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Abstract

Molecular docking is the key ingredient of virtual drug screening, a promising and costeffective 

approach for finding new drugs. A critical limitation of this approach is the inadequate sampling 

efficiency of both ligand and/or receptor conformations for finding the lowest energy bound state. 

To circumvent this limitation, we develop a protein-ligand docking methodology capable of 

incorporating structural constraints, experimentally derived or theoretically predicted, to improve 

accuracy and efficiency. We develop a web server with a user-friendly online graphical interface as 

a platform for accurate and efficient protein-ligand molecule docking.
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INTRODUCTION

The discovery of biologically active compounds is often a long and expensive trial-anderror 

process1 that does not meet the needs of modern drug development. Even with modern 

automated high-throughput screening technologies, development of a typical smallmolecule 

drug takes years and costs millions of dollars2,3. Computational molecular docking provides 

an efficient and relatively inexpensive way to identify the lead compounds and to estimate 

their relative binding affinities and binding modes4,5. Improving the docking accuracy is 

critical to the success rate of virtual drug screening and to using virtual drug screening in 

drug discovery pipeline. Recent advances in the field of computational drug screening have 

led to major improvements in both scoring and sampling algorithms6–12, resulting in 

increased accuracy and reliability of predictions. There are, however, several fundamental 

limitations to the conventional molecular docking approach. First, exploring both the 

receptor and the ligand flexibility4,5,13, which is critical for simulating induced-fit 

phenomenon and improving the reliability of the predictions, is not computationally feasible 

for the ligands with a large number of rotatable bonds. Second, physically based scoring 

functions, designed to quantify inter-atomic interactions and predict affinity of the ligand-

receptor complex during molecular docking, strongly rely on force field parameterization14. 

More accurate descriptions of such interactions are computationally costly and prohibitive 

for a significant virtual screening campaign. Thus, current molecular docking methods 

balance accuracy and efficiency.

To address these limitations, we have developed a method that accounts for externally 

derived constraints during molecular docking, increasing the accuracy of the predictions 

without compromising computational efficiency. The method is based on our previously 

proposed flexible protein-ligand docking method, MedusaDock4,13,15,16. A combination of 

structural constraints (derived from structural information obtained from X-ray 

crystallography, NMR spectroscopy, Cryo-EM, or cheminformatics) with the physicalbased 

MedusaScore17 force field enables more efficient sampling, eliminated unrealistic 

conformations, and provides a faster, more accurate convergence to a native-like pose than 

does the original version of MedusaDock. Since we have incorporated extensive changes and 

improvements to MedusaDock algorithm, hence we will refer old and new versions as 

MedusaDock 1.0 and MedusaDock 2.0 respectively. The workflow of MedusaDock 2.0 is 

presented in Figure 1A. Apart from the existing energy contributions that include van der 

Waals, solvation, and hydrogen bond energy terms in MedusaScore energy function, we add 

a weighted energy term to favor the satisfaction of structural constraints.

Although constraints-based docking is widely used by docking algorithms such as GOLD18, 

SwissDock19, DOCK12, FlexX20, HADDOCK21, ICM22, AutoDock23, and 

RosettaLigand24, we compare MedusaDock 2.0 with two commonly used methods: 

AutoDock23 and RosettaLigand24. We evaluate the performance of MedusaDock, 

AutoDock, and RosettaLigand algorithms in (a) presence and (b) absence of native-structure 

derived constraints. The benchmarking analysis suggests that MedusaDock 2.0 outperforms 

AutoDock and RosettaLigand. We also find that the incorporation of constraints does not 

always yield better results. In few instances, we find that the inclusion of constraints 

generated poor docking results. Hence, we propose here an improved strategy for utilizing 
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constraints specifically in MedusaDock. Finally, we build an efficient, fast, and userfriendly 

online web server MedusaDock (http://MedusaDock.dokhlab.org) for proteinligand docking.

