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Abstract

Endoplasmic reticulum (ER) stress promotes tumor cell escape from immunosurveillance. 

However, the underlying mechanisms remain unknown. We hypothesized that ER stress induces 

hepatocellular carcinoma (HCC) cells to release exosomes, which attenuate antitumor immunity 

by modulating the expression of programmed death ligand 1 (PD-L1) on macrophages. In this 

study, we demonstrated that expression of several ER stress markers (glucose-regulated protein 78 

[GRP78], activating transcription factor 6 [ATF6], PKR-like endoplasmic reticulum kinase 

[PERK], inositol-requiring enzyme 1α [IRE1α]) was up-regulated in HCC tissues and negatively 

correlated with the overall survival and clinicopathological scores in HCC patients. Expression of 

ER stress-related proteins positively correlated with cluster of differentiation 68-positive (CD68+) 

macrophage recruitment and PD-L1 expression in HCC tissues. High-throughput sequencing 

analysis identified microRNA (miRNA/miR)-23a-3p as one of the most abundant miRNAs in 

exosomes derived from the ER stress inducer tunicamycin treated HCC cells (Exo-TM). 

miR-23a-3p levels in HCC tissues negatively correlated with overall survival. Treatment with Exo-

TM up-regulated the expression of PD-L1 in macrophages in vitro and in vivo. Bioinformatics 
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analysis suggests that miR-23a-3p regulates PD-L1 expression through the phosphatase and tensin 

homolog (PTEN)- phosphoinositide-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (AKT) 

pathway. This notion was confirmed by in vitro transfection and co-culture experiments, which 

revealed that miR-23a-3p inhibited PTEN expression and subsequently elevated phosphorylated 

AKT and PD-L1 expression in macrophages. Finally, co-culture of T cells with Exo-TM-

stimulated macrophages decreased CD8+ T-cell ratio and interleukin-2 production but increased T-

cell apoptosis in vitro.

Conclusion: ER-stressed HCC cells release exosomes to up-regulate PD-L1expression in 

macrophages, which subsequently inhibits T-cell function via an exosome miR-23a-PTEN-AKT 

pathway. Our findings provide a new insight into the mechanism how tumor cells escape from 

antitumor immunity.
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Hepatocellular carcinoma (HCC) is a common malignant tumor with very poor overall 

survival worldwide.(1) Surgery is the most effective treatment strategy for HCC patients, but 

more than 80% of patients have lost the opportunity by the time they are diagnosed.(2) Due 

to insensitivity to current treatment strategies, the median overall survival of advanced-stage 

HCC patients is only 3 to 16 months.(3) Thus, more effective systemic therapies for HCC 

patients are urgently needed.

HCC is closely associated with immune tolerance and suppression(4); thus, immunotherapy 

may be a promising strategy against HCC. Recently, immunotherapy has been found to be 

effective in several types of human cancers, such as melanoma(5) and lung cancer,(6) but only 

obtained minimal beneficial effect in HCC. The majority of HCC is caused by chronic 

hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, nonalcoholic fatty liver, and 

alcoholic liver disease.(7) It is generally believed that chronic inflammation contributes to 

hepatocarcinogenesis and HCC progression.(8,9) Recruitment of several types of immune 

cells to the tumor area has been correlated with poor outcome in HCC patients, including 

tumor-associated macrophages (TAMs),(10,11) cluster of differentiation 4-positive (CD4+) 

regulatory T cells,(12) and myeloid-derived suppressor cells (MDSCs).(13) Furthermore, 

many cytokines,(14) co-inhibitory signaling and immune inhibitory receptors,(15) and their 

ligands(15,16) also induce immunosuppression to promote HCC progression. In this setting, 

modulation of immune cell infiltration in the tumor microenvironment may represent a novel 

and effective strategy for the treatment of HCC. However, how HCC cells escape from 

immunosurveillance has not been fully elucidated, which is a critical barrier to developing 

effective immunotherapeutic intervention for the treatment of HCC.

Endoplasmic reticulum (ER) stress is critical for maintaining cell survival by activating the 

unfolded protein response (UPR), which is controlled by several ER stress-related proteins, 

including glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), 

inositol essential enzyme 1α (IRE1α), and protein kinase R (PKR)-like endoplasmic 

reticulum kinase (PERK). Activation of ER stress has been reported in various types of 

tumors, including HCC, and plays an important role in promoting tumor progression.(17,18) 
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We have shown that ER stress contributed to HCC chemotherapy and radiation resistance.
(19,20) Other studies have also shown that ER stress promotes tumor cell escape from 

immunological surveillance. Moreover, activation of ER stress in immune cells has been 

shown to influence the function of infiltrating immune cells.(21,22) For example, ER stress 

has been reported to increase a variety of inflammatory factors, including interleukin (IL)-6 

and IL-23 in macrophages.(23) ER-stressed tumor cells also impact immune cell functions by 

releasing ER stress-related molecules and subsequently facilitating tumor survival, 

progression, and metastasis.(24) Furthermore, cytokines secreted by infiltrating immune cells 

(predominantly TAMs, MDSCs, and dendritic cells [DC]) can also enhance ER stress and 

promote tumor cell growth.(25) These studies indicated that ER stress in tumor cells may not 

only involve intracellular events in controlling tumor cell proliferation but also have 

extracellular effects in regulating tumor microenvironment and immune responses. However, 

how ER-stressed tumor cells educate immune cells and dysregulate immune response 

remains unclear.

