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Newly Formed Endothelial Cells Regulate Myeloid Cell
Activity Following Spinal Cord Injury via Expression of
CD200 Ligand
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The central nervous system (CNS) is endowed with several immune-related mechanisms that contribute to its protection and mainte-
nance in homeostasis and under pathology. Here, we discovered an additional mechanism that controls inflammatory responses within
the CNS milieu under injurious conditions, involving CD200 ligand (CD200L) expressed by newly formed endothelial cells. We observed
that CD200L is constitutively expressed in the mouse healthy CNS by endothelial cells of the blood- cerebrospinal fluid barrier and of the
spinal cord meninges, but not by the endothelium of the blood-spinal cord barrier. Following spinal cord injury (SCI), newly formed
endothelial cells, located only at the epicenter of the lesion site, expressed CD200L. Moreover, in the absence of CD200L expression by
CNS-resident cells, functional recovery of mice following SCI was impaired. High throughput single-cell flow cytometry image analysis
following SCI revealed CD200L-dependent direct interaction between endothelial and local CD200R ™ myeloid cells, including activated
microglia and infiltrating monocyte-derived macrophages (mo-M®). Absence of CD200L signaling, both in vitro and in vivo, resulted in
a higher inflammatory response of the encountering macrophages, manifested by elevation in mRNA expression of Tnfa and I113,
increased intracellular TNFa immunoreactivity, and reduced expression levels of macrophage factors that are associated with resolution
of inflammation, Dectin-1, CD206 (mannose receptor), and IL-4R. Collectively, our results highlight the importance of CD200-mediated
immune dialogue between endothelial cells and the local resident microglia and infiltrating mo-M® within the lesion area, as a mecha-
nism that contributes to regulation of inflammation following acute CNS injury.
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This manuscript focuses on a novel mechanism of inflammation-regulation following spinal cord injury (SCI), orchestrated by
CD200-ligand (CD200L) expressed by newly formed endothelial cells within the lesion site. Our study reveals that, in homeostasis,
CD200L is expressed by endothelial cells of the mouse blood- cerebrospinal fluid barrier and of the blood-leptomeningeal barrier,
but not by endothelial cells of the blood-spinal cord barrier. Following SCI, newly formed endothelial cells located within the
epicenter of the lesion site were found to express CD200L at time points that were shown to be critical for repair. Our results
reveal a direct interaction between CD200L " endothelial cells and CD200R " microglia and macrophages, resulting in
attenuated inflammation, biasing macrophage phenotype toward inflammation-resolving cells, and promotion of func-
tional recovery following SCI. j
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Introduction
The fate of the central nervous system (CNS), in homeostasis and
following injury, is influenced by circulating and resident immune
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mune cells, the microglia, is critically dependent on specialized reg-
ulatory mechanisms within the CNS microenvironment. Among
those unique mechanisms are the constitutive expression of the
anti-inflammatory molecule TGFB1 (Cohen et al., 2014), MAFB
expression by microglia (Matcovitch-Natan et al., 2016), and
neuron-microglia interactions, such as that of CX;CL1/CX;CR1
and the CD200-ligand (CD200L)/CD200-receptor (CD200R)
(Biber et al., 2007; Ransohoff and Perry, 2009; Kierdorf and Prinz,
2013; Linnartz and Neumann, 2013; Limatola and Ransohoff, 2014;
Lampron et al., 2015).

CD200L (OX2) is a membrane glycoprotein widely expressed
by a variety of cells, including thymocytes, circulating B
cells, some peripheral T cells, follicular dendritic cells, endothe-
lium, placental trophoblasts, smooth muscle cells, lung epithe-
lium, neurons, astrocytes, and oligodendrocytes (Barclay et al.,
2002; Snelgrove et al., 2008; Koning et al., 2009). The CD200R,
which contains cytoplasmic tyrosine residue domains that regu-
late the inflammatory response (Gorczynski et al., 2004; Zhang et
al., 2004; Mihrshahi et al., 2009; Mihrshahi and Brown, 2010), is
expressed by mouse macrophages, dendritic cells, neutrophils,
basophils, mast cells, and by human and mouse T- and
B-lymphocytes (Rijkers et al., 2008) and NK cells (Wright et al.,
2003). The CD200R expressed by myeloid cells can modulate
their function, via the interaction with CD200L, by attenuating
inflammatory responses (Hoek et al., 2000; Snelgrove et al., 2008;
Rygiel et al., 2012; Vaine and Soberman, 2014).

In the CNS, the interaction between neuronal CD200L and
microglial CD200R is important for regulating microglial func-
tion (Hoek et al., 2000; Broderick et al., 2002; Zhang et al., 2011).
Impaired CD200L-CD200R signaling leads to tissue damage de-
rived from microglia-induced inflammation, and is associated
with increased susceptibility to autoimmune and neurodegen-
erative diseases (Hoek et al., 2000; Broderick et al., 2002; Frank et
al., 2006; Koning et al., 2007; Walker et al., 2009; Zhang et al.,
2011).

Repair processes within the CNS following spinal cord injury
(SCI) differ from those taking place in peripheral wound healing.
Peripheral wound healing involves an efficient proinflammatory
to anti-inflammatory phenotype switch, or timely regulated re-
cruitment of anti-inflammatory cells, such as monocyte-derived
macrophages (mo-M®), leading to resolution of the inflamma-
tory response, needed for an efficient spontaneous repair process
in term of regeneration and tissue restoration (Martin, 1997;
Singer and Clark, 1999; Auffray et al.,, 2007; Shechter et al.,
2013a). In contrast, following acute CNS insult, the primary
spontaneous inflammation, mediated by the microglia, often fails
to be adequately resolved, leading to secondary degeneration of
the surrounding tissue and resulting in additional neuronal tissue
loss. Under such conditions, infiltrating mo-M® have been
shown to exert beneficial function by promoting repair (Rapalino
et al., 1998; Shechter et al., 2009, 2013a; London et al., 2011,
2013a; Cohen et al., 2014).