RESULTS

Validation of the efficiency and docking accuracy of MedusaDock 2.0

To evaluate the performance of MedusaDock 2.0, we compile a benchmark protein-small 

molecule dataset containing 100 complexes with known native poses. For each native pose, 

we extract a series of ligand-receptor inter-atomic distances that is used as external 

constraints during the docking simulations. Using this dataset, we demonstrate that the 

incorporation of structural constraints improves the docking accuracy. We find that the 

RMSD between predicted and native poses of the ligands decreases rapidly when the 

number of incorporated constraints is increased (Figure 1B, Table S1). The constraints are 

only introduced to confine some inter-atom distances between the receptor and the ligand, so 

it is intriguing to observe that (Figure 1C, Table S2) the lRMSD (Methods) also decreases 

rapidly with the increase of the number of constraints. Providing even one constraint to the 

new docking algorithm is sufficient to significantly improve the accuracy of the predictions 

(Figure 1D, 1E). An analysis of RMSD versus the number of rotatable bonds using no 

constraints and one constraint further demonstrates the importance of constraints 

(Supporting Information; Figure S3). Apart from self-docking on the 100 complexes dataset, 

we also perform cross-docking on dataset obtained in our previous work4. RMSDs in cross-

docking also decrease with the increase of the number of constraints (Figure S1, Table S3).

Since the incorporation of constraints would usually increase the docking time because of 

the extra time spent on calculating energies related to constraints, we carefully analyze the 

procedure of MedusaDock 1.0 and then optimize the whole program to improve the 

efficiency. We analyze the duration of the coarse and the fine docking stages of 

MedusaDock3 and find that fine docking is the most time consuming process (Figure S2A).

During fine docking, we observe that the RMSD initially rapidly decreases but later reaches 

a plateau (Figure S2B). This fact allows us to significantly optimize the original 

MedusaDock algorithm by reducing the number of steps of fine docking, which reduces the 

running time (Figure 2A) without compromising the docking accuracy (Figure 2B).

We then conduct time and accuracy comparison between MedusaDock 2.0 and other 

prevailing docking tools (AutoDock23 and RosettaLigand24) that account for both receptor 

and ligand flexibility. We find that the optimization makes MedusaDock significantly faster 

than the other two tools (Figure 2C; Table S4), and the addition of two constraints during the 

docking results in notably docking accuracy improvement (Figure 2D; Table S4).

Correlation between docking accuracy and nature of residues or atoms involved in 
constraints

Interestingly, we find that different constraints have diverse influences on the docking 

(Figure 3). Most constraints improve the docking results (Figure 3A); these are referred to as 

the positive constraints. Some, however, cause deterioration of the results (Figure 3C), and 

these are referred to as the negative constraints. We demonstrate this phenomenon by 
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choosing 100 different constraints from the tertiary structure of the CXCR4 chemokine 

receptor in complex with small molecule antagonist IT1t25 (PDB ID: 3ODU). We perform 

several docking attempts for CXCR4/IT1t complex with each of the 100 selected constraints. 

We differentiate these 100 constraints into positive and negative based on the docking 

outputs (Figure 3D).

Based on the docking predictions from 100 complexes dataset, we analyze the relationship 

(Figure 3E) between the types of receptor residues participating in constraints and the 

influences of constraints to avoid the usage of negative constraints. We find that residue 

types involved in positive constraints are six non-polar amino acids (glycine, alanine, valine, 

cysteine, isoleucine, and methionine), two polar amino acids (threonine and asparagine), and 

one negatively charged amino acid (aspartic acid) (Figure 3E). Interestingly, we observe that 

serine is only one residue that is nearly always involved in negative constraints. We also 

study the relationship between atom types and constraints (Figure 3F) and find that five atom 

types (CZ2, CZ3, CE3, NE1, OG) are always observed in negative constraints.

Based on the relationship between residue types and the influences of constraints, we see no 

noticeable correlation between the influences of constraints and any single property of 

residues, such as polarity, hydrophobicity, and structural complexity. Instead, the relation 

between residue types and constraints is mainly dependent on several crucial factors, such as 

the structural complexity of residues, rotamer library of residue side-chains, hydrogen bond 

forming capability, and the conformational space of a ligand. However, the correlation 

between residue types and constraints is different for other docking methods due to 

alterations in residue rotamer library and the conformational space of a ligand. In addition, 

the relationship between atom types and constraints is dependent on factors, such as the 

position of the atom in the residue, the type of the atom, and the type of the residue. Overall, 

the analysis of the relationship between residue/atom types and constraints facilitates users 

to make better use of MedusaDock by utilizing positive constraints and avoiding negative 

constraints deduced from above mentioned types of residues/atoms.