Exosomes are a class of 40- to 100-nm membrane vesicles that play an important role in 

cell-to-cell communication. Recently, microRNAs (miRNAs) were shown to be packaged in 

the purified exosomes, indicating that these vesicles may deliver genetic information to 

recipient cells.(26,27) For example, metastatic breast cancer cell-secreted exosomes transfer 

miR-105 to endothelial cells and promote tumor cell metastasis by destroying tight junctions 

and the integrity of endothelial monolayers.(28) Furthermore, exosomes derived from HCC 

cells can transfer specific miRNAs to enhance recipient cell growth.(29) These results 

suggest that miRNAs are vital molecules in exosome-mediated intercellular communication. 

However, few studies have examined whether ER stress affects HCC exosomal-miRNA 

transfer and how these exosomal-miRNAs affect tumor progression. Thus, the purpose of the 

current study was to investigate whether ER-stressed HCC cells can transmit miRNA-

enriched exosomes to macrophages and how these exosomal-miRNAs modulate the 

immunologic functions of macrophages. To answer these questions, we performed high-

throughput sequencing, in vitro and in vivo analyses, and found that exosomes derived from 

ER-stressed HCC cells (Exo-TM) increased the expression of programmed death ligand 1 

(PD-L1) and inflammatory cytokines in macrophages, thereby decreasing CD8+ T-cell ratio 

and increasing T-cell apoptosis. Mechanistically, Exo-TM up-regulates PD-L1 expression by 

the transfer of miR-23a-3p, which inhibits phosphatase and tensin homolog (PTEN) and 

subsequently activates protein kinase B (AKT). Our data suggest that ER stress promotes 

HCC immune escape by transferring specific miRNAs to infiltrated macrophages in tumor 

microenvironment. Thus, interference of HCC-macrophage crosstalk may be an effective 

strategy for the treatment of HCC.

Materials and methods

Patients and tissue samples.

The present protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki 

and was approved by the ethics committee of the First Affiliated Hospital of Anhui Medical 

University. All enrolled patients provided informed written consent. Primary HCC tumor 

tissues were obtained from 169 HCC patients who were hospitalized in the First Affiliated 
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Hospital of Anhui Medical University between 2004 and 2010. The Edmondson-Steiner 

grading system was employed to define the histologic grade of tumor differentiation. Tumors 

were categorized based on the World Health Organization (WHO) classification and the 

International Union Against Cancer tumor-node-metastasis (TNM) classification system. 

The HCC tumor tissues were formalin-fixed and paraffin-embedded for histopathological 

diagnosis and construction of paraffin-embedded tissue microarrays. Freshly resected HCC 

tissues, paired liver tissues, and healthy donor peripheral blood were obtained in the First 

Affiliated Hospital of Anhui Medical University between August 2017 and October 2018.

Definition of ER stress high and low patients.

For analysis, the levels of ER stress-related proteins, the percentage of positive cells (0 for 

negative, 1 for ≤10%, 2 for 11%−50%, 3 for 51%−75%, 4 for >75%), and their staining 

intensity (0 for negative staining, 1 for light yellow, 2 for claybank, 3 for brown) were 

analyzed in five random fields of each sample. The expression of ER stress-related proteins 

was qualitatively scored by the percentages of positive cells multiplied by staining intensity, 

and the values less than 5 and greater than or equal to 5 indicated low and high levels of 

GRP78, respectively, whereas values less than 3 and greater than or equal to 3 were defined 

as low and high levels for ATF6, PERK, and IRE1α, respectively.

Exosome co-culture with macrophages in vitro.

THP-1 monocytes were differentiated into macrophages by incubation with 100 nM of 

phorbol 12-myristate 13-acetate (PMA) for 48 hours and were thereafter named mTHP-1 

cells. RAW264.7 cells and mTHP-1 cells (1×106/well) were plated in 12-well plates and co-

cultured with 10 μg/mL of Exo-con or Exo-TM. After co-incubation for 24 hours, cells were 

collected for flow cytometry, western blot, and quantitative polymerase chain reaction 

(qPCR) analysis, and the supernatants were used for cytokine measurement.

In vivo assay.

Exosomes were injected intravenously through the tail vein into 6-week-old female nude 

mice once every other day for 10 times. Peritoneal macrophages were isolated from 

euthanized mice and allowed to attach at 37°C for 2 hours. The unattached cells were 

removed and washed with phosphate-buffered saline (PBS) twice; the remaining cells were 

then incubated overnight. PD-L1 levels were analyzed by flow cytometry and 

immunohistochemistry (Clone 10F.9G2, BioLegend) and qPCR. Cytokines secreted by 

peritoneal macrophages were measured by a mouse Cytometric Bead Array (CBA) 

inflammation kit. Four mice were used per group in the animal experiments.

Statistical Analysis.

SPSS 16.0 software (SPSS, Inc., Chicago, IL, USA) was employed for statistical analysis. 