Here, we identified a novel mechanism of inflammation-
resolution, orchestrated by newly formed endothelial cells via
their expression of CD200L following acute CNS injury in mice.
CD200L was found to be differentially expressed by endothelial
cells at the various CNS borders during homeostasis. Thus, while
the endothelial cells of the mouse blood—CSF barrier and of the
meninges constitutively express CD200L, the blood—spinal cord
barrier endothelium hardly expresses this ligand. Following SCI,
CD200L expression was upregulated by only newly formed en-
dothelial cells, located within the epicenter of the lesion site.
CD200L™ CNS resident cells were found to be important in re-
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covery from SCI. Moreover, we detected direct interaction be-
tween endothelial cells and CD200R™ myeloid cells (mo-M® or
microglia) at the epicenter of the lesion site, which involved
CD200L signaling. This interaction was shown here to play an
important role in regulation of inflammation and promotion of
inflammation-resolving processes.

Materials and Methods

Animals. Adult 8- to 10-week-old male C57BL/6J and CD200L "/~ (Hoek
et al., 2000) mice, a kind gift of Prof. Neil Barclay (Sir William Dunn
School of Pathology, University of Oxford, Oxford, UK), were used.
C57BL/6-Tg (ACTbEGFP)10sb/] mice (Okabe et al., 1997) provided a
source of B-actin-GFP bone marrow (BM). Animals were supplied by the
Animal Breeding Center of the Weizmann Institute of Science. All ani-
mals were handled according to the regulations formulated by the Insti-
tutional Animal Care and Use Committee.

SCI. The spinal cords of deeply anesthetized mice were exposed by
laminectomy at T12, and contusive (200 kdynes) centralized injury was
performed using the Infinite Horizon spinal cord impactor (Precision
Systems), causing bilateral degeneration without complete penetration
of the spinal cord. The animals were maintained on twice-daily bladder
expression. Animals that were contused in a nonsymmetric manner (two
or more grades in 0—9 score difference) were excluded from the experi-
ments that tested functional recovery. All animals were included in the
histological and flow cytometry analyses.

BM radiation chimeras. CD200L™/~ > wild-type (WT) and WT >
CD200L ™/~ BM chimeras were prepared by subjecting mice to lethal
whole-body irradiation (950 rad) while shielding the brain. On the day
following irradiation, the mice were injected with 5 X 10° BM cells
harvested from the hindlimbs (tibia and femur) and forelimbs (hu-
merus) of WT or CD200L ™/~ donor mice. BM cells were obtained by
flushing the bones with Dulbecco’s PBS under aseptic conditions, and
were then collected, washed, and centrifuged (10 min, 1250 rpm, 4°C).
After irradiation, mice were maintained on drinking water fortified with
cyproxin for 1 week to limit opportunistic infection. The chimeric mice
were subjected to SCI 8—10 weeks after BM transplantation.

Assessment of functional recovery from spinal cord contusion. Functional
recovery was evaluated by hindlimb locomotor performance, assessed
according to the open-field Basso Mouse Scale (BMS) (Basso et al., 2006),
with nonlinear scores ranging from 0 (complete paralysis) to 9 (normal
mobility); each score represents a distinct motor functional state. Blind
observers, who were not aware of the identity of the mice or the treat-
ments that they received, examined the animal motor function, and the
final scores were calculated as the average of both legs. In cases in which
the position of the leg did not correspond exactly to the distinct motor
functional scale values of the BMS, half scores were given. Locomotor
activity in an open field was monitored twice a week by placing the mouse
for 4 min at the center of a circular enclosure (diameter 90 cm, wall height
7 cm) made of molded plastic, with a smooth, nonslippery floor. Before
each evaluation, the mice were carefully examined for peritoneal infec-
tion, wounds in the hindlimbs, and tail and foot autophagia.

Immunohistochemistry. Mice were killed by an overdose of anesthesia
and were perfused with PBS via the left ventricle. For whole-mount stain-
ing of the choroid plexus and meninges, isolated tissues were fixed with
4% PFA for 1 or 24 h, respectively, and subsequently transferred to PBS
containing 0.05% sodium azide. Before staining, the dissected tissues
were washed with PBS, blocked with a mixture of 20% horse serum, 0.3%
Triton X-100 (Sigma-Aldrich), and stained with the following primary
antibodies: goat anti-CD200L (1:40; R&D Systems) and rat anti-CD31
(1:40; BD Biosciences PharMingen) in the presence of 2% horse serum
and 0.3% Triton X-100. Secondary antibodies included Cy2-conjugated
donkey anti-rat (1:150; Jackson ImmunoResearch Laboratories) and
Cy3-conjugated donkey anti-goat (1:200; Jackson ImmunoResearch
Laboratories). Each step was followed by three washes in PBS. The tissues
were mounted onto slides, using Immu-Mount (Thermo), and sealed
with coverslips.

