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Abstract

Large-scale single-cell RNA-sequencing (scRNA-seq) studies that profile hundreds of thousands 

of cells are becoming increasingly common, overwhelming existing analysis pipelines. Here, we 

describe how to enhance and accelerate single-cell data analysis by summarizing the 

transcriptomic heterogeneity within a dataset using a small subset of cells, which we refer to as a 

geometric sketch. Our sketches provide more comprehensive visualization of transcriptional 

diversity, capture rare cell types with high sensitivity, and reveal biological cell types via 

clustering. Our sketch of umbilical cord blood cells uncovers a rare subpopulation of inflammatory 

macrophages, which we experimentally validated. The construction of our sketches is extremely 

fast, which enabled us to accelerate other crucial resource-intensive tasks such as scRNA-seq data 

integration while maintaining accuracy. We anticipate our algorithm will become an increasingly 

essential step when sharing and analyzing the rapidly-growing volume of scRNA-seq data and 

help enable the democratization of single-cell omics.

eTOC

Single-cell RNA-sequencing (scRNA-seq) measures gene expression in millions of cells, 

providing unprecedented insight into biology and disease. These datasets, however, are becoming 

too large for conventional analysis methods. Our algorithm, geometric sketching, efficiently 

samples a small representative subset of cells from massive datasets while preserving biological 

complexity, highlighting rare cell states, and accelerating complex analyses like dataset 
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integration. Geometric sketching is an increasingly useful tool as the volume of scRNA-seq data 

explodes.

INTRODUCTION

Improvements in the throughput of single-cell profiling experiments, especially droplet-

based single-cell RNA-sequencing (scRNA-seq), have resulted in datasets containing 

hundreds of thousands of cells (Angerer et al., 2017; Macosko et al., 2015; Zheng et al., 

2017), with hundreds to thousands of gene expression measurements per cell. As these 

sequencing pipelines become cheaper and more streamlined, experiments profiling tens of 

millions of cells may become ubiquitous in the near future (Angerer et al., 2017), and 

consortium-based efforts like the Human Cell Atlas plan to profile billions of cells 

(Rozenblatt-Rosen et al., 2017). Leveraging this data to improve our understanding of 

biology and disease will require merging and integrating many cells across diseases and 

tissues (Hie et al., 2019), resulting in reference datasets with massive numbers of cells. 

Unfortunately, the sheer volume of scRNA-seq data being generated is quickly 

overwhelming existing analytic procedures, requiring prohibitive runtime or memory usage 

to produce meaningful insights (Angerer et al., 2017). This bottleneck limits the utility of 

these emerging large datasets to researchers with access to expensive computational 

infrastructure, and makes quick exploratory analyses impossible even for these researchers.

Here, we introduce an approach that intelligently selects a small subset of data (referred to 

as a “sketch”) that comprehensively represents the transcriptional heterogeneity within the 

full dataset. Because of their vastly reduced computational overhead, our sketches can be 

efficiently shared among researchers and be used to quickly identify important patterns in 

the full dataset to be followed up with in-depth analyses.

Currently, researchers often uniformly downsample a dataset to obtain a small subset to 

accelerate the initial data analysis (10x Genomics, 2017). Although this simple approach 

could be used to generate sketches of single-cell datasets, it is highly prone to removing rare 

cell types and negates the advantage of performing large-scale scRNA-seq experiments in 

the first place. Alternative sampling approaches that better consider the structure of the data, 

including k-means++ sampling (Arthur and Vassilvitskii, 2007) and spatial random sampling 

(SRS) (Rahmani and Atia, 2017a), have not yet been applied to the problem of obtaining 

informative sketches of scRNA-seq data to our knowledge. However, these data-dependent 

sampling techniques not only lack the ability to efficiently scale to large datasets, but also 

lack robustness to different experimental settings and produce highly unbalanced sketches 

that are ill-suited for downstream scRNA-seq analyses as we demonstrate in our 

experiments.

The key insight behind our sampling approach is that common cell types form dense clusters 

in the gene expression space, while rarer subpopulations may still inhabit comparably large 

regions of the space but with much greater sparsity. Rather than sample cells uniformly at 

random, we sample evenly across the transcriptomic space, which naturally removes 

redundant information within the most common cell types and preserves rare transcriptomic 

structure contained in the original dataset. We refer to our sampling method as “geometric 
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sketching” because it obtains random samples based on the geometry, rather than the 

density, of the dataset (Figure 1).

Geometric sketching is extremely efficient, sampling from datasets with millions of cells in 

a matter of minutes and with an asymptotic runtime that is close to linear in the size of the 

dataset. We empirically demonstrate that our algorithm produces sketches that more evenly 

represent the transcriptional space covered by the data. We further show that our sketches 

enhance and accelerate downstream analyses by preserving rare cell types, producing 

visualizations that broadly capture transcriptomic heterogeneity, facilitating the 

identification of cell types via clustering, and accelerating integration of large scRNA-seq 

datasets. Moreover, we demonstrate how the sensitivity of geometric sketching to rare 

transcriptional states allows us to identify a previously unknown rare subpopulation of 

inflammatory macrophages in a human umbilical cord blood dataset, providing insight into a 

fundamental immunological process. As the size of single-cell data grows, geometric 

sketching will become increasingly crucial for the democratization of large-scale single-cell 

experiments, making key analyses tractable even for researchers without expensive 

computational resources.

RESULTS

Overview of Our Geometric Sketching Algorithm

The overall approach taken by the geometric sketching algorithm is illustrated in Figure 1. 

Geometric sketching aims to select a subset of cells (i.e., a sketch) from a large scRNA-seq 

dataset such that the subset accurately reflects the full transcriptomic heterogeneity, where 

the small size of the sketch enables fast downstream analysis. In order to effectively 

summarize the diversity of gene expression profiles within a dataset, the first step of our 

algorithm is to approximate the geometry of the transcriptomic space inhabited by the input 

data as a union of fixed shapes that admit succinct representation. In our work, we 

approximate the data with a collection of equal-sized, non-overlapping, axis-aligned boxes 

(hypercubes), which we refer to as a plaid covering. We use boxes instead of spheres to 

obtain a highly efficient greedy covering algorithm that helps us better cope with the 

increasing volume of scRNA-seq data. Once the geometry of data is approximated via plaid 

covering, we sample cells by first spreading the desired total sample count over the covering 

boxes as evenly as possible (based on a random ordering of the boxes), then choosing the 

assigned number of samples within each box uniformly at random. This process allows the 

samples to more evenly cover the gene expression landscape of the data, naturally 

diminishing the influence of densely populated regions and increasing the representation of 

rare transcriptional states. A more detailed description and theoretical analysis of our 

approach is provided in Method Details and a summary illustration of the geometric 

sketching workflow is provided in Figure 2.

Geometric Sketches Evenly Summarize the Transcriptomic Landscape

We first sought to quantify how well geometric sketching is able to evenly represent the 

original transcriptomic space by measuring the Hausdorff distance from the full dataset to a 

geometric sketch (Method Details). Intuitively, a low Hausdorff distance indicates that the 
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points in a sketch are close to all points in the remainder of the dataset within the 

transcriptomic space, while a high Hausdorff distance indicates that there are some cells in 

the full dataset that are not well represented within the sketch. We benchmarked geometric 

sketching against uniform sampling as well as more complex, data-dependent strategies: k-

means++ sampling (Arthur and Vassilvitskii, 2007) and spatial random sampling (SRS) 

(Rahmani and Atia, 2017a). Note that, to our knowledge, neither of these non-uniform 

sampling approaches have been previously considered for the problem of downsampling 

single-cell datasets. k-means++ works by randomly choosing an initial sample, then 

repeatedly sampling the next point such that more distant points from the current sample set 

have higher probability. SRS works by projecting the data onto the unit ball, sampling points 

uniformly across the surface of the ball, and picking the closest example from the dataset to 

each of those random points.