Selecting robust docking results based on MedusaScore

In virtual drug screening, typically numerous rounds of docking attempts are performed to 

generate an ensemble of complex conformations. Complexes in the ensemble are then scored 

and clustered to facilitate the selection of a best-scoring conformation as the final docking 

result. Since adding constraints and conducting multiple docking attempts can both expand 

the conformational space to be explored for near-native conformations, we analyze the 

significance of incorporating constraints when multiple docking attempts are to be 

performed. We perform 2000 rounds of MedusaDock 2.0 docking attempts for 

Endothiapepsin in complex with ritonavir (PDB ID: 3PRS) with no constraints and with one 

constraint, respectively. As shown in Figure 4A and 4C, the application of constraints 

decreases both the RMSD and the lRMSD in nearly every round of the simulation, 

indicating that the incorporation of constraints significantly improves docking accuracy in 

comparison to multiple docking attempts.

In order to test the performance of MedusaScore, we evaluate the interaction energies of 

MedusaDock 2.0 generated Endothiapepsin-ritonavir complexes using MedusaScore. We 
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find that RMSD and interaction energy are positively correlated with each other (Figure 4E), 

which suggests that MedusaScore is able to select a near-native pose. However, the 

correlation coefficient of the linear fitting of RMSD and the energy is only 0.8, indicating 

that the scoring function could be further improved. Since MedusaScore is primarily devised 

for evaluating the conformations of receptor-ligand interacting interfaces and lRMSD only 

considers ligand conformation, we found nearly no correlation between MedusaScore 

evaluated energy and lRMSD (Figure 4F).

Webserver of MedusaDock 2.0

Finally, we build a web-based MedusaDock server (https://MedusaDock.dokhlab.org) that 

provides a user-friendly interface for submission and management of protein-small molecule 

docking calculations with or without constraints. In order to decrease the risk of using 

negative constraints, web server users are recommended to use constraint types that are 

concluded to be positive. We anticipate that improved MedusaDock will be appreciated by 

the community as a platform for accurate and efficient protein-ligand molecule docking.

METHODS

Dataset

The generation of the dataset is based on the refined set of the PDBbind 2017 database26,27, 

which provides a comprehensive collection of experimentally measured binding affinity data 

for the biomolecule complexes in the Protein Data Bank28 (PDB). We download the whole 

PDBbind refined set containing 4154 complexes. Complexes with more than one ligand in 

the dataset are then removed. To identify protein-ligand complexes those are difficult to 

handle with MedusaDock, we perform docking attempts for all complexes and remove 

complexes with RMSDs less than 2 Å, leaving 729 complexes. Ligands with fewer rotatable 

bonds are much easier to dock than those with a large number of rotatable bonds, thus 

complexes having a small number of rotatable bonds cannot be used to effectively assess the 

effect of adding constraints. For this reason, most ligands with fewer than eight rotatable 

bonds are removed. The final dataset include 100 protein-small molecule complexes with 

ligands having averagely 22 rotatable bonds; the smallest number of rotatable bonds is eight 

and the largest number was 39. Apart from the 100 complexes dataset, we have also 

considered the dataset with 36 complexes from our previous work to test MedusaDock 2.0 in 

terms of cross-docking.

Optimization of MedusaDock

The MedusaDock workflow is divided into three stages (Figure 1A): stochastic rotamer 

library of ligands (STROLL) generation, coarse docking, and fine docking. In the STROLL 

generation stage, numerous ligand rotamers are generated by randomly rotating rotatable 

chemical bonds. All rotamers in STROLL are clustered and each of the centroids is then 

subjected to the coarse docking. During the coarse docking, rigid docking and receptor side 

chain repacking are performed alternately and iteratively. After coarse docking, all the poses 

are clustered and each of the centroids is then subjected to fine docking. Unlike coarse 

docking, the rotamer pose adjusting and the receptor side chain repacking are performed 

simultaneously in fine docking. After fine docking, the ligand rotamer that has the lowest 
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binding free energy with the receptor is selected as the final candidate. Fine docking is the 