For staining of sectioned spinal cords and brains, two different tissue
preparation protocols (paraffin-embedded and floating sections) were
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applied. The tissues were blocked with M.O.M. immunodetection kit
reagent (Vector Laboratories) containing 0.1% Triton X-100 (Sigma-
Aldrich), and stained with the following primary antibodies: rabbit anti-
Glial fibrillary acidic protein (GFAP) (1:400; Dako), rabbit anti-Ionized
calcium binding adapter molecule-1 (Iba-1) (1:300; Wako), goat
anti-CD200L (1:40; R&D Systems), goat anti-CD200R1 (1:100; R&D
Systems), rat anti-CD31 (1:40; BD Biosciences PharMingen), rabbit anti-
BIII tubulin (1:5000; Covance), mouse anti-Neuronal Nuclei (NeuN)
(1:150; Millipore Bioscience Research Reagents International), rabbit
anti-Ki67 (1:100; Abcam), and chicken anti-vimentin (1:500; Millipore);
Fluorescein isothiocyanate (FITC)-conjugated Bandeiraea simplicifolia
isolectin B4 (1:40; Sigma-Aldrich) was added for 1 h to the secondary
antibody solution. Secondary antibodies included Cy-2-conjugated don-
key anti-mouse, Cy-2-conjugated donkey anti-rabbit, Cy-2-conjugated
donkey anti-rat (1:150; Jackson ImmunoResearch Laboratories),
Cy-3-conjugated donkey anti-goat (1:200; Jackson ImmunoResearch
Laboratories), Cy-5-conjugated donkey anti-rabbit (1:150; Jackson Im-
munoResearch Laboratories), and Cy-5-conjugated donkey anti-rat (1:
150; Jackson ImmunoResearch Laboratories). In some staining
experiments, the slides were exposed to Hoechst for nuclear staining
(1:2000; Invitrogen) for 30 s.

Flow cytometry analysis and sorting. Mice subjected to SCI were killed
by an overdose of anesthesia, and their spinal cords were prepared for
flow cytometric analysis by perfusion with PBS via the left ventricle. The
injured segments of the spinal cords were dissected from individual mice
(parenchymal segments spanning 0.3 mm from each side of the lesion
site), and tissues were homogenized using a software controlled sealed
homogenization system (Dispomix, Medic Tools; Miltenyi). The cells
were separated using 40% Percoll (GE Healthcare) and centrifuged at
2000 rpm for 20 min at room temperature. All samples were filtered
through an 80 um nylon mesh and blocked with Fc-block CD16/32 (BD
Biosciences). Next, samples were stained using the following antibodies:
FITC-conjugated CD11b, peridinin chlorophyll protein (PerCP) Cy5.5-
conjugated Ly6C, and Allophycocyanin (APC)-conjugated CD200R1
(eBioscience); Pacific Blue-conjugated CD45.2, APC-conjugated
CD45.2, FITC-conjugated CD206, phycoerytherin (PE)-conjugated
TNFa, APC-conjugated Ly6C, and PE-conjugated CD200L (Biolegend);
PE-conjugated CD200L, PE-conjugated isotype control Rat IgG1, and
AlexaFluor-645-conjugated Dectin-1 (AbD Serotec); PE-conjugated IL-
4Ra (R&D Systems). Cells were analyzed on a FACS-LSRII cytometer
(BD Biosciences) using BD FACSDIVA software (BD Biosciences) and
FlowJo software (FlowJo). For intracellular TNFa detection, cells were
purified from spinal cords 7 d following SCI, and incubated with DMEM
(Biological Industries) supplemented with 5% FCS, 1 mum L-glutamine,
100 U/ml penicillin, 100 mg/ml streptomycin, and Golgi-stop (1:1000;
BD Biosciences) for 3 h at 37°C, to enable expression of intracellular
cytokines and to prevent their extracellular secretion. Cells were washed,
fixed, permeabilized, and stained for surface and intracellular proteins,
using Cytofix/Cytoperm kit, according to the manufacturer’s instruc-
tions (BD Biosciences).

For sorting experiments, GFP* BM-M® (CD45"CD11b™) were
sorted from in vitro cocultures using SORP-FACS (BD Biosciences) into
100 ul of FACS buffer (PBS supplemented with 1% FCS, 0.5% NaO;, and
0.04 mm EDTA).

High-throughput single-cell flow cytometry image analysis (Image
Stream). Mice subjected to spinal cord injury were killed after 7 d by an
overdose of anesthesia and perfused with PBS via the left ventricle. A
parenchymal segment spanning 0.3 mm from each side of the lesion sites
was dissected, and tissues were homogenized using a software controlled
sealed homogenization system (Dispomix, Medic Tools; Miltenyi). Cells
were treated with a mixture of Collagenase IV (1 mg/ml; Worthington)
and DNase (30 U/ml; Sigma-Aldrich) and diluted with PBS for 45 min on
a shaker at 37°C. The cells were washed with cold PBS and treated with a
mixture of Collagenase IV (1 mg/ml; Worthington), Dispase (1 mg/ml;
Roche), and DNase (10 U/ml; Sigma-Aldrich), for 1 h on a shaker at
37°C. Following washing with cold PBS, cells were centrifuged with 30%
Percoll (GE Healthcare) at 2000 rpm, 20 min, at 20°C. Cells were washed
and incubated with RPMI medium (Biological Industries), supple-
mented with 10% FCS, 1 mm L-glutamine, 100 U/ml penicillin, and 100
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mg/ml streptomycin for 20 min at 37°C, to enable conjugate formation.
Cells were washed gently, centrifuged, and fixed using Cytofix/Cytoperm
(BD Biosciences) for 20 min at room temperature. Following two washes
with BD-perm wash buffer (BD Biosciences), cells were FC blocked, and
stained for the specific surface markers: FITC-conjugated CD11b, Allo-
phycocyanin (APC)-conjugated CD200R1, Pacific Blue-conjugated
CD45.2, PE-conjugated CD200L, and PE-cy7-conjugated CD31. Each
sample, which was derived from a pool of 5 mice, was examined by
imaging flow cytometry using the ImageStreamX (Amnis-part of EMD
Millipore). At least 10° cells were collected from each sample. Images
were analyzed using IDEAS 6.0 software (Amnis). Cells were gated for the
conjugated population using the Gradient RMS feature (George et al.,
2006). CD457CD11b™ cells were gated according to their pixel intensi-
ties and then further gated for CD317 cells. To identify cell conjugates of
CD457CD11b™ myeloid cells with CD11b ~CD31 * endothelial cells, the
DeltaCentroid XY feature was used, which calculates the geometric dis-
tance between the centers of two staining foci. The gate was verified by
visual inspection to include only cell conjugates that had the appropriate
distance between the CD31-CD45 and CD11b-CD45 staining. Because
of the large heterogeneity in size and morphology of the cells and the
conjugates, the identified conjugates were further visually inspected by
two examiners in a blinded manner.