We used four scRNA-seq datasets of varying sizes and complexities to assess our method 

(Method Details; Table S1–S4): a 293T/Jurkat mixture with 4,185 cells (Zheng et al., 2017); 

a PBMC dataset with 68,579 cells (Zheng et al., 2017); a developing and adolescent mouse 

central nervous system (CNS) dataset with 465,281 cells (Zeisel et al., 2018); and an adult 

mouse brain dataset with 665,858 cells (Saunders et al., 2018). In all cases, we observed that 

geometric sketching obtains substantially better improvement under a robust Hausdorff 

distance measure (Method Details) than uniform sampling and the other data-dependent 

sampling methods, SRS and k-means++ (Figure 3A). The improvement in Hausdorff 

distance was consistent across sketch sizes ranging from 2% to 10% of the full dataset, 

providing quantitative evidence that our algorithm more evenly samples over the geometry 

of the dataset than do other methods.

Visualization of Geometric Sketches Reveals Transcriptional Diversity

We next set out to assess the ability of our geometric sampling approach to improve the low-

dimensional visualization of scRNA-seq data, a common exploratory (and often 

computationally expensive) initial step in single-cell genomic analysis. From our two largest 

datasets of mouse nervous system, containing 465,281 and 665,858 cells each, we used a 2-

dimensional t-SNE (Van Der Maaten and Hinton, 2008) to visualize a sketch containing 2% 

of the total dataset (sampled without replacement) obtained by geometric sketching.

The results, shown in Figure 3B, illustrate that the relative representations of cell types in 

geometric sketches can have striking differences compared to uniformly downsampled 

datasets. For instance, when obtaining a sketch of 2% of the dataset of adult mouse neurons 

(Saunders et al., 2018), clusters of macrophages, endothelial tip cells, and mural cells have 

only 59, 117, and 336 cells, respectively, in the uniform sample out of 1695, 3818, and 

12083 cells in the full data, respectively. In contrast, these cell types have 326, 1022, and 

875 cells, respectively, in the geometric sketch of the same size. Although these cell types 

are rare compared to neurons (428,051 cells in the full dataset), their substantially increased 

representation in our sketch suggests they inhabit a comparatively large portion of the 

transcriptional space. Similarly, on a dataset of 465,281 cells from the developing and 

adolescent mouse central nervous system (CNS) (Zeisel et al., 2018), we also observed a 

more balanced composition of cell types as determined by the original study’s authors 
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(Figure 3B). The rarest cell types are also more consistently represented in a geometric 

sketch than in sketches obtained by SRS or k-means++ (Figure S1A; Table S3–4). We also 

visualize the data with a uniform manifold approximation and projection (UMAP), an 

alternative method for computing 2-dimensional visualization embeddings (McInnes and 

Healy, 2018), with similar results as those produced by our t-SNE experiments (Figure S1B).

We note that our sampling algorithm is completely unsupervised and has no knowledge of 

the cell type labels, but naturally obtains a balanced composition of cell types by sampling 

more evenly across the entire transcriptional space. Indeed, on artificial data in which we 

controlled the relative volumes and densities of the clusters, geometric sketching samples the 

clusters proportionally to their relative volumes rather than their frequencies in the full 

dataset (Figure S2A), suggesting that the composition of different cell types in a geometric 

sketch more closely reflects the transcriptional variability of individual clusters rather than 

their frequency in the overall population. Our visualizations therefore reflect a geometric 

“map” of the transcriptional variability within a dataset, allowing researchers to more easily 

gain insight into rarer transcriptional states.

Rare Cell Types Are Better Preserved Within Geometric Sketches

As suggested by the above results, one of the key advantages of our algorithm is that it 

naturally increases the representation of rare cell types with sufficient transcriptomic 

heterogeneity in the subsampled data. Using the four datasets mentioned above, which 

include cell type labels provided by the original study authors, we evaluated the ability of 

our method to preserve the rarest cell type within each dataset. In particular, we focused on 

28 293T cells (0.66% of the total number of cells in the dataset) in the 293T/Jurkat mixture, 

262 dendritic cells (0.38%) in the PBMC dataset, 1695 macrophages (0.25%) among the 

adult mouse brain cells, and 2777 ependymal cells (0.60%) among the mouse CNS cells. In 

all datasets, the rare cell types are substantially more represented in the sketch obtained by 

our algorithm compared to other sampling techniques (Figure 3C). For example, a sketch 

that is 2% the size of the 665,858 mouse brain cells contains an average of 281 macrophages 

compared to only 31 cells from uniform sampling. Geometric sketching is able to better 

preserve rare cell types because the extent of transcriptional variation among rare cells is 

similar to that of common cells. To this end, we used the differential entropy of a 

multivariate Gaussian fit to each cell type as a proxy to its transcriptional diversity (Method 

Details; Table S1–S4). We also note that, within the geometric sketch, almost all of the rare 

cell types in each dataset have increased representation compared to the full data, where the 

representation of rare cell types gradually converges to that of uniform sampling as the 

sketch size increases (Figure S2B).

Clustering of Geometric Sketches Better Recapitulates Biological Cell Types

Since the samples produced by our algorithm consist of a more balanced composition of cell 

types, including rare cell types, we also reasoned that clustering analyses should be able to 

better distinguish these cell types within a geometric sketch compared to uniform 

downsampling. To assess this capability, we first clustered the sketches using the standard 

graph-based Louvain clustering algorithm (Blondel et al., 2008). Then, we transferred 

cluster labels to the rest of the dataset via k-nearest-neighbor classification and assessed the 
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agreement between our unsupervised cluster labels and the biological cell type labels 

provided by the original studies (Method Details). We quantified the clustering accuracy via 

balanced adjusted mutual information (BAMI), our proposed metric for evaluating clustering 

quality when the ground truth clusters are highly imbalanced, which is often the case for 

scRNA-seq datasets. BAMI balances the terms in adjusted mutual information (Vinh et al., 

2010) to equally weight each of the ground truth clusters, preventing rare cell types from 

having only negligible contribution to the performance metric. We also provide results for 

adjusted mutual information, without our balancing technique, which are largely consistent 

with our comparisons based on BAMI (Figure S2C).

On a variety of real scRNA-seq datasets, our algorithm’s sketches recapitulate the biological 

cell types consistently better than uniform sampling (Figure 3D). Although two other data-

dependent sampling methods, SRS and k-means++, achieve performance comparable to our 

method in a few cases, only geometric sketching obtains competitive performance across all 

datasets, suggesting that our method is reasonably robust to different experimental settings. 

Notably, because our sketches are drawn without replacement, clustering scores can become 

closer to those of uniform samples as the size of the sketch increases; this may explain the 

diminishing performance of our method with increasing sketch size on the mixture of 293T 

cells and Jurkat cells (Figure 3D). Still, we note our substantial advantage even on this 

dataset using very small sketches that select as low as 2% of the full dataset. Moreover, the 

overall improvement in clustering consistency could become more pronounced as more fine-

grain clusters become available as ground truth in light of the enhanced representation of 

rare transcriptional states within geometric sketches.

Geometric Sketching Assists in the Discovery of a Rare Population of Inflammatory 
Macrophages

Because geometric sketching of large datasets highlights rare transcriptional states, certain 

subpopulations of cells that are difficult to identify when analyzing the full dataset may 

become discoverable within a geometric sketch. To test this in practice, we analyzed a 

dataset of 254,941 cells taken from human umbilical cord blood without cell type labels 

(Method Details). We computed a geometric sketch of 20,000 cells and clustered the sketch 

via the Louvain community detection algorithm. Among the putative macrophage clusters 

with elevated expression of macrophage-specific marker genes, including CD14 and CD68 
(Khazen et al., 2005), we found a comparatively rare cluster of macrophages defined by the 

marker genes CD74, HLA-DRA, B2M, and JUNB (AUROC > 0.90; Method Details) 

(Figure 4). We hypothesized that this cluster corresponds to inflammatory macrophages, 

since each of its marker genes has been implicated in macrophage activation in response to 

inflammatory stimuli: CD74 encodes the receptor for macrophage migration inhibitory 

factor (MIF) (Leng et al., 2003), a pro-inflammatory signal (Morand et al., 2006; Santos and 

Morand, 2009); HLA-DR has elevated expression in classically pro-inflammatory M1-

macrophages (Helm et al., 2014); increased B2M has been demonstrated in murine bone 

marrow derived macrophages after LPS stimulation (Tanaka et al., 2017); and JUNB has 

been implicated as a key transcriptional modulator of macrophage activation (Fontana et al., 

2015) and is upregulated by MIF (Calandra and Roger, 2003). We did not observe major 

differences in the number of unique genes between this rare cluster and the rest of the 
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macrophages (Figure S3), so these differences in gene expression are most likely not an 

artifact of variable data sparsity or dropout.