most time-consuming step (Figure S2A), requiring approximately 5-fold more time than 

coarse docking. Ligand RMSD decreases dramatically during coarse docking but decreases 

very little in fine docking (Figure S2B). In MedusaDock 2.0, we thoroughly optimize the 

source codes by using new C++ programming techniques. For instance, we encapsulate the 

return values of most functions with “std::move” function in C++ 11 in order to avoid 

redundant copies of the return values. We leverage new smart pointers in C++ 11 to further 

reduce the possibility of copying bulky objects. We also utilize non-copyable classes to store 

global variables to avoid redundant copies. Additionally, we adjust internal parameters to 

reduce the number of fine docking steps, and it turns out that the optimization effectively 

decreases the running time (Figure 2A) without adversely altering the docking results 

(Figure 2B).

Structural constraints

The structural constraints utilized in the tests are all distance constraints (i.e., the distance 

between two atoms). We also implement in-house supports for angle constraints (i.e., the 

angle between two bonds) and dihedral constraints (i.e., the dihedral of three bonds in the 

complex structure), but they are not tested in this work. Either an exact distance value or a 

distance range consisting of the minimum and maximum values of the distance between two 

atoms can be specified as constraints. In both circumstances, an additional constraintsrelated 

energy item (Figure 5B) is added to the total MedusaScore energy, which originally contains 

van der Waals energy, solvation energy, and hydrogen bonding energy (Figure 5B). The van 

der Waals energy is calculated by Lennard-Jones potential, the solvation energy is calculated 

by Lazaridis-Karplus model29 and the hydrogen bonding energy is derived from the 

statistical potential model (Figure 5A). In this work, the distance constraint is mainly 

introduced to confine the relative position of the receptor and the ligand, but theoretically, it 

could also confine two atoms when they are both in the receptor or the ligand so as to 

restrain the flexible conformation of the loop in the interface of the receptor or to restrain the 

ligand itself.

RMSD calculation

The RMSD refers to the ligand RMSD calculated by aligning the receptors before and after 

the docking, which considers the composite deviation of not only the position and the 

orientation of the ligand but also the rotation status of interior rotatable bonds in the ligand. 

Constraints definitely restrain the rigid conformation (i.e., the position and the orientation) 

of the ligand. To determine whether constraints influence the flexible conformation (i.e., the 

rotation status of interior rotatable bonds) of the ligand, we calculated the ligand RMSD by 

aligning the ligands themselves; this is referred to as the lRMSD.

Test

For each of the 100 complexes in the dataset, we utilize MedusaDock to generate nonnative 

complexes as the inputs for the following test. Apart from van der Waals repulsive energy 

terms, we first set weights of all other energy terms in MedusaScore to zero. We 

subsequently perform a short period time (500 steps in MedusaDock) of docking attempts 

for all the complexes with MedusaDock by using this reduced version of MedusaScore. The 
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results are then used as the inputs for further tests, where the average RMSD of the inputs is 

10.8 Å. We efficiently sample conformations of ligand, receptor backbone, and receptor 

sidechain during docking. The sampling is conducted in a cubic pocket centered at the mass 

center of the native ligand conformation. The side length of the cubic is 20 Å. After we 

generate all the inputs, we reset the weights of all the energy terms of MedusaScore to their 

default values.

For each of the 100 complexes in the dataset, we extract all the ligand-receptor inter-atomic 

distances that are less than 4 Å. We randomly pick 30 times 1, 2, …, and 20 distances as the 

constraints from all the extracted distances, respectively. For each number (1–20) of 

constraints, we perform 30 dockings attempts by using the 30 different constraints sets. The 

results are shown in Figure 1B–E and Table S1–2. We efficiently sample conformations of 

ligand along with receptor backbone and sidechain conformations during the docking. The 

search space is still a cubic box with a side length of 20 Å centered at the designated binding 

site.

We then perform docking attempts for these 100 complexes without constraints by using 

MedusaDock before and after optimization, respectively. We perform 30 rounds of docking 

attempts for each case to determine the average RMSD and running time (Figure 2A, 2B).