BM macrophage culture. GFP™ BM progenitors were harvested from
C57BL/6-Tg (ACTbEGFP)10sb/] mice and cultured for 7 d on Petri
dishes (0.5 X 10 cells/ml) in RPMI-1640 supplemented with 10% FCS,
1 mM L-glutamine, 1 mm sodium pyruvate, 100 U/ml penicillin, 100
mg/ml streptomycin, and 50 ng/ml monocyte-colony-stimulating factor
(M-CSF; Peprotech). On day 4, the cells were treated with fresh M-CSF
(50 ng/ml). On day 7, cells were mechanically detached with cold PBS
and replated on 24-well tissue culture plates (0.2 X 10 cells/ml; Corn-
ing) for 1 d before treatments (described below).

In vitro cultures. The b.END3 cell line (a kind gift of Dr. Dan Frenkel,
Tel-Aviv University, Tel-Aviv, Israel) was grown in 25 cm? cell-culture
flasks (Greiner bio-one) in culture medium [DMEM (high glucose) me-
dium (Biological Industries) supplemented with 10% FCS, 1 mm
L-glutamine, 1 mM sodium pyruvate, 100 U/ml penicillin, 100 mg/ml
streptomycin, and 1% MEM nonessential amino acids (Biological Indus-
tries)]. The GFP™ BM-M® were cultured in 24-well dishes with or with-
out b.END3 cells, in BM-M® media with 10 ng/ml M-CSF, with or
without 50 pg/ml CD200L inhibitor (LENTFGSQKVSGT, based on the
CDR3 g’ peptide; GL Biochem) (Chen et al., 2005; Gorczynski et al.,
2008). After 24 h, the cells were treated with 100 ng/ml lipopolysaccha-
ride (LPS) (Escherichia coli 055:BS, Sigma-Aldrich) for 4 h (CD200L
inhibitor was added again). The GFP™ BM-M® were sorted, based on
their GFP expression using SORP-FACS (BD Bioscience), RNA was ex-
tracted, and qRT-PCR was performed as described below.

gRT-PCR. Total RNA of in vitro GFP™ BM-M® was extracted with the
miRNeasy kit according to the manufacturer’s instructions (QIAGEN).
RNA was reverse-transcribed using the high-capacity cDNA reverse tran-
scription kit (Applied Biosystems), amplified using SYBR green I Master
Mix (Roche) and detected by StepOnePlus (Applied Biosystems), in du-
plicates. Results were normalized to the expression of the housekeeping
gene, peptidylprolyl isomerase-A (Ppia), and then expressed as fold change
relative to the control sample. The following primers were used: Ppia for-
ward, 5'-AGCATACAGGTCCTGGCATCTTGT-3, and reverse, 5'-CAAA
GACCACATGCTTGCCATCCA-3'; Tnfa forward, 5'-CCCTCACACTCA
GATCATCTTCT-3', and reverse, 5'-GCTACGACGTGGGCTACAG-3';
II-B forward, 5'-ACCTGTCCTGTGTAATGAAAGAC-3', and reverse, 5'-
TGGGTATTGCTTGGGATCCA-3'; II-6 forward, 5'-TGCAAGAGACTT
CCATCCAGTTG-3', and reverse, 5'-TAAGCCTCCGACTTGTCAAG
TGGT-3'.

Statistical analysis. Data were analyzed using Student’s ¢ test to com-
pare between two groups. One-way or two-way ANOVA tests were used
to compare several groups; the Bonferroni post hoc tests (p = 0.05) were
used for follow-up pairwise comparison of groups. The specific tests used
to analyze each set of experiments are indicated in the figure legends. The
results are presented as mean * SEM.
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Results

CD200L is differentially expressed by endothelial cells within
different CNS barriers

To understand the role of CD200L in repair processes following
acute insult in the CNS, its spatial distribution at different com-
partments within the CNS territory was first examined in homeo-
stasis. We found that, in the brain parenchyma, neuronal cell
bodies located at the hippocampus, cerebellum, and cortex were
immunoreactive for CD200L, as was shown by other groups
(Hoek et al., 2000; Wright et al., 2001; Koning et al., 2009) (Fig.
1A). In contrast, in the spinal cord parenchyma, CD200L expres-
sion by neurons was negligible (Fig. 1B), in line with previous
studies (Chitnis et al., 2007; Koning et al., 2009). However, neu-
rons at the dorsal root ganglia (DRG) were found to express
CD200L (Fig. 1B).