We sought further confirmation of this rare expression signature in macrophages by 

conducting a separate scRNA-seq study of an in vitro model of macrophage inflammation in 

which human CD14+ monocytes were polarized with GM-CSF to induce an inflammatory 

response (Method Details). We compared this data to a similar scRNA-seq dataset of 

macrophages but with M-CSF stimulation (Hie et al., 2019) to induce an anti-inflammatory 

polarization. Expression of all four marker genes we identified (CD74, HLA-DRA, B2M, 

and JUNB) was significantly elevated in GM-CSF-derived (n = 354 cells) macrophages 

compared to the M-CSF-derived (n = 1107 cells) macrophages (one-sided Welch’s t-test P = 

4e-34 for CD74, P = 1e-29 for HLA-DRA, P = 3e-46 for B2M, and P = 1e-13 for JUNB), 

increasing our confidence in these marker genes as a signature of inflammation. Additional 

in vivo confirmation of these markers, along with more in-depth study of macrophage 

subpopulations, will help reveal insight into inflammation and ways to modulate 

inflammatory processes in response to disease.

When we applied the same clustering procedure to either the full dataset or a uniform 

subsample, the clustering algorithm did not assign a separate cluster to inflammatory 

macrophages but rather placed all macrophages into a single cluster, likely because of the 

relative scarcity of this cell type compared to the large cluster of inactive macrophages. 

These results provide additional evidence that geometric sketches contain a richer variety of 

transcriptional states and can therefore assist researchers in identifying interesting but rare 

biological structure.

Geometric Sketching Has Significantly Better Scalability to Large Datasets Than Other 
Sophisticated Sampling Strategies

Not only does geometric sketching lead to more informative sketches of the single-cell data, 

it is also dramatically faster than other non-uniform sampling methods, which is imperative 

since researchers stand to gain the most from sketches of very large datasets. Geometric 

sketching has an asymptotic runtime that is close to linear in the size of the dataset (Method 

Details) and, when benchmarked on real datasets, is more than an order of magnitude faster 

than non-uniform methods and has a negligible dependence on the number of samples 

specified by the user, unlike k-means++ and SRS (Figure 5A). On our largest dataset of 

665,858 cells, our sampling algorithm takes an average of around 5 minutes (Figure 5A); in 

contrast, k-means++ takes 3 hours and spatial random sampling (SRS) takes 5.5 hours when 

subsampling 10% of the cells. On a simulated benchmark dataset of 10 million data points 

(Method Details), geometric sketching subsamples 20,000 cells after an average time of 67 

minutes, demonstrating practical scalability to datasets with hundreds of millions of cells 

(Figure 5A). Although uniform sampling is trivially the most efficient technique since it 

does not consider any properties of the underlying dataset, our algorithm is both efficient 

and produces high quality samples that more accurately represent the underlying 

transcriptomic space as we demonstrated above. Notably, our runtime comparison does not 

include the standard preprocessing step of (randomized) principal component analysis 
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(PCA), which we uniformly applied to all methods and whose runtime as well as scalability 

are comparable to our geometric sketching step (Method Details; Figure S4A).

Geometric Sketching Accelerates scRNA-seq Data Integration

In addition to being efficient by itself, geometric sketching can also accelerate other 

downstream algorithms for scRNA-seq analysis. One such problem involves integration of 

multiple scRNA-seq datasets across different batches or conditions (Butler et al., 2018; 

Haghverdi et al., 2018; Hie et al., 2019; Korsunsky et al., 2018). Here, we consider an 

approach to accelerating scRNA-seq data integration by applying the integration algorithm 

only to geometric sketches instead of the full datasets. Then, we use the integrated values of 

the sketch to learn a nonlinear transformation that is applied to the full dataset to place it on 

the same integrated landscape (Method Details). Since the integration step is more 

computationally intensive than the latter interpolation step, our geometric sketch-based 

integration offers a speedup that becomes especially dramatic when integrating large 

numbers of cells. Moreover, because geometric sketching better preserves rare 

transcriptional states, as demonstrated above, rare cell types are also more likely to be 

integrated during the procedure compared to using sketches from other sampling 

approaches.

We applied geometric sketch-based acceleration to two existing algorithms, Scanorama (Hie 

et al., 2019) and Harmony (Korsunsky et al., 2018), for scRNA-seq data integration (Figure 

5B). However, we note that our acceleration procedure is agnostic to the underlying 

integration method and can easily interface with similar algorithms (Butler et al., 2018; 

Haghverdi et al., 2018). We benchmarked the runtime improvement using geometric 

sketching on a dataset of 534,253 human immune cells from two different tissues (umbilical 

cord blood and adult bone marrow). On this data, Scanorama and Harmony require 2.1 and 

1.9 hours of computation, respectively, to obtain integrations that remove tissue-specific 

differences. In contrast, the integration procedure with geometric sketching (which includes 

finding the geometric sketches, integrating the sketches, and then transforming the full 

datasets based on the sketches) requires just 8 minutes of computation with either 

Scanorama or Harmony. Moreover, using geometric sketching-based acceleration has 

integration performance comparable to the full integration (Figure 5B) and better than 

sketch-based integration using other sampling strategies (Figure S4B), providing yet another 

example of how geometric sketching can be used to accelerate other algorithms for large-

scale scRNA-seq analysis.

DISCUSSION

Geometric sketching provides an efficient algorithm for obtaining subsamples of large 

scRNA-seq datasets such that the subsample contains as much of the transcriptional 

heterogeneity from the original dataset as possible. Our algorithm’s sketches require less 

bandwidth to transfer and can be more easily shared among researchers. Geometric sketches 

can be inputted into computationally intensive downstream analysis tools designed for 

smaller datasets, including those that learn complex low-dimensional embeddings (Ding et 

al., 2018), 2-dimensional visualization coordinates (Cho et al., 2018; McInnes and Healy, 
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2018), or that fit complex models for a variety of tasks including pseudo-temporal trajectory 

analysis (Qiu et al., 2017), rare cell type discovery (Grün et al., 2015; Jiang et al., 2016), 

gene regulatory network reconstruction (Van Dijk et al., 2018), or robust differential 

expression analysis (Kharchenko et al., 2014). While our method does not distinguish 

between transcriptional structure due to biological or technical variation (e.g., batch effects), 

our sampling algorithm could be applied separately to datasets from different batches and 

then integrated or batch corrected using other methods (Butler et al., 2018; Hie et al., 2019).

Our work is distinct from but complementary to techniques that aim to find representative 

summaries of gene expression within clusters of cells (Baran et al., 2018; Iacono et al., 

2018; Saunders et al., 2018), which output aggregate expression profiles that are not 

observed in the original dataset. Applying geometric sketching as a preprocessing step 

would mostly likely accelerate these complex methods for gene expression aggregation 

while preserving representation of rare transcriptional states. Moreover, we note that because 

all of the elements within a geometric sketch correspond to actual observations from the 

original data, researchers have the flexibility to apply any existing downstream method 

designed for single-cell RNA-seq datasets, unlike methods that modify the gene expression 

values.

We note that our algorithm should be used in conjunction with other tools for scRNA-seq 

quality control. To limit artifacts arising due to dropout and data sparsity, it is common to 

apply a minimum unique gene cutoff, which we also do in our experiments; filtering steps 

with a linear time complexity in the size of the dataset are unlikely to be a substantial 

bottleneck for single-cell methods. Another potential artifact common to droplet-based 

scRNA-seq experiments are doublets, which, due to their more complex transcriptional 

signatures, may also be more likely to appear within a geometric sketch. Many methods 

have been developed for computational doublet detection (DePasquale et al., 2018; Kang et 

al., 2018; McGinnis et al., 2018; Wolock et al., 2018), which can be applied to the sketch to 

remove these potential sources of confounding variation. We also note that more advanced 

quality control methods, including those for normalization (Bacher et al., 2017; Lun et al., 

2016; Vallejos et al., 2017), highly variable gene filtering (Yip et al., 2018), and imputation 

(Van Dijk et al., 2018; Li and Li, 2018; Ronen and Akalin, 2018) can naturally be applied to 

a geometric sketch before further analysis.