Two-tailed Student t test or the Wilcoxon-Mann-Whitney test was applied to evaluate the 

difference between two groups, and 1-way analysis of variance (ANOVA) multiple 

comparisons were employed to compare three or more groups. Associations between ER 

stress-related proteins and PD-L1 expression or miR-23a-3p and overall survival were 

assessed using Pearson correlation analysis. Representative images and flow cytometric 
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graphs from three independent experiments are shown. Values are presented as the mean ± 

standard deviation (SD). Differences were considered to be statistically significance when P 
was less than 0.05.

For more detailed materials and methods information, see Supporting Data.

Results

ER stress is up-regulated and positively correlates with poor survival in HCC patients

To evaluate the role of ER stress in HCC progression, we first tested whether ER stress is 

up-regulated in HCC patients by measuring the expression of ER stress-related proteins in 

169 cases of surgically resected HCC tissues by immunohistochemistry. These ER stress-

related proteins include GRP78, ATF6, IRE1α, and PERK. Representative images of low 

and high expression of GRP78, PERK, ATF6, and IRE1α proteins are shown in Fig. 1A, in 

which these ER stress-related proteins were predominantly detected in the cytoplasm. 

Expression of these ER stress-related proteins was much stronger in tumor tissues compared 

with paired paracarcinoma tissues (65.68% versus 41.42% for GRP78; 63.91% versus 

37.87% for ATF6; 60.36% versus 46.75% for PERK; 60.95% versus 43.79% for IRE1α). 

Based on the percentage of ER stress-related protein positive cells and staining density, we 

divided patients into two groups with low and high ER stress (see details in Methods). 

Moreover, we performed western blot analyses to confirm the ER stress-related protein 

expression in 5 freshly resected HCC tissues, and found that the expression of these ER 

stress-related proteins was much higher in tumor tissues compared to paracarcinoma tissues 

(Fig. 1B). We also examined the levels of GRP78, PERK, ATF6, and IRE1α messenger 

RNAs (mRNAs) in HCC tissues and found that the expression of these genes was 

significantly up-regulated in tumor tissues compared with paired paracarcinoma tissues (Fig. 

1C).The clinicopathological characteristics of HCC patients are shown in Supporting Tables 

S1-S4, showing that the high ER stress-related patients had larger tumor size and poorly 

differentiated tumors compared to the low ER stress patients. Finally, the association of 

GRP78, ATF6, PERK, or IRE1α expression with overall survival of 55 cases of HCC 

patients was analyzed. As illustrated in Fig. 2, the overall survival of low ER stress patients 

was significantly longer than the high ER stress patients.

Hepatic ER stress-related protein levels correlate with hepatic macrophage infiltration and 
PD-L1 expression in HCC patients

ER stress has been shown to play an important role in regulating immune cell functions in 

tumor microenvironment and antitumor immune response.(24,30) Thus, we tested whether 

expression of ER stress-related proteins such as GRP78 correlates with macrophage 

infiltration in HCC patients. As illustrated in Fig. 3A, tumor tissues that expressed a higher 

level of GRP78 (GRP78high) had massive CD68 staining in the stroma, whereas CD68+ 

macrophage infiltration was much lower in tumor tissues that expressed a low level of 

GRP78 (GRP78low). Quantitative analysis revealed that CD68+ areas in GRP78high tumor 

stroma were significantly higher than those in the GRP78low stroma (Fig. 3A).
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PD-L1 was reported to inhibit T-cell activation and contribute to tumor immune evasion.(31) 

To examine whether ER stress activation correlates with PD-L1 expression, we measured 

PD-L1 levels by immunohistochemistry analysis and found in GRP78high tumors, PD-L1 

was often distributed in a crumby manner, whereas it sporadically existed in GRP78low 

tumors (Fig. 3B). Quantitative analysis showed that 51.35% of the GRP78high tumors 

expressed PD-L1, and only 27.59% of the GRP78low tumors expressed PD-L1, and PD-L1 

expression was positively correlated with GRP78 levels (P = 0.003) (Supporting Table S5). 

Consistently, the expression levels of ATF6 (54.63% versus 22.95%; P < 0.001), PERK 

(54.90% versus 25.37%; P < 0.001), and IRE1α (55.34% versus 24.24%; P < 0.001) were 

also positively correlated with PD-L1 expression (Supporting Tables S6-S8). qPCR and 

western blot analyses showed that PD-L1 mRNA and protein were markedly up-regulated in 

tumor tissues compared with paired paracarcinoma tissues (Fig. 3C,D).

To test whether infiltrated macrophages expressed PD-L1, we performed 

immunofluorescence double-staining and found PD-L1 was frequently co-localized with 

CD68+ macrophages in GRP78high HCC tumor stroma (Fig. 3E). Finally, Kaplan-Meier 

analysis showed that patients with lower PD-L1 expression had better survival time than 

those with higher PD-L1 expression (24.9 ± 2.0 months versus 16.4 ± 2.2 months; P = 

0.002) (Fig. 3F). Together, these results suggest that ER stress activation is associated with 

higher macrophage PD-L1 expression and poor prognosis in HCC patients.

