA, free
from alteration due to volume conduction or limitation of source
imaging tools. Therefore, they provide important additional ev-
idence to support the significance of the MEG results.

Electrodes were localized by combing postimplant CT scans
with presurgical anatomical MRI scans and were labeled accord-
ing to MarsAtlas (see Materials and Methods). Single-trial HGA
for each labeled brain region of MarsAtlas was defined as the
mean z-transformed power values averaged across all electrodes
within the same region. To increase the local specificity of SEEG
recordings, bipolar derivations were performed among adjacent
contacts. Statistical analyses were performed separately for each
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Table 2. SEEG activations

Parcel Peak Peak Peak Patient
name p-value t-value time (s) Time interval (s) no.
L Mdm 3.42E-20 11.43 —0.175 —0.28 0.125 1
RSPC 8.76E-20 11.15 —0.22 —0.44 0.2 3
RPMdm 1.41E-17 10.27 —0.34 —0.62 —0.06 2

L PMdm 5.65E-17 10 —0.29 —0.455 0.155 1
RSPCm 4.85E-17 9.96 —0.045 —0.275 0.05 3

L Mdl 2.21E-15 9.29 —0.435 —0.555 —0.315 1

R Mdl 1.52E-14 8.92 —0.165 —039 0.055 2
R PMrv 6.70E-14 8.63 —0.145 —05 0.155 2
LSdl 1.29E-12 8.05 0.045 —0.225 0.26 1
RIPCd 1.69E-12 7.96 —0.28 —0.415 —0.135 3

L PMdI 4.22E-12 7.82 —0.315 —0.45 —0.185 1

R Mv 2.78E-11 7.44 —0.02 —0.44 0.18 2
R Mdl 9.89E-08 572 —0.475 —0.51 —04 2

patient. Twelve brain areas across the three patients were found
to display a significant increase in HGA (Table 2; ¢ < 0.05). These
included the dorsomedial and dorsolateral motor cortex, the dor-
solateral somatosensory region, and the dorsal frontoparietal
network (SPC, SPCm, PMdl, and PMdm). In patient 2, the ven-
tral portions of the motor and premotor areas were significantly

active. Note that the SEEG implant did not cover the entire brain,
but selected regions in the frontoparietal network.

We then compared the average time course of single-patient
HGA modulations with those from the MEG group-level analyses
(Fig. 10). Seven of 12 regions displayed a strong (larger than 0.65)
linear correlation between the group-level MEG results and the
single-patient SEEG time courses. The most striking similarity
was observed for brain regions of the sensorimotor cortices and
the dorsal frontoparietal network. Overall, these results confirm
that the increase in HGA observed in the MEG data over senso-
rimotor cortices and the dorsal frontoparietal network results
from area-specific increases in HGA, rather than by leakage from
nearby regions displaying a strong response.

Discussion

Brain network and interactions of visuomotor mapping
Previous analyses of arbitrary visuomotor-related FC have shown
that parietal areas play a driving role in the network, whereas
premotor areas act as relays from parietal to medial prefrontal
cortices, which participate as receivers (Brovelli et al., 2015). Such
an approach, however, neither considered the time-evolving na-
ture of FC patterns nor analyzed the involvement of subcortical
areas. Our whole-brain and time-dependent brain connectivity
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Figure 10.  SEEGvalidation of HGA modulations. Comparison between SEEG single-subjects t-value for HGA (blue) and group-level MEG results (red curves). Subject number, brain areas, and the

correlation coefficient between the curves are indicated on the top of each panel.