While it is possible for individuals to download large datasets and independently run 

geometric sketching, we envision laboratories that generate large-scale single-cell omics 

datasets would also compute and provide geometric sketches alongside the full data. These 

sketches would then be available to download for users with more limited computational 

resources or those wishing to run quick exploratory analyses on a subset of the data. In this 

spirit, we have computed small geometric sketches of a number of large, publicly-available 

scRNA-seq datasets containing hundreds of thousands of cells or even millions of cells, 

which are available for download at http://geosketch.csail.mit.edu. We also provide 

implementations of geometric sketching and the other sampling algorithms used in our 

benchmarking experiments in the geosketch Python package (https://github.com/brianhie/

geosketch). Finally, we note that our techniques can be applied beyond single-cell 
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transcriptomics, or even biological datasets, to any setting in which compact, geometric 

summaries of the data would prove useful.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Bonnie Berger (bab@mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Macrophages—Human monocytes were isolated from human buffy coats purchased from 

the Massachusetts General Hospital blood bank using a standard Ficoll gradient and 

subsequent CD14+ cell positive selection (Stemcell Technologies). Selected monocytes were 

cultured in ultra low-adherence flasks (Corning) for 6 days with RPMI media (Invitrogen) 

supplemented with 10% FBS (Invitrogen) and 50 ng/mL human GM-CSF (Biolegend) 

before profiling with single-cell RNA-sequencing.

METHOD DETAILS

Geometric Sketching Problem—We first give a mathematical formulation of the 

sketching problem to elucidate the theoretical insights underlying our approach. Let 

𝒳 = x1, …, xn  be a representation of a single-cell dataset, consisting of m-dimensional 

measurements xi ∈ ℝm from n individual cells. In the case of very large n (e.g., millions of 

cells) (Macosko et al., 2015; Zheng et al., 2017), it is often desirable to construct a sketch 
𝒮 ⊂ 𝒳 (i.e., a downsampled dataset), which can be more easily shared with other 

researchers and be used to quickly understand the salient characteristics of 𝒳 without paying 

the full computational price of analyzing 𝒳.

Drawing insight from computational geometry, we measure the quality of a sketch 𝒮 with 

respect to a dataset 𝒳 via the Hausdorff distance dH (Hausdorff, 1937) defined as

dH(𝒳, 𝒮) = max
x ∈ 𝒳

min
s ∈ 𝒮

d(x, s) ,

where d denotes the distance function of the underlying metric space (i.e., a notion of 

dissimilarity between two cells). Intuitively, dH measures the distance of the cell in the 

original dataset that is farthest away from any of the cells included in the sketch. The lower 

this distance, the more comprehensively our sketch covers the original dataset.

We are interested in developing an efficient algorithm for obtaining 𝒮 of a predetermined 

size k (i.e., |S| = k) that minimizes dH(𝒳, 𝒮). A key property of our approach is that it is 

agnostic to local density of data points, since only the maximum distance is taken into 

account. As a result, our sketches more evenly cover the space of gene expression spanned 

by the original dataset. In contrast, approaches based on uniform sampling or distance-based 

sampling [e.g., k-means++ (Arthur and Vassilvitskii, 2007)] are biased toward selecting 
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more cells in densely populated regions at the expense of other regions of interest with fewer 

data points, as we demonstrate in our experiments.

Theoretical Connection to Covering Problems—Our problem of finding a high-

quality sketch 𝒮 of size k that minimizes dH(𝒳, 𝒮) is closely related to the concept of 

covering numbers in information theory and combinatorics. Informally, internal covering 
number is defined as the smallest number of equal-sized shapes (e.g., spheres or boxes) 

centered at individual data points that, together, “cover” all points in a dataset. To relate our 

covering to the Hausdorff distance, we provide the following lemma:

Lemma 1: Let 𝒳 = x1, …, xn  be a representation of a single-cell dataset, consisting of m-

dimensional measurements xi ∈ ℝm from n individual cells. Let dH*  be the minimal 

Hausdorff distance dH(𝒳, 𝒮) obtained by a sketch 𝒮 ⊂ 𝒳 where |𝒮 | = k. Then, 

dH* = Nint
−1(k), where Nint

−1(k) : = min r : Nint(𝒳, r) ≤ k .

Proof of Lemma 1: Since dH bounds the maximum distance of a data point from 𝒮, placing 

a sphere of radius dH at every point in 𝒮 gives a covering of 𝒳, which implies 

Nint 𝒳, dH* ≤ k. Thus, Nint
−1(k) ≤ dH* . If Nint

−1(k) < dH* , then there exists a cover with k 

spheres of radius d′ < dH*  Taking the center points of this cover as our sketch 𝒮′, we obtain 

dH 𝒳, 𝒮′ ≤ dH* , a contradiction. Hence, dH* = Nint
−1(k).■

Lemma 1 shows that the minimum radius for covering spheres that gives an internal 

covering number of at most k on a given dataset is in fact equal to the optimal Hausdorff 

distance achievable by a sketch of size k. An important insight given by this observation is 

that the problem of finding a high-quality sketch reduces to finding a minimum-cardinality 

cover of a dataset given a certain radius. In particular, if one were to have access to an oracle 

that could find the optimal covering of a dataset for any radius, our problem could be solved 

by finding the minimum radius that gives the desired number of covering spheres (e.g., via 

binary search). Unfortunately, finding the minimum-cardinality cover is NP-complete (Attali 

et al., 2016), and although algorithms for a variety of simplified settings have been studied 

(Ahn et al., 2011; Al et al., 2006; Chan and Hu, 2015; Chvatal, 1979), none scales to the 

high-dimensional and large-scale data that we need to handle in single-cell genomics. Given 

the hardness of the covering problem, we aimed to devise an approximate covering 

algorithm that readily scales to large-scale single-cell data while maintaining good sketch 

quality.

Our Geometric Sketching Algorithm—At the core of our geometric sketching 

algorithm is a plaid covering, which approximates the geometry of the given single-cell data 

as a union of equal-sized boxes. To enable scalability to large datasets, we restricted our 

attention to covering the data points with a simple class of covering sets—plaids—whose 

structure is amenable to fast computation. Formally, we define a length-𝓁 plaid cover) 𝒞 of a 

dataset 𝒳 as a collection of points c1, …, ck ∈ ℝm such that:

Hie et al. Page 11

Cell Syst. Author manuscript; available in PMC 2020 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



i. Either ci j = ci′ j or ci j − ci′ j ≥ 𝓁 for all i, i′ ∈ [j] and j ∈ [m], and

ii. 𝒳 ⊂ ∪i = 1
k R ci, 𝓁 , where R ci, 𝓁 = ci1, ci1 + 𝓁 × ⋯ × cim, cim + 𝓁 .

Intuitively, 𝒞 represents a collection of m-dimensional square boxes of side length 𝓁
covering 𝒳 that can be generated by placing a grid (with potentially uneven intervals) over 

the space and selecting a subset of grid cells. An example plaid cover is illustrated in Figure 

1. Our greedy algorithm for finding a plaid cover of a given dataset is shown in Algorithm 1. 

To see that the plaid cover found by our algorithm uses the smallest number of intervals in 

each coordinate (although it may not achieve the smallest cardinality overall) consider the 

following proof:

Proof that Algorithm 1 is optimal in each dimension separately: Fix a dimension d ∈ [n], 

and consider covering the projection πd(𝒳) = x1d, x2d, …, xnd ⊂ ℝ with a one-

dimensional plaid cover of length 𝓁. Let Q = {q1, …, qk} be any such cover, and let Y = {y1, 

…, ym} denote the cover produced by our algorithm on iteration d. We show that k ≥ m, i.e., 

Y has the smallest size of any length-𝓁 cover.