Exosomes from ER-stressed HCC cells up-regulate PD-L1 expression on macrophages in 
vitro

The above data revealed that high ER stress status is associated with up-regulated PD-L1 

expression in macrophages on HCC patients, suggesting ER-stressed HCCs may promote 

PD-L1 expression in macrophages. Because exosomes are an important communicator 

between different cell types, we hypothesized that ER-stressed HCC cells may release 

exosomes and subsequently up-regulate PD-L1 expression on macrophages. To test this 

hypothesis, we first optimized the in vitro cell culture system to mimic the ER stress status 

by tunicamycin (TM) treatment and found that treatment with TM (2.5 μmol/L) for 24 hours 

generated significant ER stress in several HCC cell lines, including HepG2, Hep3B, Hepa1–

6, and A549 cells (Supporting Fig. S1A-C). Second, exosomes derived from tunicamycin 

(TM) treated HCC cells (defined as Exo-TM) or without TM (defined as Exo-con). The 

purity of these exosomes was confirmed by transmission electron microscopy showing a 

homogeneous population of rounded membrane-bound vesicles with a diameter ranging 

from 30 to 100 nm (Supporting Fig. S2A,B) and by western blot analysis showing the 

expression of two exosomal-marker proteins CD63 and tumor susceptibility gene (TSG)-101 

(Supporting Fig. S2C). Additionally, ER-stressed HCC cells secreted a higher number of 

exosomes compared with those without ER stress (Supporting Fig. S2D).

Third, to investigate whether HCC cells transmit ER stress signals to macrophages through 

exosomes, we performed a co-culture experiment and found that co-culture with Exo-TM 

derived from HepG2 cells or normal HL-7702 hepatocytes significantly up-regulated the 

expression of GRP78, ATF6, PERK, or IRE1α proteins compared to co-culture with Exo-
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con (Supporting Fig. S3A,B). Moreover, co-culture with Exo-con or Exo-TM increased the 

proliferation of HepG2 cells (Supporting Fig. S3C).

Fourth, we co-cultured macrophages with PKH67-labeled exosomes and found that mTHP-1 

cells effectively engulfed exosomes (Fig. 4A). Moreover, flow cytometric analysis showed 

that co-culture with HepG2-derived Exo-TM significantly up-regulated PD-L1 expression in 

mTHP-1 cells compared with those in the Exo-con group (Fig. 4B). Such up-regulation of 

PD-L1 in macrophages by Exo-TM was also confirmed by western blot, 

immunohistochemistry, and qPCR analyses (Fig. 4C-E). Similarly, Hep3B-derived Exo-TM 

also significantly up-regulated PD-L1 levels in co-cultured macrophages (Supporting Fig. 

S4A-D). However, Exo-TM from normal HL-7702 hepatocytes or primary human 

hepatocytes did not up-regulate PD-L1 expression in mTHP-1 cells compared to the Exo-

con group (Supporting Fig. S4E-G). Finally, HepG2-dervied Exo-TM markedly up-regulated 

PD-L1 expression on mouse RAW264.7 macrophages (Supporting Fig. S5A,B), whereas 

Hep3B-derived Exo-TM only slightly increased PD-L1 expression in RAW264.7 cells 

(Supporting Fig. S5C,D).

To rule out whether Exo-TM-induced ER stress in macrophages was a consequence of TM 

contamination, we performed the following experiments. First, liquid chromatography-

electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) confirmed that no TM 

existed in Exo-con, whereas Exo-TM contained approximately 20.25 ng/mL of TM 

(Supporting Fig. S6A). As the exosome used in the current study was diluted 10 times, the 

final concentration of TM contained in Exo-TM was very low (~2 ng/mL). Second, 

treatment with up to 50 ng/mL of TM did not up-regulate GRP78 levels in mTHP-1 

(Supporting Fig. S6B). Finally, coincubation with TM did not affect PD-L1 expression on 

mTHP-1 cells (Supporting Fig. S6C). Collectively, Exo-TM-mediated up-regulation of PD-

L1 in macrophages is not due to TM contamination.

Exo-TM up-regulates PD-L1 expression on macrophages in vivo

To determine whether Exo-TM also enhances PD-L1 expression in vivo, we injected nude 

mice with Exo-TM and Exo-con once every 2 days for 10 times, and the peritoneal 

macrophages were isolated 12 hours after the last injection (Supporting Fig. S7). Confocal 

microscopy and flow cytometric analyses confirmed that PKH67-labeled exosomes were 

effectively engulfed by the peritoneal macrophages in vivo (Fig. 5A,B). As illustrated in Fig. 

5C-F, flow cytometric, immunohistochemistry, and qPCR analyses demonstrated that 

peritoneal macrophages isolated from Exo-TM-injected mice had significantly higher levels 

of PD-L1 compared with the Exo-con and PBS group. In addition, these macrophages also 

had higher levels of several inflammatory mediators compared to those from the Exo-con or 

PBS group (Supporting Fig. S8).

Exo-TM-treated macrophages decrease CD8+ T-cell ratio and promote T-cell apoptosis

Macrophage (predominantly M2 macrophage) infiltration in tumor microenvironment has 

been reported to promote tumor progression by impairing the immune responses of 

cytotoxic CD8+ T cells.(32) We wondered whether ER-stressed HCC cells also polarized 

macrophages to M2 phenotype to promote HCC progression by impairing the immune 
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responses of cytotoxic CD8+ T cells. To test this hypothesis, we first examined whether Exo-

TM induces macrophage polarization and found co-culture with HepG2-derived Exo-TM 

markedly increased levels of M2 marker (such CD206) and M2 cytokines (IL-10) in 

macrophages compared with Exo-con treatment (Supporting Figs. S9-S10). Together, these 

results suggest that ER stress-related exosomes promote macrophages toward M2 

phenotype.