Because of the vital role of infiltrating cells in repair processes
following acute CNS insult, and the reported involvement of
CD200 signaling in the regulation of myeloid cell activity (Barclay
et al., 2002; Broderick et al., 2002), we also assessed CD200L
expression at the CNS barriers and entry routes, which represent
an interface between the CNS and periphery (Shechter et al.,
2013a). In healthy WT mice, we detected CD200L expression by
CD317" endothelial cells of the choroid plexus (Fig. 1C), an inter-
face that was shown to serve as a gateway for immune-regulatory
cells to the CNS territory for immune surveillance and repair
(Kivisdkk etal., 2002; Kunis et al., 2015), and in close proximity to
vimentin* cells of the central canal (Fig. 1D). In addition, we
searched for CD200L expression in the blood-leptomeningeal
barrier. Whole-mount immunohistochemistry of the spinal cord
meningeal layers, including the dura (Fig. 1E) and pia (Fig. 1F)
mater, revealed expression of CD200L by CD31" endothelial
cells within the meninges. In contrast, the tightly joined endothe-
lial cells of the blood—spinal cord barrier (Fig. 1G) of WT mice did
not express CD200L in homeostasis. The lack of staining in spec-
imens derived from CD200L™’~ mice was used as a control for
the specificity of CD200L antibodies (Fig. 1H).

CD200L is involved in the functional recovery following SCI
and is upregulated by newly formed endothelial cells within
the lesion site

We next examined whether CD200L expression by endothelial
cells of the blood—spinal cord barrier in the area of the lesion site
was altered following SCI. We used GFAP immunoreactivity to
delineate the margins of the injury site (Shechter et al., 2009).
CD200L immunoreactivity was found in close proximity to the
GFAP™ reactive astrocytes 3 d after injury, when the lesion site
area was not yet fully demarcated by the reactive astrocytes. From
day 7 onward, CD200L-expressing cells were found inside the
epicenter of the lesion site, and this expression was reduced by
day 14 following SCI (Fig. 2A). Further analysis of the lesion site
area 7 d following SCI revealed that cells that expressed CD200L
coexpressed CD31, thereby suggesting that the injury-induced
expression of CD200L could be associated with endothelial cells
within the epicenter of the lesion site (Fig. 2B). No staining could
be detected in the injury site of CD200L /" animals (Fig. 2C).
Notably, expression of CD200L by the blood—spinal cord barrier
endothelial cells 7 d following SCI was restricted to the lesion site
area and could not be detected in CD31" endothelium located
distally to the lesion site (Fig. 2D). In addition to the endothelial
cells, at 7 d following the injury, we detected a small number of
neurons (BIII tubulin® and NeuN™) that were positive for
CD200L at the margins of the lesion site, but not distally (Fig. 2E).
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No changes were found with respect to DRG neuronal expression
of CD200L following SCI (data not shown).

To verify whether the injury-induced elevation of CD200L
was associated with the presence of newly formed endothelial
cells within the lesion site, we used antibody to Ki67, which is
expressed by proliferating cells (Gerdes et al., 1983). We found
that CD200L™" endothelial cells, located inside the lesion site,
coexpressed Ki67 (Fig. 2F). Notably, endothelial cells located
within the injury site of CD200L "/~ mice also expressed the Ki67
marker (data not shown). These results suggest that acute SCI
activates a mechanism whereby newly formed endothelial cells
within the lesion site express CD200L.

To determine whether CD200L could be functionally in-
volved in the repair process following SCI, motor functional re-
covery of WT and CD200L ™/~ mice was evaluated, based on a
scale measuring hindlimb motor ability in an open field (BMS)
(Basso et al., 2006), in which a score of 0 indicates complete
paralysis and a score of 9 represents full mobility. Mice lacking
CD200L exhibited impaired recovery relative to the spontaneous
recovery exhibited by WT mice (Fig. 2G). Because CD200L can be
expressed following injury not only by CNS-resident cells but
also by BM-derived cells, which infiltrate following the insult, we
used chimeric mice to confirm that CNS CD200L ™ resident cells
contributed to the functional repair process. Specifically, BM
cells of CD200L ™/~ mice were replaced at adulthood with WT
BM cells (WT > CD200L™'7). As control, we used WT mice that
their BM cells were replaced at adulthood with CD200L '~ BM
cells (CD200L™'~ > WT). We found that the absence of CD200L
in CNS-resident cells (WT > CD200L /") resulted in impaired
recovery following SCI (Fig. 2H ). These results substantiate the
role of CD200L™ CNS-resident cells in the recovery following
SCI, and primarily, the CD200L™ endothelial cells within the
lesion site.

CD200R is expressed by different myeloid cell subpopulations
within the lesion site