Assume without loss of generality that q1 < q2 < … < qk and y1 < y2 < … < ym. Let zi 

denote the ith-smallest element of πd(𝒳). Our algorithm sets y1 = z1. We must have q1 ≤ z1, 

or else z1 is not covered by Q. Thus, q1 ≤ y1. Proceeding inductively, we see that:

qi + 1 ≤ min zi : zi > qi + 𝓁 ≤ min zi : zi > yi + 𝓁 = yi + 1

where the final equality holds because our algorithm defines yi+1 exactly this way. Thus, we 

have qi ≤ yi for all i ∈ 1, 2, …, min (k, m). If |Q| ≤ |Y|, then ym−1 and ym are both greater 

than all elements in Q. But because Q covers all the points zi, this implies that ym covers no 

points, a contradiction because our algorithm does not construct empty covering sets. Thus, 

we must have |Q| ≥ |Y|, and because Q is arbitrary, Y has the smallest possible size. ■

The main intuition behind our choice of plaid pattern is that it generalizes grid-based 

approximation of geometric shapes while maintaining computational efficiency in assigning 

points to their respective covering box. Note our plaid covering algorithm has time 

complexity in each dimension of O(n log n) in general—the main bottleneck being the 

sorting of each coordinate—and uses O(n) space. In practical scenarios where each 

coordinate requires only a small constant number of intervals to cover, we achieve O(n) time 

complexity by taking linear scans to find the next interval without sorting. This is a 

substantial improvement over other approaches for tackling the covering problem, which 

typically require O(n2) time for all pairwise distance calculations. A greedy approach to 

building a cover could require only O(kn) pairwise distance calculations where k is the 

number of covering objects (Chvatal, 1979), yet k is still typically much larger than log n for 

our applications in single-cell analysis.
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Algorithm 1:

Greedy Plaid Cover

Data: Dataset 𝒳 = x1, …, xn  where xi ∈ ℝm
, length 𝓁

Result: Length-𝓁 plaid cover 𝒞 of 𝒳

yi 0 ∈ ℝm
, ∀i ∈ [n]

for j ∈ [m] do

 z1, …, zn ← Sort({x1j, …, xnj}) /* In ascending order. */

 p ← 1

 while zp + 𝓁 < zn do

  Find smallest i > p where zp + 𝓁 < zi

  yi′j ← zp, ∀i′ ∈ {p, …, i − 1}

  p ← i

 end

 yi′j ← zp, ∀i′ ∈ {p, …, n}

end

return {y1, …, yn} /* Only unique points are returned. */

The cardinality of the cover returned by our plaid cover algorithm generally decreases as the 

length parameter 𝓁 increases, although pathological cases that deviate from this pattern exist. 

We empirically confirmed the near-monotonic relationship between number of covering 

boxes and 𝓁 on all our single-cell benchmark datasets (Figure S5A). Based on this 

observation, we perform binary search (with graceful handling of potential exceptions) to 

find the value of 𝓁 that approximately produces a desired number of covering boxes. By 

default, we choose the same number of boxes as the desired sketch size k. A sketch is then 

constructed by sampling the boxes in a plaid cover and choosing a point at random from 

each box. The quality of our sketch is given by the following theorem:

Theorem 1: Given a dataset 𝒳 of n points in m dimensions, let Nplaid(𝓁) be the number of 

boxes in the plaid cover returned by our algorithm as a function of length parameter 𝓁. Let 

Nplaid
−1 (k) = inf 𝓁 : Nplaid(𝓁) ≤ k . Let k be a desired sketch size and assume 

k = Nplaid Nplaid
−1 (k)  for simplicity (if not take a nearby k where this holds). Let 𝒮plaid(k) be a 

sketch of size k obtained by randomly choosing appoint from each box in the plaid cover. 

Let dH* (k) = minS: |S | = kdH(𝒳, 𝒮). Then, the following holds:

1
2 Nplaid

−1 2m ⋅ k ≤ dH* (k) ≤ dH 𝒳, 𝒮plaid(k) .
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Proof of Theorem 1: For the first inequality, Let 𝒫 = P1, P2, …, PN be any covering by 

plaid sets of side length 2dH* (k), such that all covering sets contain at least one point. We 

show that 𝒫 has cardinality at most 2m k.

Let ℬ be a covering of 𝒳 by k balls B1, B2, …, Bk, each with radius dH* (k). The definition of 

dH*  ensures that such a covering exists. Define

I𝒫 Bi = P j : P j ∩ Bi ≠ ∅ .

That is, I𝒫 Bi  is the number of sets in 𝒫 that intersect Bi.

Because 𝒫 and ℬ are both covering sets, each plaid square in 𝒫 is intersected by at least 

one ball in ℬ. Therefore,

|𝒫 | ≤ ∑
i = 1

k
I𝒫 Bi .

On the other hand, we see that I𝒫 Bi  is bounded above by 2m, because any ball overlaps at 

most two plaid intervals in each dimension. Thus,

𝒫 ≤ 2mk

as desired. The second inequality is immediate, because dH* (k) is an infimum of Hausdorff 

distances of all sets of size k with 𝒳, and 𝒮plaid(k) is such a set. ■

Theorem 1 provides a theoretical insight into the quality of a sketch obtained via plaid 

covering. In particular, it gives a bound on the optimal Hausdorff distance relative to the 

solution obtained by plaid covering.

In order to reduce the dimensionality of the problem for scalability as well as robustness to 

noise, we first project the data down to a relatively low-dimensional space (100 dimensions 

for single-cell data) using a fast random projection-based PCA (Halko et al., 2011) before 

applying our plaid covering algorithm. We note that much work has been done in obtaining 

algorithms for computing an approximate PCA of very large datasets with provable bounds 

on approximation error that are also highly efficient in runtime and memory (Halko et al., 

2011; Ross et al., 2008); obtaining the top 100 principal components (PCs) of our largest 

benchmark dataset with 665,858 cells requires about 10 minutes of additional computation 

time with linear-time scalability in the size of the dataset (Figure S4A).
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Geometric Sketching Algorithm Parameters

Parameter Type Default Value Notes

Sketch size (k) Integer between 0 
and total number 
of cells, inclusive

N/A The desired sketch size is chosen depending on the 
amount of compute resources available and the 
algorithmic complexity of downstream analyses; 
smaller sketches omit more cells but will accelerate 
analysis while preserving much of the transcriptional 
heterogeneity.

Number of 
covering boxes 

𝒞
Integer between 1 
and total number 
of cells, inclusive

Equal to desired 
sketch size k

Converges to uniform sampling as parameter 
increases; a number of covering boxes less than k may 
yield a coarser picture of the transcriptional space, 
including overrepresentation of rare cell types, at the 
cost of an increased Hausdorff distance.

Baseline Sampling Methods—We benchmark our algorithm against a number of 

existing sampling methods:

i. Uniform sampling returns a random sample of the cells, where every cell is given 

equal probability. We use the random choice function provided by the numpy 

Python package (Oliphant, 2006).

ii. Spatial random sampling (SRS) (Rahmani and Atia, 2017b) first projects the data 

points onto the unit hypersphere, then each sample is obtained by uniformly 

sampling a point on the unit hypersphere and selecting the closest point in the 

projected dataset according to the cosine distance.

iii. k-means++ sampling (Arthur and Vassilvitskii, 2007) randomly chooses an 

initial sample, then repeatedly samples the next point by giving each point a 

weight proportional to the minimum distance from previous samples. This 

procedure continues until the desired number of samples have been obtained. We 

used the k-means++ implementation from the scikit-learn package (Pedregosa 

and Varoquaux, 2011).

We also run our experiments for SRS and k-means++ sampling using the same lower 

dimensional embeddings (top 100 PCs) used as input to geometric sketching.

Benchmark Datasets—We used the following datasets for our benchmarking 

experiments:

i. 293T and Jurkat mixture. We obtained a mixture of 293T cells and Jurkat cells 

from 10X Genomics (Zheng et al., 2017) containing a much smaller number of 

293T cells than Jurkat cells, where cell types are computationally inferred based 

on consensus clustering and marker genes. We removed cells below a cutoff of 

500 unique genes, normalized each cell by the total expression and reduced the 

dimensionality to 100 PCs. The resulting data contained 4,185 cells in total.

ii. Peripheral blood mono-nuclear cells (PBMCs). We obtained a dataset of PBMCs 

from 10X Genomics (Zheng et al., 2017) and used the computationally curated 

cell type labels as well as the cell quality filtering steps from the original study. 