Then, we examined the effects of Exo-TM-treated macrophages on T cells. As illustrated in 

Fig. 6A-C, Exo-TM-treated macrophages significantly decreased CD8+ T-cell proportion 

and attenuated IL-2 production in T cells compared with Exo-con-treated macrophages. 

Moreover, we examined the impact of Exo-TM-treated macrophages on T-cell apoptosis 

using Annexin V /PI apoptosis detection kit and found that the ratio of apoptotic T cells was 

significantly higher after incubation with Exo-TM-treated macrophages compared to that 

with Exo-con-treated macrophages (Fig. 6D,E).

ER-stressed HCC-derived exosomes contain high levels of miR-23a-3p, which up-regulates 
PD-L1 expression in macrophages by regulating the PTEN/AKT pathway

To determine whether ER-stressed HCC cells transmit specific miRNAs to macrophages and 

impact its immunologic functions, high-throughput sequencing analyses of exosomes were 

performed. As illustrated in Fig. 7A, 14 miRNAs were differentially expressed between 

Exo-TM and Exo-con. In comparison with Exo-con, six miRNAs (miR-486–5p, miR-486–

3p, miR-1–3p, miR-433–3p, miR-432–5p, and miR-92b-5p) were down-regulated, and eight 

miRNAs (miR-29a-3p, miR-378a-3p, miR-193b-3p, miR-20a-5p, miR-23a-3p, miR-27a-3p, 

miR-184, and miR-16–5p) were up-regulated in Exo-TM (Supporting Table S9).

Subsequently, bioinformatics analysis revealed that miR-29a-3p, miR-23a-3p, miR-486–3p, 

and miR-486–5p were predicted to regulate PD-L1 expression through the PTEN-

phosphatidylinositol 3-kinase (PI3K)/AKT pathway (Supporting Fig. S11A). Moreover, 

qPCR analysis (plus cel-miR-39–3p as external control) demonstrated that miR-23a-3p had 

the highest fold induction (2.44-fold) in Exo-TM, followed by miR-29a-3p with a 1.95-fold 

induction; in contrast, miR-486–5p expression was down-regulated by 1.96-fold, and 

miR-486–3p had no changes (Supporting Fig. S11B). Furthermore, we explored the 

relationship between miR-23a-3p levels and survival times in 55 cases of HCC patients and 

found that miR-23a-3p levels were negatively correlated with overall survival (r = −0.306; P 
= 0.023) (Supporting Table S10).

According to TargetScan, microRNA Database (miRDB), and miRanda, we found PTEN is 

a putative target of miR-23a-3p, and this notion was confirmed by a dual luciferase reporter 

gene assay (Supporting Fig. S11C,D). Western blot analysis shows that transfection of 

miR-23a-3p mimics down-regulated PTEN expression in macrophages (Supporting Fig. 

S11E). PTEN is known to regulate PD-L1 expression(33,34); therefore we hypothesized that 

miR-23a-3p may up-regulate PD-L1 expression through the down-regulation of PTEN 

expression in macrophages. To confirm whether miR-23a-3p regulates PD-L1 expression by 

modulating the PTEN pathway in macrophages, mTHP-1 cells were transfected with 

miR-23a-3p mimics, inhibitors, and their relative controls for 48 hours, and we found 

miR-23a-3p mimics significantly down-regulated PTEN at both protein and mRNA levels 
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(Fig. 7B,C) and up-regulated phosphorylated-AKT (p-AKT) protein expression (Fig. 7B). 

Moreover, miR-23a-3p mimics significantly up-regulated PD-L1 expression on 

macrophages, whereas the miR-23a-3p inhibitor and control had no influence on PD-L1 

protein and mRNA expression (Fig. 7D,E). However, transfection of macrophages with 

either miR-23a-3p mimics or inhibitors did not influence the expression of IL-6, IL-10, and 

tumor necrosis factor-α (TNF-α) (data not shown).

To further confirm whether miR-23a-3p regulates PD-L1 expression through the activation 

of the PTEN/AKT pathway, we first co-cultured macrophages with Exo-TM or Exo-con and 

found that, compared to Exo-con, Exo-TM significantly down-regulated PTEN levels at both 

protein and mRNA levels (Fig. 8A,B) and up-regulated phosphorylated-AKT (p-AKT) 

protein expression (Fig. 8A). Moreover, qPCR analysis demonstrated that Exo-TM 

significantly increased miR-23a-3p expression in coincubated macrophages compared to 

Exo-con (Fig. 8C). Transfection of macrophages with miR-23a-3p inhibitors abolished Exo-

TM-mediated PTEN down-regulation and p-AKT up-regulation (Fig. 8D). Next, we 

knocked down PTEN using RNA interference (RNAi) and found PTEN significantly 

reduced at both protein and mRNA levels, whereas p-AKT protein expression was up-

regulated (Supporting Fig. S12A,B). Furthermore, knockdown of PTEN significantly up-

regulated PD-L1 protein and mRNA expression on macrophages (Fig. 8E,F). However, 

knockdown of PTEN had no impact on expression of inflammatory cytokines, such as IL-6, 

IL-10, and TNF-α (data not shown).