The important role of CD200L expressed within the CNS in the
functional recovery process following SCI, and the temporally
regulated expression of CD200L inside the lesion site, encour-
aged us to search for cell populations that might express CD200R,
and whose interaction with CD200L ™" endothelial cells could ex-
plain the effect on recovery. To this end, spinal cords of WT mice
were excised at days 3, 7, and 14 following SCI and analyzed by
immunohistochemistry for CD200R expression (Fig. 3A, B). At
days 7 and 14 following SCI, when the lesion site area was already
defined by GFAP™ reactive astrocytes, CD200R ™ cells were found
to be located at the epicenter and at the margins of the lesion site
(Fig. 3A). We used the activation marker IB4 to identify activated
myeloid cells (microglia and infiltrating mo-M®) within the le-
sion site (Galin et al., 1963; Hoek et al., 2000; Rijkers et al., 2008).
As early as 3 d after the injury, IB4™ activated cells within the
spinal cord parenchyma were found to highly express CD200R;
moreover, at later time points after the injury (days 7 and 14), all
the IB4" activated myeloid cells expressed CD200R and were
located at the epicenter of the lesion site (Fig. 3B). We further
analyzed CD200R expression by different subpopulations of my-
eloid cells (microglia and mo-M®) within the lesion site by flow
cytometry. To this end, we excised a 6 mm segment of the
spinal cord parenchyma at the area of the lesion sites on different
days after the injury, and dissociated it to a single-cell suspe-
nsion. In line with the immunohistochemical results, both
CD11b'¥CD45.2™" cells, which mainly represent resident mi-
croglia, and CD11b"€"CD45.2"" cells, which mainly represent
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infiltrating mo-M® and activated microglia, were found to be
CD200R immune-reactive (Fig. 3C). The CD45.2 CDI11b~
population did not express CD200R™, and was used as a
negative-control for this staining (Fig. 3D,F). Notably, at all
tested time points following SCI, CD11b™¢"CD45.2M&" cells
(mainly infiltrating mo-M® and activated microglia) showed
higher mean fluorescent intensity (MFI) levels of CD200R com-
pared with the CD11b'°¥CD45.2'°" population (mainly nonac-
tivated microglia) (Fig. 3C). More detailed characterization of
CD200R expression among different subpopulations of infiltrating
mo-M® revealed that both Ml1-like proinflammatory cells
(CD11bMe"CD45.2Me"CX,CR1°"Ly6C*) and M2-like anti-in-
flammatory cells (CD1 1bMehCD45.2 highCX3,CR1 highLy6C ) (Ar-
nold et al., 2007; Nahrendorf et al., 2007; Shechter et al., 2013b)
expressed CD200R following SCI (Fig. 3E-G), although CD2000R
was expressed by a higher percentage of the M1-like population
compared with the M2-like population (Fig. 3G). These results in-
dicate that myeloid populations, including activated microglia and
infiltrating mo-M®, could directly interact with the CD200L™" en-
dothelial cells at the epicenter of the lesion site.

Newly formed endothelial cells within the lesion site directly
interact with CD200R ™ myeloid cells via CD200 ligand

To test the possible direct interaction between CD200R ™ myeloid
cells (microglia and mo-M®) and CD200L" endothelial cells at
the lesion site, spinal cords were excised from CD200L™’~ and
WT mice 7 d after injury, and immunohistochemical staining was
performed. We found in injured spinal cord of WT specimens,
but not in CD200L™'", a ring-like organization of Ibal™
activated myeloid cells (microglia and mo-M®) inside the epi-
center of the lesion site, located in close proximity to the
CD200L*CD31" endothelial cells. This spatial organization was
lacking in specimens excised from CD200L '~ mice (Fig. 4A).
We next used high-throughput single-cell flow cytometry image
analysis for assessment of the direct interaction between spinal
cord-derived endothelial and CD200R * myeloid cells (microglia
and mo-M®). For this purpose, the lesion site area (6 mm) was
excised from spinal cords 7 d following the injury and mechani-
cally and enzymatically processed to obtain a single-cell suspen-
sion. The isolated cells were left in medium for 20 min to allow
cell-cell interactions and were subsequently fixed and analyzed
using ImageStream (see Materials and Methods). We searched
for CD45.2*CD11b* myeloid cells (both microglia and mo-
M®) that expressed CD200R and which were in direct contact
with CD11b ~CD317" endothelial cells that expressed CD200L, at
their contact area (Fig. 4B). Subsequently, to test the involvement
of CD200L in this direct interaction, we quantified the number of
conjugating cells in the presence of CD200L inhibitor peptide

<«

(Figure ~ legend  continued.) (CD45.2(D11b~  population  (filled gray);
Foetween microglia and mo-map(1,19) = 126.25; p << 0.001 (repeated-measures ANOVA). n =
2-6 mice per time point. D, Flow cytometry dot-plots and histograms showing (D200R™ and
(D200R ~ gates in the (D45.2 (D11b~ population. E, Left, Flow cytometry gates of
(D11bM"CD452M"  mo-Md  (blue), (D11b°"(D45.2"" microglia (orange), and
(D45.2~(D11b ~ population (gray). Right, Flow cytometry gates of the proinflammatory mo-Md
population  (CX;CR1""Ly6C*; green) and of anti-inflammatory mo-M® population
(CX,CR1"S"Ly6C ~; red). F, Flow cytometry dot-plots showing (D200R™ and (D200R ~ gatesin the
nonexpressing population, (D45.2 ~(D11b ~, and in proinflammatory and anti-inflammatory
mo-Md on day 3 following SCI. G, Percentages of (D200R * cells of the proinflammatory and of the
anti-inflammatory mo-M® on days 1,3, 7, and 17 following SCI. Fyeen groups (days 3 and 7(1:4) =
21.47; **p = 0.0036 (repeated-measures ANOVA). n = 2—6 mice per time point. (—G, Data are

merged from two different experiments. *p << 0.05. Data are mean = SEM.
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(CDR3 g'; LT-13) (Chen et al., 2005; Gorczynski et al., 2008). As
control for the specificity of the inhibitor, we also tested the num-
ber of conjugating cells in the presence of ovalbumin (OVA)
peptide, and in PBS only. The gating strategy of the flow cytom-
etry for quantification of microglia/mo-M®-endothelial cell
conjugates was manually determined (see Materials and Meth-
ods; Fig. 4C). In the presence of the CD200L inhibitor, the num-
ber of conjugates was significantly reduced, compared with the
uninhibited control samples (PBS) (Fig. 4D). Notably, OVA pep-
tide did not change the number of conjugates, compared with the
control sample (PBS) (Fig. 4E). Examples of conjugates between
myeloid cells (microglia/mo-M®) and a single endothelial cell
(Fig. 4F, left), or with endothelial cell clusters (Fig. 4F, right) are
shown by the single-cell flow cytometry images. Notably, endo-
thelial cells and macrophages/microglia have the same circular
shape; however, in some conjugates, the macrophages/microglia
were characterized by a larger diameter, probably due to their
activation state. These results indicate that newly formed endo-
thelial cells could directly interact with CD200R™ microglia and
mo-M® within the lesion site, and that this interaction is medi-
ated by CD200L signaling.