We then normalized each cell by the total expression and reduced the 

dimensionality to 100 PCs. The resulting data contained 68,579 cells.
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iii. Adult mouse brain. We obtained scRNA-seq data from different regions of the 

mouse brain from Saunders et al. (Saunders et al., 2018) and used the 

computationally curated cell type labels as well as the cell quality filtering steps 

from the original study, including removal of doublet and outlier cells. We then 

normalized each cell by the total expression and reduced the dimensionality to 

100 PCs. The resulting data contained 665,858 cells.

iv. Developing and adolescent mouse central nervous system (CNS). We obtained 

scRNA-seq data from different regions of the mouse CNS from Zeisel et al. 
(Zeisel et al., 2018), removed cells below a cutoff of 500 unique genes, and used 

the computationally curated cell type labels and additional cell quality filtering 

steps from the original study. We then normalized each cell by the total 

expression and reduced the dimensionality to 100 PCs. The resulting data 

contained 465,281 cells.

Robust Hausdorff Distance Computation—The classical Hausdorff distance (HD) 

(Hausdorff, 1937), according to our problem formulation, is computed as 

dH(𝒳, 𝒮) = maxx ∈ 𝒳 mins ∈ 𝒮d(x, s)  where 𝒳 denotes the point set corresponding to the 

full scRNA-seq dataset and 𝒮 denotes the point set corresponding to a sketch, where 𝒮 ⊆ 𝒳. 

Because the classical HD measure is highly sensitive to even a few number of outliers 

(Huttenlocher et al., 1993; Sim et al., 1999), we use a robust HD measure proposed by 

Huttenlocher et al. called the partial HD measure, defined 

dHK(𝒳, 𝒮) = Kx ∈ 𝒳
th mins ∈ 𝒮d(x, s)  where Kx ∈ 𝒳

th  denotes the Kth largest value; partial 

HD requires a parameter q = 1 − K / |𝒳| between 0 and 1, inclusive, which is equivalent to 

classical HD when q = 0 (Huttenlocher et al., 1993). We set q = 1e-4, which obtains a 

measurement that is very close to the value obtained by classical HD but is robust to the 

most extreme outliers. We achieved similar results for different values of q (Figure S5C).

Data Visualization—To visualize the subsampled data based on different sampling 

methods, we used a 2-dimensional t-distributed stochastic neighbor embedding (t-SNE) with 

a perplexity of 500, a learning rate of 200, and 500 training iterations. We used the 

implementation provided by the Multicore-TSNE Python package (https://github.com/

DmitryUlyanov/Multicore-TSNE).

Simulation Analysis of Data with Known Volume and Density—To obtain datasets 

for which the volume (transcriptional diversity) and density of each cell type is known a 
priori, we considered different ways to duplicate and transform a dataset composed entirely 

of 293T cells (Zheng et al., 2017). To obtain a dataset with clusters of equal volume and 

variable density, we uniformly subsampled the 293T cells by a factor of 10 or 100 to create 

two new clusters, where each new cluster is translated such that none of the clusters overlap. 

Likewise, to obtain a dataset with clusters of equal number of data points but variable 

volume, we projected down to 3-dimensions using PCA and rescaled the components by a 

factor of 10 or 100 to create two new clusters, which are similarly translated to avoid 

overlap. Using a lower dimensionality in our simulations allowed us to better reason about 

the expected change in volume and is close to the effective fractal dimension of the dataset 
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(Figure S5B). We then sketched these datasets and assessed the density-dependence by 

computing the Kullback-Leibler (KL) divergence ∑i = 1
k pilog

ci
npi

 where pi denotes the 

normalized volume of cell type i such that ∑i pi = 1, ci denotes the number of cells in 

cluster i, k is the number of clusters, and n is the total number of cells in the dataset. Lower 

values of the KL divergence indicate a sampling that better reflects the volume of each of the 

clusters.

Differential Entropy of Cell Types—To obtain a rough estimate of the transcriptional 

variability represented by each cell type i, we fit a multivariate Gaussian distribution to each 

cell type to obtain an estimate of the covariance Σi; we then computed the differential 

entropy m
2 + m

2 ln(2π) + 1
2 ln Σi  where m is the dimensionality of the data. We fit the 

distribution using the GaussianMixture class from scikit-learn (Pedregosa and Varoquaux, 

2011).

Clustering Analysis—We quantify the ability for clustering analyses on a subsample of a 

full dataset to recapitulate a set of “ground truth” labels, in this case, the cell type labels 

assigned by the original study authors.

For the Louvain clustering analysis, we constructed the nearest neighbors graph on which 

we applied the Louvain community detection algorithm (Blondel et al., 2008). We use the 

graph construction and Louvain implementation with default parameters provided by scanpy 

(Wolf et al., 2018), which leverages the louvain-igraph package (https://github.com/vtraag/

louvainigraph). Louvain cluster labels were applied to the full dataset based on the most 

common label of the five nearest neighbors within the sketch (ties broken randomly). We 

quantified agreement between the unsupervised cluster labels and the previous study labels 

using the adjusted mutual information (AMI) score (Vinh et al., 2010) implemented by the 

scikit-learn Python package (Pedregosa and Varoquaux, 2011) based on a resampled dataset 

where the relative frequencies of the ground truth clusters are set to uniform to equally 

consider the clusters regardless of their abundance in the full dataset. We refer to this metric 

as balanced AMI (BAMI). The correction factor in AMI for chance agreement is updated 

accordingly to account for the balanced distribution. We repeat the analysis using three 

different Louvain resolution parameters (0.5, 1, and 2) and take the maximum BAMI score 

across these parameter settings for each sampling algorithm.

Immune Cell Analysis—254,941 cells from umbilical cord blood were obtained from the 

Human Cell Atlas (https://preview.data.humancellatlas.org). The dataset was filtered for 

cells containing more than 500 unique genes, normalized by the total expression for each 

cell, and then natural log transformed after adding a pseudo-count of 1. Data was projected 

to 100 PCs using the randomized PCA implementation provided by the fbpca Python 

package (https://github.com/facebook/fbpca). Unsupervised clustering was performed by 

running the Louvain community detection algorithm with the default parameters (resolution 

of 1, 15-nearest neighbors graph) of the scanpy framework (Wolf et al., 2018).
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Macrophage Polarization scRNA-seq Experiment and Analysis—scRNA-seq data 

of M-CSF-derived macrophages was obtained from the study by Hie et al. (2019). We 

repeated the same experiment but instead polarized with an inflammatory stimulus, GM-

CSF. Human monocytes were isolated and polarized as described above. SeqWell analysis 

was performed as previously described (Gierahn et al., 2017). Briefly, after 6 days, cells 

were detached using trypsin, spun down, and counted. Approximately 12,000 cells were 

loaded on each array for each timepoint and condition to minimize doublet-loading. The 

arrays were sealed with a semi-permeable membrane prior to cell lysis and hybridization to 

single-cell beads. Beads were subsequently pooled for reverse transcription and whole 

transcriptome amplification.

Read alignment and transcript quantification were performed as in Macosko et al. (2015b). 

Briefly, raw sequencing data was converted to demultiplexed FASTQ files using bcl2fastq2 

based on Nextera N700 indices corresponding to individual samples/arrays. Reads were then 

aligned to the hg19 genome using the Galaxy portal maintained by the Broad Institute for 

Drop-Seq alignment using standard settings. Individual reads were tagged according to the 

12-bp barcode sequence and the 8-bp UMI contained in Read 1 of each fragment. Following 

alignment, reads were binned onto 12-bp cell barcodes and collapsed by their 8-bp UMI. 

Digital gene expression matrices for each sample were obtained from quality filtered and 

mapped reads, with an automatically determined threshold for cell count. Analysis was done 

on cells that were filtered for a minimum cutoff of 500 unique genes, normalized by the total 

expression of each cell, and then natural log transformed after adding a pseudo-count of 1.

Runtime Benchmarking—We benchmarked the runtime of geometric sketching to obtain 

20,000 cells from a dataset of 1, 2.5, 5, or 10 million cells, where we obtained each full 

dataset by resampling the cells from the mouse CNS dataset (Zeisel et al., 2018) to reach the 

desired cell count. We timed the algorithm using Python’s time module. All experiments 

were done on a 2.30 GHz Intel Xeon E5–2650v3 CPU.