Discussion

Multiple studies have shown that ER stress can dysregulate antitumor immunity through 

various mechanisms,(17,21) including stimulating protumor inflammatory factors(35) and 

inducing MDSCs.(23) In the current study, we identified a novel mechanism by which ER 

stress promotes HCC cells to release miR-23a-3p-enriched exosomes which up-regulate PD-

L1 expression on macrophages and subsequently suppress T-cell functions. We found that 

most of human HCC samples highly express ER stress-related proteins and genes, and their 

expression levels negatively correlated with patients’ overall survival. Furthermore, 

GRP78high tumors had more CD68+ macrophages and PD-L1+ cells in the stroma, and PD-

L1 expression also correlated with poor overall survival in HCC patients. Finally, ER-

stressed HCC cells up-regulated macrophage PD-L1 expression and consequently impaired 

T-cell function through the transmission of exosomal-miR-23a-3p, which inhibits PTEN and 

consequently activates the AKT pathway, resulting in elevation of PD-L1 expression. 

Together, our results suggest that HCC cells can transmit ER stress signals to infiltrated 

macrophages through miR-23a-3p-enriched exosomes and promote tumor progression, 

which is summarized in Supporting Fig. S13.

ER stress promotes HCC cells to release exosomes.

ER stress has been reported to promote tumor cell immune escaping by constructing an 

immunosuppressive microenvironment, but the precise mechanism remains unclear. 

Exosomes have been reported to play an important role in intercellular communication by 

delivering their contents (such as miRNAs) to the “recipient” cells.(28,36,37) However, 
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whether ER-stressed HCC cells influence the function of immune cells by transmitting 

exosomes and whether this immunomodulation is mediated by specific exosomal miRNAs is 

not clear. Recently, Kanemoto et al. reported that ER stress promoted exosome release in 

IRE1α and PERK-dependent manners.(38) Moreover, ER stress increased the levels of 

cytochrome P450 2E1 (CYP2E1) and other P450 isoforms in exosomes of alcohol-exposed 

rodents and patients with alcoholism.(39) Our results demonstrated that ER stress 

significantly increased HCC cell exosome secretion, and exosome RNA sequencing found 

that 14 miRNAs were differentially packaged in Exo-TM, and bioinformatics analysis 

revealed these miRNAs are closely related to several cancer-associated pathways, such as 

the PTEN-PI3K-AKT pathway. Moreover, these exosomes were effectively transferred into 

macrophages and transmitted ER stress signals to macrophages, suggesting that ER stress 

influences HCC cell exosome release and transmits miRNAs-enriched exosomes to 

macrophages that resided in the tumor microenvironment.

ER stress-related exosomes modulate PD-L1 expression through the PTEN-AKT pathway.

Clinical and preclinical evidence showed that loss of PTEN was associated with enhanced 

PD-L1 expression in human glioma,(40) breast cancer,(41) and colorectal cancer.(42) A recent 

study revealed that PTEN mutation resulted in an increase of PD-L1 protein expression 

through the activation of the PI3K-AKT- mammalian rapamycin target protein (mTOR)- 

ribosomal S6 kinase 1 (S6K1) pathway.(40) In the present study, we found that miR-184 is 

the most up-regulated miRNA in Exo-TM, however, bioinformatics analysis revealed 

miR-184 was not associated with PD-L1 expression while other miRNAs including 

miR-23a-3p, miR-29a-3p, miR-486–3p and miR-486–5p did. Moreover, qPCR assays 

demonstrated that miR-23a-3p was the most significantly up-regulated miRNA packaged in 

Exo-TM, and we provided several lines of evidence suggesting that miR-23a-3p up-regulates 

PD-L1 expression through the inhibition of PTEN. First, miR-23a-3p was elevated in ER 

stress-related exosomes, and Exo-TM significantly reduced PTEN expression but augmented 

PD-L1 expression in macrophages. Second, bioinformatics analysis and dual luciferase 

reporter assay revealed that miR-23a-3p specifically targeted PTEN.(33,34) Third, 

overexpression of miR-23a-3p in macrophages inhibited PTEN expression but significantly 

up-regulated PD-L1 expression. Finally, knockdown of PTEN elevated PD-L1 expression in 

macrophages. Taken together, our results suggest that ER-stressed HCC cells down-regulate 

PTEN in macrophages by transmitting exosomal-miR-23a-3p to macrophages and 

subsequently increasing PD-L1 expression to promote immune escaping.

Macrophage expressed PD-L1 influences T-cell functions.