analyses showed that visuomotor mapping resides in three dis-
tinct and partly overlapping subnetworks with time-evolving
cortico-cortical and cortico-subcortical interactions. Approxi-
mately 0.5 s before finger movement, visual and parietal regions
coordinate with sensorimotor and premotor areas (LC1 in Fig.
5B; blue curve in Fig. 5A). Subsequently, the sensorimotor re-
gions, the dorsal frontoparietal circuit, the medial prefrontal re-
gions, the basal ganglia, and the thalamus (LC2 in Fig. 5C)
dominated the FC pattern. The dorsal frontoparietal circuit,
known to support visuomotor transformations and goal-directed
attentional processes (Wise et al., 1996; Wise and Murray, 2000;
Corbetta and Shulman, 2002; Culham and Valyear, 2006), is
tightly coupled with the sensorimotor and associative frontos-
triatal circuit for a brief period around 0.35 s before action (red
curve in Fig. 5A). This FC network includes medial prefrontal
areas, such as the dorsomedial prefrontal cortex (PFCdm), mid-
cingulate cortex (MCC), anterior cingulate cortex (ACC) and
rostro-medial prefrontal (PFrm), with a strongest increase in
HGA in the MCC and PFCdm (Fig. 2). The involvement of
medial prefrontal areas may correspond to the activation of
visuomotor-related neural populations of the rostral cingulate
zone (RCZ), a key node of the human motor system (Picard and
Strick, 1996; Amiez and Petrides, 2014). At the subcortical level,
the dorsal striatum (caudate nucleus and putamen), globus pal-
lidus and thalamus displayed the strongest HGA in the hemi-
sphere contralateral to the motor response (Fig. 2). Indeed,
intracranial recordings from patients with motor disorders have
described HGA in the subthalamic nucleus (Amirnovin et al,,
2004; Alegre et al., 2005; Androulidakis et al., 2007; Lalo et al,,
2008), globus pallidus (Tsang et al., 2012) and thalamus (Briicke
et al., 2013) during different types of motor behaviors. High-
gamma oscillatory activity in the subthalamic nucleus (STN) and
globus pallidus (GP1i) has been found to be coherent with cortical
activity during voluntary movement (Cassidy et al., 2002; Brown,
2003). Granger causality analysis also showed that STN drives
activity in M1 (Litvak et al., 2012), thus suggesting that HGA in
motor areas is due to propagating activity from the basal ganglia
through the thalamus (Briicke et al., 2013). Our results showed
that the caudate nucleus and thalamus are coupled with the sen-
sorimotor cortex and the dorsal frontoparietal networks (LC2 in
Fig. 5C), thus confirming a dynamic coordination between cor-
tical and subcortical regions also during visuomotor behaviors

most prominently during the planning phase before movement
initiation.

Several lines of evidence suggest that the reported subcortical
activations are primarily local, rather than due to leakage from
cortical areas. First, we observed that the putamen significantly
activated only in the left hemisphere, whereas the thalamus was
activated bilaterally (Fig. 2). If the bilateral activation in the thal-
amus were due to leakage from cortical areas, we would have
expected a bilateral activation also in the putamen, given that the
thalamus is deeper than the putamen. Second, no significant
correlation was found between the SFL and distance for the thal-
amus and caudate nucleus (Fig. 8). Third, the average dipole
orientation for the thalamus and caudate nucleus are significantly
different (i.e., the normalized inner product is < 1) and the dis-
tribution of values covers a wide range from —0.45 to ~0.85. This
suggests that the thalamus and caudate nucleus lack a systematic
similarity in dipole orientation (Fig. 9A). Fourth, the mean Pear-
son correlation values and the corresponding coefficient of
determination do not saturate at high values and show a modu-
lation similar to the average time course of FCD (Fig. 9B). This
suggests a lack of strong covariance, as would be expected if leak-
age effects were dominating.

Nevertheless, we cannot a priori exclude that the observed
subcortical increases in HGA and FC patterns may be due to
complex configurations of cortical activations. Indeed, we sug-
gest that HGA estimation at subcortical areas and FC analysis
should not be performed blindly. Rather, the analysis of raw cor-
relations and dipole orientations provide important insight into
the origin of the results. Experimentally, simultaneous MEG and
subcortical measures of HGA from intracranial recordings would
be required to confirm or disprove the ability of MEG to capture
subcortical HGA and FC.

Overall, our result suggests that the basal ganglia form a dy-
namic functional network, which may allow the coordination
within and across different processing streams in the basal ganglia
(Brown, 2003) and facilitate motor output (Cheyne and Ferrari,
2013). The involvement of sensorimotor and associative fronto-
striatal circuits, classically thought to be involved in habits (Yin
and Knowlton, 2006; Graybiel, 2008; Ashby et al., 2010), also
suggests that performance of arbitrary visuomotor mappings can
be viewed as a form of acquainted instrumental behavior (Brov-
ellietal., 2015), the gradual consolidation of which would lead to
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the formation of habitual responses (Dickinson, 1985; Dickinson
and Balleine, 1993). We therefore suggest that the FCD pattern
observed for LC2 depicts how motor plans circulate in the senso-
rimotor and associative cortico-striatal loop in coordination with
frontoparietal circuits.