Geometric Sketching-Accelerated Integration—We assume an integration function 

that takes in a list of datasets and returns modifications to the datasets that removes 

differences to due batch effect etc. Let X ∈ ℝn × m denote one of the datasets, 

X𝒮 ∈ ℝ|𝒮 | × m denote the subset of X obtained by geometric sketching, and X𝒮′ ∈ ℝ|𝒮 | × m

denote the modified version of X𝒮 returned by the integration function. Our goal is to apply 

a transformation to X that puts it into the same integrated space as X𝒮′ . At a high level, we 

use a nearest-neighbors-based method to compute alignment vectors from X to X𝒮, we use 

Gaussian smoothing to combine these alignment vectors into translation vectors, and then 

we apply thetranslation to X to obtain an “integrated” full dataset X′.

Formally, for each cell in X𝒮, we find its k nearest neighbors in X and we denote the set of 

all matches between a cell in X𝒮 and X as ℳ where |ℳ| = k X𝒮 . Now we define the 

alignment vectors as the rows of the matrix X(match) − X𝒮
(match) where the rows of 

X(match), X𝒮
(match) ∈ ℝ|ℳ| × m correspond to the pairs of matching cells in ℳ. We want to 
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combine these alignment vectors to obtain our translation vectors, which we do using 

Gaussian smoothing. We compute weights via a Gaussian kernel as

[Γ]a, b = exp − σ
2 [X]a, : − X(match)

b, : 2
2

where Γ ∈ ℝn × | M| and [·]a,b denotes the value in the ath row and bth column of a matrix and 

[·]a,: denotes the ath row of a matrix. Finally, we construct the translation vectors as an 

average of the alignment vectors with Gaussian-smoothed weights, where

va =
[Γ]a, : X(match) − X𝒮

(match)

∑b ∈ [ ℳ ][Γ]a, b

and we translate

X′ a, : = [X]a, : + va

for all a ∈ [n] where [n] denotes the set of all natural numbers up to n. We repeat this for all 

datasets integrated by the “black-box” integration function; in our study, we used the 

Scanorama (Hie et al., 2019) and Harmony (Korsunsky et al., 2018) algorithms for 

integration.

We use geometric sketches of size 4000 (around 1% of the total data) and parameters k = 3 

and σ = 15. We used Harmony version 0.0.0.9000 and Scanorama version 1.0. For all 

methods, we measured the runtime required for integration and translation, not including the 

initial PCA step for computing low dimensional embeddings (100 PCs). We quantify dataset 

mixing by clustering the integrated embeddings using k-means, varying the number of 

clusters, and computing the average negative Shannon entropy normalized to a maximum 

value of 1 on the dataset labels averaged across all clusters, an approach taken by recent 

work (Park et al., 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Immune Cell Analysis—Marker genes for inflammation were selected using a nominal 

AUROC cutoff of 0.9 for separation of the inflammatory cluster from the remaining clusters 

of macrophages. Validation of marker genes in GM-CSF-versus M-CSF-polarized 

macrophages using a one-sided Welch’s t-test (for unequal population sizes) using the scipy 

Python package (Oliphant, 2007).

DATA AND SOFTWARE AVAILABILITY

Our code and data (including the above datasets) are available at http://

geosketch.csail.mit.edu and at https://github.com/brianhie/geosketch.
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ADDITIONAL RESOURCES

We provide precomputed sketches of large-scale, publicly-available benchmark scRNA-seq 

datasets at http://geosketch.csail.mit.edu.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GLOSSARY

Sketch A smaller subset of elements from a larger dataset. 

Typically used to accelerate a given analysis while 

preserving the accuracy of the analysis results.

Transcriptomic space A multidimensional space in which the location of a point 

(i.e., cell) within this space is determined by gene 

expression.

Cover, covering In the geometric sketching setting, a set of shapes in the 

transcriptomic space that collectively contains all of the 

cells in a dataset.

Hypercube A generalization of a cube (with equal side lengths) to 

many dimensions.

Clustering Methods that assign cells to groups, or “clusters,” based on 

some notion of similarity, where more similar cells are 

assigned to the same cluster.
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PRIMER

Large-scale scRNA-seq analysis:

Current approaches and challenges.

Single-cell RNA-sequencing (scRNA-seq) experiments routinely profile hundreds of 

thousands of cells, with billions of cells likely to be profiled in the near future. Deriving 

biological insights from single-cell datasets requires computationally intensive operations 

such as clustering, visualization, and nonlinear data integration. Clustering analyses 

assign more similar cells to groups, or clusters, that may correspond to biologically 

meaningful structure. Visualization lets researchers develop an intuition about variation 

in a dataset by highlighting important variability within an interpretable, usually two-

dimensional, plot. Data integration requires searching for similar transcriptional structure 

across two or more datasets and removing confounding differences like batch effects. 

Performing these analyses on very large datasets is already not feasible for many 

researchers without expensive computational infrastructure, and is still time consuming 

for researchers with enough compute power. Instead, researchers often perform initial 

analysis on a random subset of cells chosen with uniform probability for each cell, which 

is prone to removing rare cell types and negates the advantage of performing large-scale 

experiments.

A geometric interpretation of single-cell datasets.

Throughout this paper, we understand a single-cell dataset as a collection of points in a 

multidimensional “transcriptomic space.” Each point in a dataset corresponds to a single 

cell and its location is determined by measuring gene expression. The abstraction of 

points within a multidimensional space enables us to reason about the “geometry” of a 

scRNA-seq dataset, including the particularly useful concepts of distance and volume. 

Cells with closer distances in the transcriptomic space have greater transcriptomic 

similarity. Similarly, a shape that occupies a greater volume of the transcriptomic space 

represents greater transcriptomic variation.

Overview of geometric sketching.

Here we introduce an approach for intelligently choosing a smaller subsample of a 

dataset that aims to represent as much of the transcriptional heterogeneity as possible. 

The key insight is that rare transcriptomic states (e.g., rare cell types) may have enough 

variation to occupy a similar volume of the transcriptomic space as that of common states 

(e.g., common cell types), but where cells belonging to common states more densely 

occupy the transcriptomic space. Instead of uniformly subsampling with equal 

probability for each cell, our algorithm subsamples more evenly over the volume 

occupied by the dataset, which we refer to as geometric sketching (Figure 1). Geometric 

sketching approximates the geometry of a scRNA-seq dataset by using equal-volume 

boxes within the transcriptomic space to “cover” all of the cells in the dataset, where each 

box contains at least once cell. Once we have obtained the covering, we use the covering 

boxes to sample evenly across the transcriptomic space. This approach naturally 

preserves the representation of cells from rarer transcriptional states that still occupy 

large regions of the transcriptomic space. This approach is also designed to be extremely 
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efficient so that complex downstream analyses like clustering, visualization, and 

integration can be orders of magnitude more efficient when applied to a geometric sketch, 

instead of the full data, while maintaining accuracy.
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HIGHLIGHTS

• Method to subsample massive scRNA-seq datasets while preserving rare cell 

states

• Resulting “sketch” accelerates clustering, visualization, and integration 

analyses

• Highlighting rare cells helps uncover a rare subtype of inflammatory 

macrophages

• Sketches can boost the utility of single-cell data for labs with limited 

resources
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Figure 1. Illustration of Geometric Sketching
We first cover the data points with equal-sized boxes (which we refer to as a plaid covering) 

to approximate their geometry, then sample data points by first spreading the desired total 

sample count over the boxes as evenly as possible, then choosing the assigned number of 

samples within each box uniformly at random. The resulting sketch more evenly covers the 

landscape of the data compared to uniform sampling of points, where the latter is more 

prone to omitting rare cell types or transcriptional patterns.
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Figure 2. Geometric Sketching Workflow
A large single cell dataset is covered with equal-volume hypercubes assigned via a “plaid 

covering” (Method Details). The covering is used to evenly sample cells across the 

transcriptomic space to obtain a geometric sketch. The sketch construction is extremely 

efficient and can be used to accelerate downstream analyses. Sampling according the 

geometry of the dataset also naturally preserves rare cell types, improving the information 

content obtained by clustering analyses of the geometric sketch compared to other sampling 

methods. Geometric sketches can also be more efficiently shared with other researchers.