Absence of CD200L signaling abrogates the ability of
endothelial cells to regulate the inflammatory phenotype of
macrophages

To gain an insight as to whether CD200L expressed by the endo-
thelial cells could affect the inflammatory response of the en-
countering microglia and infiltrating mo-M®, we used both in
vitro and in vivo assays. Because of the vital role of the infiltrating
mo-M® in the repair process following SCI (Rapalino et al.,
1998; Shechter et al., 2009) and because of the high expression
levels of CD200R by this cell type (Fig. 3C), we used mo-M®
population in the following experiments. Thus, BM-derived cells
were isolated from B-actin-GFP mice and differentiated to mac-
rophages in the presence of M-CSF. The obtained GFP* BM-
derived macrophages (BM-M®) were cultured in the presence or
absence of a brain endothelial cell line (b.END3), and LPS (100
ng/ml) was added for 4 h to induce inflammatory conditions (Fig.
5A,B). At the end of the incubation period, the GFP™ BM-M®
were sorted from the cultures using FACS, and gene expression
profile of proinflammatory cytokines was analyzed by qRT-PCR
(Fig. 5A). Upon exposure to LPS, GFP™ BM-M® derived from
cocultures with b.END3 cells showed significantly lower expres-
sion levels of the proinflammatory cytokines Tnfa and II-1f,
compared with GFP™ BM-M® that were cultured without endo-
thelial cells (Fig. 5C). Notably, II-6 expression was not signifi-
cantly affected by the presence of b.END?3 cells. In a second set up
of these experiments, we assessed the effect of the brain endothe-
lial cells (b.END3) on the inflammatory response of GFP™
BM-M® that were cultured with CD200L inhibitor (Fig. 5A,D).
The b.END?3 cells failed to reduce the inflammatory response of
GFP* BM-M® that were cultured with the CD200L inhibitor
(Fig. 5D, E). These results indicate that endothelial cells can di-
rectly reduce macrophage-derived inflammation in a CD200-
dependent signaling pathway.

To confirm in vivo the functional relevance of CD200 regula-
tory pathway to the activity of the infiltrating mo-M® within the
lesion site, we analyzed the phenotype of WT and CD200L ™/~
lesion-site derived infiltrating mo-M® by flow cytometry, 7 d
following SCI (the peak of endothelial CD200L expression; Fig. 2)
and of inflammation-resolving activities by mo-M® (Shechter et
al., 2009). Previous documentation revealed the inability of
proper discrimination between activated microglia and mo-M®
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n = 5micein each group. *p << 0.05. Data are mean = SEM.

in CD200L™’" mice, due to the increased expression levels
of CD11b and CD45 molecules by microglia derived from
CD200L ™/~ mice (Hoek et al., 2000). Therefore, we used a pre-
gate of CD457CD11b™ cells for the analysis of the following in

vivo experiments. We examined proinflammatory activity by
measuring the levels of the intracellular cytokine TNFa, using
anti-TNFa and isotype-control antibodies (Fig. 6A). Among the
proinflammatory CD457CD11b*Ly6C"¢" mo-M® that were
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on [BM-M® +LPS] samples; n = 5 — 6 replicates in each group. **p << 0.01. ***p << 0.001. Data are mean = SEM.

isolated from the lesion site of CD200L ™'~ mice, a higher per-
centage of cells were positive for the intracellular cytokine-TNFa,
compared with cells derived from lesion site of WT mice (Fig.
6B,C). Moreover, the proinflammatory mo-M® derived from
CD200L ™/~ injured mice were characterized by a higher MFI of
TNFa, compared with those isolated from WT mice (Fig. 6 B, D).
Next, we analyzed the expression of markers commonly associ-
ated with macrophages exhibiting anti-inflammatory resolving
activities: Dectin-1, CD206 (mannose receptor) and IL-4R.
CD45.2"CD11b ™ cells were used as control for the staining of
these markers (Fig. 6E,F). Overall, lower levels of all tested
markers associated with anti-inflammatory and inflammation-
resolving activities were found to be expressed by mo-M® iso-
lated from CD200L '~ mice relative to WT (Fig. 6G,H). These
results support our contention that CD200L-expressing endo-
thelial cells contribute to the downregulation of the inflamma-
tory response and to the induction of inflammation resolving
phenotype of CD200R™ macrophages following acute insult in
the CNS.

Discussion

In the present study, we show that, in homeostasis, CD200L is
selectively expressed by the endothelial cells of the mouse cho-
roid plexus (comprising part of the blood—cerebrospinal fluid
barrier; BCSFB) and the lepto-meninges (blood—leptomenin-
geal barrier), but not by the endothelial cells that form the
blood—spinal cord barrier. However, following SCI, newly
formed endothelial cells within the lesion site upregulate
CD200L expression. We further found that these newly
formed endothelial cells directly interact with CD200R™* my-
eloid cells within the lesion site (resident microglia and infil-

trating mo-M®) and regulate the inflammatory phenotype of
mo-M® via the CD200 ligand.