Macrophages are the prominent components in tumor stroma, and high macrophage density 

was associated with unfavorable prognosis in many types of tumors.(35) Several studies have 

reported that macrophages directly communicate with tumor cells, thereby promoting tumor 

progression.(43) We found that GRP78high HCC tissues recruited more CD68+ macrophages 

in the stroma, and in vitro studies demonstrated that Exo-TM polarized macrophages to M2 

phenotype. Moreover, there is evidence suggesting that cancer cells promote macrophage 

production of inflammatory mediators, such as IL-6 and TNF-α, to facilitate tumor 

metastasis.(44,45) Here, we found Exo-TM not only increased macrophage IL-6 and TNF-α 
expression but also up-regulated protumor factor IL-10 expression, suggesting that ER-
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stressed HCC cells may “educate” macrophages toward TAMs to facilitate disease 

progression.

PD-L1, also called B7-H1 or CD274, inhibits T-cell proliferation and promotes T-cell 

dysfunction by binding to programmed death 1 (PD-1).(31) PD-L1 is expressed by both 

hematopoietic cells and nonhematopoietic cells, and up-regulation of PD-L1 has been 

observed in various tumors and contributes to immune evasion. High levels of PD-L1 have 

been observed in macrophages and been shown to play an important role in suppressing 

antitumor immunity.(46–48) Macrophage infiltration in the tumor microenvironment has been 

reported to promote tumor progression by impairing the immune responses of cytotoxic 

CD8+ T cells.(32) Several studies have also demonstrated that Kupffer cells(15) or activated 

monocytes/macrophages(16) in the HCC stroma express higher levels of PD-L1 than that in 

the surrounding nontumor liver tissues. Furthermore, blocking PD-L1 using a specific 

antibody improved T-cell immune response, suggesting that increased PD-L1 expression on 

macrophages helps HCC cells escape from cytotoxic T cells. However, it is unclear how PD-

L1 expression is up-regulated in macrophages. In this study, we found that macrophages 

infiltrated in ER-stressed HCC tissues expressed high levels of PDL-1, and PD-L1 levels 

negatively correlated with overall survival. Finally, we provided evidence that ER stress 

promotes HCC cells to release miR-23a-3p-enriched exosomes, and these exosome-treated 

macrophages significantly up-regulate PD-L1 expression that reduced the proportion of 

CD8+ T cells and IL-2 production and increased T-cell apoptosis in a co-culture system. 

Collectively, our data suggest that exosomes released by ER-stressed HCCs induce 

immunosuppression through the up-regulation of PD-L1 on macrophages.

In summary, we found ER stress is activated in HCC tissues, and activation of ER stress 

contributes to CD68+PD-L1+ macrophage recruitment and poor prognosis. Moreover, ER-

stressed HCC cells transmit exosomal-miR-23a-3p to macrophages and activate the PI3K-

AKT pathway by inhibiting PTEN, thereafter increasing PD-L1 expression and inhibiting T-

cell function. Our findings suggest that the transfer of exosomal-miR-23a-3p from ER-

stressed HCC cells to macrophages plays an important role in tumor cell escape from 

immunologic cytotoxicity, and blockade of the HCC-macrophage communication may be a 

novel strategy to treat HCC progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APC antigen-presenting cell

ATF6 activating transcription factor 6

CD cluster of differentiation

Cum cumulative

DAPI, 4´ 6-diamidino-2-phenylindole

ER endoplasmic reticulum

Exo-con exosomes derived from untreated HCC cells

Exo-TM exosomes derived from tunicamycin treated HCC cells

GAPDH glyceraldehyde 3-phosphate dehydrogenase

GRP78 glucose-regulated protein 78

HCC hepatocellular carcinoma

IRE1α inositol-requiring enzyme 1α

IL interleukin

Max maximum

MDSC myeloid-derived suppressor cell

MIP-1 macrophage inflammatory protein 1

miRNA/miR microRNA

mRNA messenger RNA

p-AKT phosphorylated protein kinase B

PBS phosphate-buffered saline

PD-1 programmed death 1

PD-L1 programmed death ligand 1

PERK protein kinase R (PKR)-like endoplasmic reticulum kinase

PI3K phosphoinositide 3-kinase

PTEN phosphatase and tensin homolog

Q quadrant

qPCR quantitative polymerase chain reaction

TAM tumor-associated macrophage

TNF-α tumor necrosis factor-α
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FIG. 1. ER stress is activated in human HCC.
(A) Representative low and high expression of ER stress markers GRP78, PERK, ATF6, and 

IRE1α in HCC tissue samples (scale bar = 200 μm). (B) Representative western blot 

analyses of GRP78, PERK, ATF6, and IRE1α protein expression in human HCC tissues. (C) 

qPCRdetected the mRNA levels of GRP78, PERK, ATF6, and IRE1α in 16 cases of freshly 

resected human HCC tissues. *P < 0.05, **P < 0.01.
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FIG. 2. Activation of ER stress correlates with poor survival in human HCC.
Kaplan-Meier curves demonstrated that the overall survival in patients with overexpression 

of (A) GRP78, (B) ATF6, (C) PERK, and (D) IRE1α was significantly shorter than those 

with low expression levels (n = 55). Log-rank test was used to evaluate statistical 

significance. **P < 0.01 as indicated.
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FIG. 3. ER stress is associated with macrophage infiltration and PD-L1 expression in HCC 
patients.
(A) Representative images of the expression pattern of CD68 protein in HCC tissues with 

GRP78high and GRP78low groups (scale bar = 200 μm for the upper panel; scale bar = 50 μm 

for the lower panel). Quantitative analysis of CD68-positive areas in the GRP78high and 