Hie et al. Page 28

Cell Syst. Author manuscript; available in PMC 2020 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Geometric Sketching Outperforms Existing Sampling Approaches
(A) Geometric sketching yields more even coverage of the transcriptomic space. In our 

experiments, the Hausdorff distance measures the maximum distance from any point in the 

dataset to its closest point in the sketch; a lower Hausdorff distance indicates that the points 

represented by a sketch are in general closer to all of the points in the remainder of the 

dataset. Geometric sketching results in consistently lower Hausdorff distances than other 

sampling methods across a large number of sketch sizes and datasets. We use a robust 

Hausdorff distance that is less sensitive to small numbers of outlier observations (Method 

Details). Solid lines indicate means and shaded areas indicate standard error across 10 

random trials for geometric sketching and uniform sampling and 4 random trials for k-means

++ and SRS (due to long runtimes). (B) Geometric sketches contain more balanced 

summaries of the transcriptional landscape. t-SNE visualizations of sketches containing 2% 

of the cells from the adult mouse brain (Saunders et al., 2018) and from the developing and 

adolescent mouse CNS (Zeisel et al., 2018) using uniform random sampling and geometric 

sketching, with increased representation of rare cell types in the geometric sketch. Numbers 

of cells from each cell type are given in Tables S3–S4. Uniform sampling, which does not 

evenly consider the transcriptional space, produces visualizations that are poor at capturing 
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transcriptional heterogeneity. Geometric sketching substantially underrepresents 

oligodendrocytes in both datasets compared to uniform sampling, which is expected given 

the low transcriptional heterogeneity among oligodendrocytes as quantified by differential 

entropy (Method Details; Tables S3–S4). Visualizations based on other sampling approaches 

as well as a different visualization method are provided in Figure S1. (C) Geometric 

sketches preserve rare cell types in the subsampled data. In sketches containing 2% of the 

total dataset, we counted the number of cells that belong to the rarest cell type in each 

dataset: 293T cells (0.66% of total cells) in a 293T/Jurkat mixture, dendritic cells (0.38% of 

total) in a dataset of 68k PBMCs, macrophages (0.25% of total) in a dataset of adult mouse 

brain cells, and ependymal cells (0.60% of total) in a dataset of developing and adolescent 

mouse CNS cells. Higher count indicates increased representation of the rare cell type in the 

sketch. Bar height indicates means and error bars indicate standard error across 10 random 

trials for geometric sketching and uniform sampling and 4 random trials for k-means++ and 

SRS (due to long runtimes). Comparison of rare cell type representation over different 

sketch sizes is shown in Figure S2B. (D) Geometric sketching is consistently effective at 

distinguishing biological cell types via clustering. Louvain clustering was applied to a 

subsample of the dataset, cluster labels were transferred to the full dataset using a k-nearest-

neighbor classifier fit to the sketch, and the balanced adjusted mutual information (BAMI) 

was measured between the unsupervised cluster labels and the labels corresponding to 

biological clusters provided by each previous study (Method Details). Higher score indicates 

greater agreement between unsupervised clustering and biological cell type labels. Solid 

lines indicate means and shaded areas indicate standard error across 10 random trials for 

geometric sketching and uniform sampling and 4 random trials for k-means++ and SRS (due 

to long runtimes). Unsupervised clustering of geometric sketches consistently recapitulates 

biological cell types better than clustering results obtained by uniform sampling. Other non-

uniform sampling methods, k-means++ and SRS, show performance comparable to ours in a 

few cases, but only geometric sketching obtains competitive performance across all settings. 

Because samples are drawn without replacement, clustering accuracy may approach that of 

uniform sampling as the sketch size increases, as is the case in the 293T/Jurkat mixture 

experiments.
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Figure 4. Identification of Subpopulation of Inflammatory Macrophages Identified Using 
Geometric Sketching
A geometric sketch of 20,000 cells was obtained from a full dataset of 254,941 cells from 

human umbilical cord blood. Analysis of clusters obtained by the Louvain community 

detection algorithm reveals multiple clusters of macrophages (A), defined by CD14 and 

CD68 marker gene expression (B). A rare subpopulation of these macrophages is in turn 

defined by inflammatory marker gene expression (CD74, HLA-DRA, B2M, and JUNB) (C), 

providing insight into an important but comparatively rarer immunological process.
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Figure 5. Geometric Sketching Efficiently Scales to Large Single-Cell Datasets
(A) Geometric sketching is substantially more efficient than other data-dependent 

subsampling approaches, SRS and k-means++. Although uniform sampling is fastest 

because it does not consider any properties of the dataset, geometric sampling obtains a 

sketch that preserves transcriptional heterogeneity while running in close to linear time in 

the size of the data, largely independent of the requested number of samples. Solid lines 

indicate means and shaded areas indicate standard error across 10 random trials for 

geometric sketching and uniform sampling and 4 random trials for k-means++ and SRS (due 

to long runtimes). Geometric sketching has a practical runtime of around 67 minutes when 

sampling 20,000 cells from a simulated dataset with 10 million cells, which was obtained by 

resampling from a dataset of mouse CNS cells (Zeisel et al., 2018). (B) Geometric sketching 

accelerates single-cell data integration tools. Geometric sketching can help accelerate 

existing tools for scRNA-seq data integration. We use two existing algorithms for scRNA-

seq integration, namely Harmony (Korsunsky et al., 2018) and Scanorama (Hie et al., 2019), 

but note that our approach works for other integrative algorithms as well. Learning 
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alignment vectors among geometric sketches, which are then used to transform the full 

datasets to remove tissue-specific differences (Method Details), decreases integration time of 

534,253 human immune cells from hours to minutes while achieving comparable integration 

quality (Figure S4B).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw sequence data NCBI SRA Uploaded, pending SRA approval

293T cell expression matrices 10x Genomics https://support.10xgenomics.com/single-cell-gene-expression/datasets

293T and Jurkat cell mixture 
expression matrices

10x Genomics https://support.10xgenomics.com/single-cell-gene-expression/datasets

Human PBMC expression 
matrices

10x Genomics https://support.10xgenomics.com/single-cell-gene-expression/datasets

Developing and adolescent mouse 
CNS expression matrices

(Zeisel et al., 2018) http://mousebrain.org

Adult mouse brain cell expression 
matrices

(Saunders et al., 2018) http://dropviz.org/

M-CSF macrophage expression 
matrices

(Hie et al., 2019) http://scanorama.csail.mit.edu

GM-CSF macrophage expression 
matrices

This paper http://geosketch.csail.mit.edu

Biological Samples

Human buffy coats Massachusetts General Hospital N/A

Software and Algorithms

geosketch Python package This paper https://github.com/brianhie/geosketch

Scanorama (Hie et al., 2019) https://github.com/brianhie/scanorama

Harmony (Korsunsky et al., 2018) https://github.com/immunogenomics/harmonv

SCANPY (Wolf et al.,2018) https://scanpv.readthedocs.io/en/latest/

Cell Syst. Author manuscript; available in PMC 2020 June 26.

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets
http://mousebrain.org
http://dropviz.org/
http://scanorama.csail.mit.edu
http://geosketch.csail.mit.edu
https://github.com/brianhie/geosketch
https://github.com/brianhie/scanorama
https://github.com/immunogenomics/harmonv
https://scanpv.readthedocs.io/en/latest/

	Abstract
	eTOC
	INTRODUCTION
	RESULTS
	Overview of Our Geometric Sketching Algorithm
	Geometric Sketches Evenly Summarize the Transcriptomic Landscape
	Visualization of Geometric Sketches Reveals Transcriptional Diversity
	Rare Cell Types Are Better Preserved Within Geometric Sketches
	Clustering of Geometric Sketches Better Recapitulates Biological Cell
Types
	Geometric Sketching Assists in the Discovery of a Rare Population of
Inflammatory Macrophages
	Geometric Sketching Has Significantly Better Scalability to Large Datasets
Than Other Sophisticated Sampling Strategies
	Geometric Sketching Accelerates scRNA-seq Data Integration

	DISCUSSION
	STAR METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Macrophages

	METHOD DETAILS
	Geometric Sketching Problem
	Theoretical Connection to Covering Problems
	Lemma 1
	Proof of Lemma 1

	Our Geometric Sketching Algorithm
	Proof that Algorithm 1 is optimal in each dimension
separately



	Algorithm 1:
	Table T3
	QUANTIFICATION AND STATISTICAL ANALYSIS
	Immune Cell Analysis

	DATA AND SOFTWARE AVAILABILITY
	ADDITIONAL RESOURCES

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table T1