We then compare the performances of AutoDock, RosettaLigand, MedusaDock 2.0 with no 

constraints and with two constraints, respectively. The two constraints are randomly selected 

from native structure derived constraints. We perform 30 docking attempts for each of the 

100 complexes (Figure 2C, 2D; Table S4). The sampling space in all three methods utilizes a 

cubic box with dimensions 20 Å × 20 Å × 20 Å. The flexible region of AutoDock and 

RosettaLigand are set to the chains that are involved in the binding pocket. The flexible 

region of MedusaDock involves the residues that are in the proximity to the binding pocket 

(residues within 12 Å around the binding pocket). Conformations of the ligand along with 

the receptor side chains and backbones are all sampled in RosettaLigand and MedusaDock 

2.0. Only conformations of the ligand and the receptor side chains are sampled in AutoDock.

Website

The front-end of the website is based on Vue.js 2.0 framework. The source code of the front-

end is deposited on BitBucket (https://bitbucket.org/dokhlab/medusadock-web/src).

The back-end of the website is built upon the native PHP supported by the Apache HTTP 

server running in a Linux server.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) A simplified diagram of MedusaDock based docking algorithm (Methods). (B and C) 

Docking accuracy in terms of RMSD/lRMSD as a function of the number of constraints. 

The RMSD and lRMSDs are averages calculated over the 30 attempts performed in each 

case. The grey bars represent the standard deviations of the averages. (D and E) The 

comparison of the RMSD/lRMSD distribution after docking with no constraint and with one 

constraint.
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Figure 2. 
(A) Comparison of the docking time of MedusaDock 1.0 and MedusaDock 2.0. (B) 

Comparison of the RMSD between predicted ligand poses and native ligand poses of 

MedusaDock 1.0 and MedusaDock 2.0. No constraints are imposed in the comparison. (C) 

The comparison of the docking times of Autodock23, RosettaLigand5, and MedusaDock 2.0. 

The suffix /0 refers to docking no constraints. The suffix /2 refers to docking with 2 

constraints. (D) The comparison of the RMSDs of Autodock23, RosettaLigand5, and 

MedusaDock 2.0.
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Figure 3. 
A test of how residue types in the distance constraints affect the docking. (A) Comparison of 

the distance distribution between the results of 3ODU with no constraints and with one 

constraint. (B) A constraint in 3ODU between two atoms pulls the two atoms from a large 

distance (8.2 Å, yellow) to a smaller distance (3.4 Å, brown) that is much closer to the native 

distance (2.7 Å, cyan). (C) The green line specifies the RMSD of 3ODU obtained by 

docking with no constraints. The grey dots represent docking results obtained by using 

different constraints. (D) Positive constraints of 3ODU are in green and negative constraints 

are in red. (E) The relationship between the net RMSD and residue types obtained from test 

results on the 100 complexes dataset. The net RMSD is equal to RMSD with constraints 

minus the RMSD without constraint. (F) The relationship between the net RMSD and atom 

types obtained from test results on the 100 complexes dataset.
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Figure 4. 
A test of multiple rounds of docking: the case of 3PRS. (A) RMSD with no constraints 

varies when multiple rounds of docking are performed, and RMSD with one constraint is 

nearly always lower than that with no constraints. (B) Distribution of RMSDs with no 

constraints and one constraint. (C) Comparison of RMSD distribution after docking with no 

constraints and with one constraint. (D) Comparison of lRMSD distribution after docking 

with no constraints and with one constraint. (E) The relationship between MedusaScore 

calculated free energy and RMSD. (F) The relationship between MedusaScore calculated 

free energy and lRMSD.
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Figure 5. 
(A) The hydrogen bonding energy is derived from the distribution of dHA, θDA, θHX by 

using the statistical energy function. Pobs is the observation frequencies; Pran is the random 

frequencies; D: Donor atom; H: Hydrogen atom; A: Acceptor atom; X: The heavy atom 

bonded with A. (B) The constraints energy is of the spring potential if a definite distance is 

given as the constraint, otherwise it is –k from d1 to d2 if the range is given. k is calculated 

by 1
2 d1 − d2

2 − 1. The receptor is colored by red and the ligand is colored by blue. d1 and d2 

are the lower and the upper bound of the user-provided distance range.
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