GRP78low group is shown in the right panel. (B) Representative images of the expression 

pattern of PD-L1 protein in HCC tissues with GRP78high and GRP78low groups (scale bar = 

200 μm for the upper panel; scale bar = 50 μm for the lower panel). (C) qPCR analyses of 

PD-L1 mRNA levels in 16 cases of freshly resected HCC tissues. (D) Western blot analyses 
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of PD-L1 protein levels in human HCC tissues. (E) The expression pattern of PD-L1 on 

CD68+ cells in GRP78low and GRP78high HCC tissues was measured by 

immunofluorescence (scale bar = 100 μm). (F) Log-rank test evaluated overall survival and 

PD-L1 expression in 55 HCC patients. Data are presented as the means ± SD (error bar). *P 
< 0.05, **P < 0.01 as indicated.
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FIG. 4. Exo-TM increases macrophage PD-L1 expression in vitro.
(A) PKH67-labeled exosomes were coincubated with mTHP-1 cells and examined by 

confocal microscopy (scale bar = 25 μm). Representative images are shown. Red arrows 

indicate PKH67-labeled exosomes. (B) Macrophages were coincubated with HepG2-derived 

Exo-con and Exo-TM, the protein levels of PD-L1 were determined by flow cytometry, and 

the mean fluorescence intensity (MFI) was statistically analyzed. Moreover, the impact of 

Exo-TM on macrophage PD-L1 protein expression was also determined by (C) western blot 

and (D) immunohistochemical analysis. PD-L1 mRNA was detected by (E) qPCR. Data are 
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shown as the means ± SD of at least three independent experiments. *P < 0.05, **P < 0.01 

with indicated groups.
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FIG. 5. Exo-TM up-regulates the expression of PD-L1 in vivo.
PKH67-labeled exosomes were injected to nude mice intravenously through the tail vein, 

and the incorporation of PKH67-labeled exosomes by peritoneal macrophages was detected 

by (A) confocal microscopy (scale bar = 25 μm) and (B) flow cytometric analysis, peritoneal 

macrophages were isolated from mice treated with PBS, Exo-con, and Exo-TM, and the 

expression of PD-L1 was evaluated by (C,D) flow cytometric analysis, (E) 

immunohistochemical assay, and (F) qPCR. Data are shown as the means ± SD (error bar) of 

at least three independent experiments. *P < 0.05, **P < 0.01 with indicated groups.
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FIG. 6. Exo-TM-treated macrophages inhibit T-cell function and induce T-cell apoptosis.
Macrophages were coincubated with Exo-con and Exo-TM for 48 hours, then washed with 

exosome-free medium, followed by coincubating with CD3+ T cells at a ratio of 1:20 for 

another 48 hours. (A) CD4+ and CD8+ T cells were measured by flow cytometry and 

statistically analyzed by (B) SPSS 16.0. (C) The level of IL-2 secreted by T cells was 

determined by a Cytometric Bead Array (CBA) inflammatory factor kit. (D) Annexin V /PI 

apoptosis detection kit was used to detect the ratio of apoptotic T cells and statistically 

analyzed by (E) SPSS 16.0. Data are shown as means ± SD (error bar) of at least three 
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independent experiments. *P < 0.05, **P < 0.01 with indicated groups. Mock= T cells; 

Con= macrophages + T cells; Exo-con= Exo-con-treated macrophages + T cells; Exo-TM= 

Exo-TM-treated macrophages + T cells.
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FIG. 7. miR-23a-3p up-regulates PD-L1 expression in macrophages.
(A) The heat map of miRNAs expressed in Exo-con and Exo-TM. (B-D) Macrophages were 

transfected with miR-23a-3p mimics, inhibitors, and their corresponding controls (NC, INC) 

for 48 hours. (B) Western blot and (C) qPCR assay were used to analyze the protein and 

mRNA levels of PTEN, respectively. The expression of PD-L1 on macrophages following 

miR-23a-3p transfection was analyzed by (D) flow cytometry and (E) qPCR. Data are shown 

as the means ± SD of at least three independent experiments. *P < 0.05, **P < 0.01 with 

indicated groups. NC=Negative control; INC= Inhibitor negative control.

Liu et al. Page 25

Hepatology. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 8. Exo-TM up-regulates expression of PD-L1 in macrophages through the inhibition of 
PTEN and subsequent activation of AKT pathway.
mTHP-1 cells were incubated with Exo-TM or Exo-Con, and the expression of PTEN and 

AKT proteins (A), PTEN mRNA (B), miR-23a-3p (C) levels in mTHP-1 were determined. 

(D) Transfection of mTHP-1 cells with miR-23a-3p inhibitor significantly reversed Exo-

TM-mediated down-regulation of PTEN and up-regulation of p-AKT proteins. (E,F) PTEN 

in mTHP cells was knocked down by transfection of PTEN siRNA (si-PTEN). PD-L1 

protein and mRNA expression on mTHP-1 cells were measured by flow cytometry and 

qPCR, respectively. Data are presented as the means ± SD of at least three independent 
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experiments. *P < 0.05, **P < 0.01 as indicated. Abbreviation: siRNA, small interfering 

RNA.
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