Finally, a last subnetwork (LC3 in Fig. 5D) primarily emerging
after motor response peaking around 0.2 s (green curve in Fig.
5A) that is involved in the bilateral sensorimotor regions, the left
frontoparietal network, and visual areas. The involvement of bi-
lateral sensorimotor regions indicates that this network mediates
cortico-cortical interhemispheric coordination processes via the
corpus callosum. Such interhemispheric coupling may support
the selective inhibition of inappropriate responses occurring be-
tween motor and premotor cortices across hemispheres in situa-
tions when multiple choices are available (Duque et al., 2013;
Burle et al., 2016). Alternatively, this network may be involved in
the processing of the somatosensory reafference at the end of the
movement and/or the processing action’s outcome.

To exclude potential confounds due to volume conduction or
limited spatial resolution of MEG and beam-forming technique
(Bastos and Schoffelen, 2015), we showed that local field poten-
tials derived from SEEG recordings displayed a significant in-
crease in HGA in these regions (Fig. 10, Table 2). We confirmed
invasively that brain regions of the dorsal frontoparietal network
and the sensorimotor and/or associative frontostriatal circuits
display local increase in HGA, which do not result from volume
conduction effects.

Toward a better understanding of cognitive architectures

We computed the density of the thresholded FC and FCD graphs
as a function of significance threshold (Fig. 4) using the FDR-
controlling procedure to estimate the relevant range of g-values.
For q < 0.05, the density of the visuomotor-related FC network is
<10% (~5% for g < 0.05). This shows that visuomotor-related
EC is not dense, but sparse. Future work on the relation between
structural and FC may provide clues of how anatomical connec-
tivity between brain areas shapes how neural information flows
and constrains the dynamics of FC patterns.

A second characteristic of FC is its nonstationarity nature.
Indeed, fMRI investigations have shown that resting-state net-
works display nonstationarity and evolve dynamically over tens
of seconds to minutes (Hutchison et al., 2013; Yeo et al., 2014;
Allen et al., 2014; Calhoun et al., 2014; Cole et al., 2014; Zalesky et
al., 2014; Hansen et al., 2015). Interareal phase synchronization is
known to display nonstationarity and to underlie perception and
executive functions (Pesaran et al., 2008; Hipp etal., 2011; Salazar
et al., 2012). Our results further support the notion that FC is
nonstationary and evolves over timescales relevant for visuomo-
tor integration in the order of tens to hundreds of milliseconds
(Figs. 3B, 5). Modeling studies of resting-state activity suggest
that nonstationarity arises from the out-of-equilibrium sampling
of alternative dynamical modes (Deco and Jirsa, 2012; Deco et al.,
2015; Hansen et al., 2015). Switching between collective dynam-
ical states has the potential to induce network-wide reorganiza-
tion of information sharing and routing patterns and thus
provides an effective mechanism for flexible interareal commu-
nication (Battaglia et al., 2012; Kirst et al., 2016). We suggest that
such underlying mechanisms mediating spontaneous large-scale
dynamics may also underlie task-related activity at shorter time-
scale. In addition, our results may provide the basis for linking
similar patterns of FCD that have been observed, albeit over dif-
ferent timescales, during visuomotor learning (Bassett et al.,
2011; Heitger et al., 2012).
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A third characteristic of FCD is the presence of multiple and
spatially overlapping subnetworks. Each brain area can partici-
pate in multiple subnetworks depending of task demands. In
analogy to the concept of cell assembly, where single neurons can
participate in multiple functional populations depending on
context, a subnetwork may be viewed as a brain assembly. A brain
assembly would constitute a dynamic entity, the constituents of
which engage in multiple subnetworks in a time-dependent man-
ner (Fig. 6). Spatially, areal flexibility was larger for associative
parietal regions such as the SPC, PCm, and PPC, together with
the dorsal premotor cortex, which represent the core cortical
network for visuomotor transformation (Fig. 7B). Temporally,
network flexibility showed a maximum around 0.4 s before finger
movement, which corresponds to the moment when the three
subnetworks interact more strongly (Fig. 7A). We therefore sug-
gest that visuomotor integration processes occur at this time in-
terval, when the level of interactions between multiple brain
assemblies is strongest.

To conclude, our study confirms that executive functions
arise from the dynamic coordination of neural activity over large-
scale networks (Varela et al., 2001; Bressler and Menon, 2010; von
der Malsburg et al., 2010). More precisely, the results supports
the notion that functional specialization is due to the interplay of
multiple and spatially overlapping subnetworks, rather than
properties of single brain regions (Fedorenko and Thompson-
Schill, 2014; Petersen and Sporns, 2015). Future work investigat-
ing how subnetworks participate differently depending on task
demands may provide a better understanding of the cognitive
architectures of executive functions (Dehaene et al., 2015).
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