Endothelial expression of CD200L was shown to vary between
tissues, and depending on the type of capillary. For instance, its
expression was observed in both fenestrated and nonfenestrated
endothelium, and may also be upregulated following LPS chal-
lenge (Ko et al., 2009). It was suggested that endothelial CD200L
is involved in modulation of T cell adhesion and migration into
tissues (Ko et al., 2009; Denieffe et al., 2013). In the CNS, exten-
sive expression of CD200L on retinal neurons and retinal vascu-
lar endothelium has been reported (Dick et al., 2001; Broderick et
al., 2002). However, endothelial expression of CD200L in the
brain parenchyma has been controversial. Whereas some groups
reported that CD200L is exclusively expressed by neuronal cell
bodies, others also found its expression on the luminal surface of
blood—brain barrier endothelium in the hippocampus, and on
the luminal and abluminal surfaces of non-blood—brain barrier
endothelium in the area postrema (Broderick et al., 2002). Here,
we found the selective endothelial expression of CD200L at the
borders of the CNS in homeostasis.

The neovascularization process in wound healing following
an acute insult has been mainly associated with enhanced supply
of oxygen and nutrients into the lesion area, and outside the CNS,
also enables extravasation of leukocytes (Tonnesen et al., 20005
Dray et al., 2009; Avraham-Davidi et al., 2013). However, no role
has been attributed to newly formed endothelial cells in regula-
tion of the inflammatory responses of the local microglia or the
infiltrating mo-M®. The limited recovery following acute insult
in the CNS, relative to the efficient healing of wounds in periph-
eral tissues, has been often attributed to the incomplete resolu-
tion of inflammation, which might cause secondary damage and
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neuronal loss (Shechter et al., 2009; Shechter and Schwartz,
2013). Under severe acute and chronic inflammation, microglia
fail to bring repair to completion, and recruitment of mo-M®
was found to be beneficial (Rapalino et al., 1998; Simard et al.,
2006; Shechter et al., 2009, 2011; London et al., 2011, 2013b;
Gliem et al., 2012, 2016; Cohen et al., 2014; Ritzel et al., 2015).
One of the factors that were found to be critical for skewing the
recruited mo-M® toward an inflammation resolving phenotype
following SCI is the glial scar matrix, chondroitin sulfate pro-
teoglycan (Rolls et al., 2008; Shechter et al., 2011). The present
study highlights an additional mechanism whereby inflamma-
tion within the privileged CNS could be regulated following acute
injury. This mechanism involves a unique population of newly
formed endothelial cells located within the epicenter of the lesion
site, and which directly interact with CD200R™ myeloid cells
(microglia and infiltrating mo-M®) via CD200L signaling, and
thereby controls the mo-M® phenotype switch from proinflam-
matory to resolving activity. In the absence of CD200L signaling,
inflammatory mo-M® in the injured CNS showed higher expres-
sion levels of TNFa, lower expression levels of inflammation-
resolving activities, and the extent of functional recovery was
reduced. Our results are consistent with published data linking
CD200 signaling with protection from extensive chronic inflam-
mation under different pathological conditions outside and in-
side the CNS (Hoek et al., 2000; Chitnis et al., 2007; Copland et
al., 2007; Snelgrove et al., 2008; Koning et al., 2009; Rygiel et al.,
2009; Walker et al., 2009; Luo et al., 2010; Zhang et al., 2011), and
with “alternative macrophage activation” (Koning et al., 2010;
Mukhopadhyay et al., 2010). Notably, while indirect communi-
cation between endothelial and myeloid cells was shown to occur
during regular wound healing processes (Martin and Leibovich,
2005; Mahdavian Delavary et al., 2011; Avraham-Davidi et al,,
2013), no evidence for CD200-dependent direct cell-cell inter-
actions has been described previously. Interestingly, in a can-
cer model, it was proposed that, in cases in which the tumor
benefits from inflammation, CD200L" endothelial cells in the
tumor microenvironment might interact with CD200R™ my-
eloid cells, reduce their inflammation, and thereby promote
antitumor immune responses (Belkin et al., 2013).

In CNS homeostasis, the communication between microglia
and the surrounding glial cells as well as with neighboring neu-
rons is supported by a versatile subset of cell surface molecules
on the microglial cell membrane. Unlike surface molecules,
which their ligand recognition results in a proinflammatory acti-
vation, there is a small subset of molecules, including CD200, in
which ligand binding is crucial for maintaining the resting ram-
ified phenotype of microglia in the healthy CNS, and these recep-
tors are therefore categorized as “inhibitory molecules.” Another
example of such a fundamental signaling pair in neurophysiology
is the interaction between CX3CR1-expressing microglia (Jung et
al., 2000) and CX3CL1 " neuronal subsets (Kim et al., 2011). This
route of neuron—microglia communication was shown to play
different roles under inflammatory and neurodegenerative con-
ditions (Harrison et al., 1998; Prinz and Priller, 2010).

The present study suggests that newly formed endothelial cells
within the CNS parenchyma following acute injury in mice con-
tribute to regulation of the local inflammatory response follow-
ing SCI. This regulation was found to be dependent on the CD200
pathway. Of note, thus far, CD200L expression within the brain
has been mainly associated with neurons that regulate activation
and restore the resting state of CD200R ™ microglia in homeosta-
sis and during pathology (Hoek et al., 2000; Kierdorf and Prinz,
2013). Here we attribute a role to newly formed endothelial cells
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within the spinal cord parenchyma in controlling mo-M® in-
flammatory response via upregulation of CD200L in acute
pathology. Such a mechanism might be unique to immune priv-
ileged tissues, such as the CNS; yet, further studies to identify
similar mechanisms in tissues that are not immune privileged are
also needed. Moreover, the essential role of the neovasculariza-
tion process that was shown here following SCI, calls for studies
regarding additional activities of endothelium during repair pro-
cesses outside and within the CNS.
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