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Abstract

Purpose—Radiomics is a growing field of image quantification, but it lacks stable and high-

quality software systems. We extended the capabilities of the Computational Environment for 

Radiological Research (CERR) to create a comprehensive, open-source, MATLAB-based software 

platform with an emphasis on reproducibility, speed, and clinical integration of radiomics 

research.

Method—The radiomics tools in CERR were designed specifically to quantify medical images in 

combination with CERR’s core functionalities of radiological data import, transformation, 

management, image segmentation, and visualization. CERR allows for batch calculation and 

visualization of radiomics features, and provides a user-friendly data structure for radiomics 

metadata. All radiomics computations are vectorized for speed. Additionally, a test suite is 

provided for reconstruction and comparison with radiomics features computed using other 

software platforms such as the Insight Toolkit (ITK) and PyRadiomics. CERR was evaluated 

according to the standards defined by the Image Biomarker Standardization Initiative. CERR’s 

radiomics feature calculation was integrated with the clinically used MIM software using its 

MATLAB® application programming interface.

Results—CERR provides a comprehensive computational platform for radiomics analysis. 

Matrix formulations for the compute-intensive Haralick texture resulted in speeds that are superior 

to the implementation in ITK 4.12. For an image discretized into 32 bins, CERR achieved a 

speedup of 3.5 times over ITK. The CERR test suite enabled the successful identification of 

programming errors as well as genuine differences in radiomics definitions and calculations across 

the software packages tested.

aAuthor to whom correspondence should be addressed. aptea@mskcc.org. 

Disclosure of Conflicts of Interest
The authors have no relevant conflicts of interest to disclose.

HHS Public Access
Author manuscript
Med Phys. Author manuscript; available in PMC 2019 December 13.A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript



Conclusion—CERR’s radiomics capabilities are comprehensive, open-source, and fast, making 

it an attractive platform for developing and exploring radiomics signatures across institutions. The 

ability to both choose from a wide variety of radiomics implementations and to integrate with a 

clinical workflow makes CERR useful for retrospective as well as prospective research analyses.

Introduction

The concept of “radiomics” in oncology involves identifying quantitative imaging patterns 

that form the basis of predictive models or diagnostic biomarkers. Radiomics is 

hypothesized to be related to the underlying tumor biology and response to treatment 

depending on the timing of image acquisition (1, 2). The number of radiomics studies has 

greatly increased since the term was introduced by Lambin, et al. (3). Radiomics is by 

definition quantitative (4), but it is often not reproduced accurately between research groups, 

even when using the same imaging data (5). This is for various reasons such as different 

internal parameters used across different software tools, subtle differences in their 

generation (for example, using physical vs. voxel units), incorrect or insufficient 

documentation, and/or software defects. Hence, a comprehensive open-source software 

platform is critical for the development and validation of multi-institutional radiomics-

focused research.

Some of the widely used software tools for radiomics include: (i) the Insight ToolKit (ITK; 

www.itk.org), which is an open-source, BSD copyrighted software developed in C++, with 

wrappers in commonly used, interpreted, and compiled languages. ITK is a library that is 

often used in combination with other software tools such as 3D-Slicer (6) for visualization 

and ITK-SNAP (7) for segmentation. ITK does not provide wrappers for MATLAB® 

(MathWorks, MA, USA) and includes only a subset of the radiomics features recommended 

by the Image Biomarker Standardization Initiative (IBSI) (8). (ii) MaZda (9) has been 

developed in C++, but it is not open-source and is compiled only for Windows operating 

systems. Similar to ITK, it includes only a subset of the features recommended by IBSI. (iii) 

PyRadiomics (10) is an open-source, Python-based package to extract radiomics with a 

plugin for 3D Slicer. It provides a comprehensive set of radiomics in the Python (https://

www.python.org) language, but it lacks the calculation of radiomics maps and DICOM-RT 

input of anatomical structures. Similar to ITK, PyRadiomics is a radiomics library rather 

than an integrated platform, and it is up to the users to integrate it with their applications that 

provide bookkeeping to associate radiomics with scans and structures for future use. (iv) The 

Imaging Biomarker EXplorer (IBEX) (2) is developed in MATLAB and C++, which limits 

its portability between operating systems and various MATLAB versions. Similar to 

PyRadiomics, IBEX lacks calculation of radiomics maps and has limited capabilities for 

data import, export, segmentation, and visualization. Table 1 compares various capabilities 

of commonly used radiomics software packages.

The Computational Environment for Radiological Research (CERR) (11) was extended to 

address the shortcomings of the aforementioned software tools. The radiomics functionality 

in CERR was developed exclusively in the widely used and accessible MATLAB language, 

but it can also be compiled and distributed without a MATLAB license. The objective was to 

develop a comprehensive, open-source, MATLAB-based software platform with an 
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emphasis on reproducibility, speed, and clinical integration of radiomics-focused research. 

The advantage of using CERR for computational radiomics over other software is the 

availability of a comprehensive and validated pipeline ranging from data import, 

visualization, segmentation, metadata storage, and feature calculation. Adding 

computational radiomics to CERR creates a unique research platform capable of combining 

radiotherapy (RT) treatment planning and outcomes modeling with radiomics. The CERR 

platform provides a flexible, time-tested data structure to store radiomics metadata and 

combine it with RT. This further facilitates radiomics-driven longitudinal and multi-modality 

analysis. CERR is the only open-source platform that provides tests for its radiomics 

features against other open-source software. It is also the only platform to compute higher-

order texture features using vectorized implementations, which results in significant 

speedups. The computational radiomics codebase is developed purely using MATLAB, 

making it agnostic to operating system and MATLAB versions.

Description of CERR’s Computational Radiomics

A. Architecture

CERR is a stable and popular platform for developing computational radiomics functionality 

because it provides extensive visualization, bookkeeping, import, export, image analysis, 

and transformation functions. CERR has been cited more than 430 times in peer-reviewed 

literature as of June 2018. Some of the most commonly used CERR plugin modules include 

positron emission tomography (PET) segmentation (12), the Intensity Modulated 

Radiotherapy Planning (IMRTP) toolbox (13), and Dose Response Explorer System 

(DREES) (14). Extending CERR for radiomics analysis provides the ability to combine 

imaging with CERR’s exhaustive tools for analysis of RT dose and treatment planning data. 

The critical components of CERR for radiomics include the ability to: (i) import imaging 

data with standard formats using different modalities, (ii) delineate and import 

segmentations for radiomics calculation, (iii) define important parameters for radiomics 

calculation, (iv) visualize and compare the resulting radiomics maps, (v) derive and store 

radiomics values along with imaging data, and (vi) export the resulting radiomics scalars or 

maps to any other analysis software (Figure 1). CERR’s data import capabilities (https://

github.com/cerr/CERR/wiki/Importing-to-CERR) are vast compared with other radiomics 

software tools. CERR can import various data formats RTOG, DICOM, MHA, NRRD, 

NIfTI and XML. It also supports the import of DICOM RTPLAN, RTDOSE, RTSTRUCTS 

and GSPS in addition to the computed tomography, PET, single photon emission computed 

tomography, magnetic resonance (dynamic contrast-enhanced and diffusion-weighted 

imaging), ultrasound, and mammogram modalities. CERR also can import oblique scans 

along with the segmentations. Data export capabilities in CERR include DICOM export of 

scan, RTSTRUCT, and RTDOSE. Also, CERR’s contouring tools (https://github.com/cerr/

CERR/wiki/Contouring-tools) include pencil, brush, eraser, and active contour-based 

refinement modes as well as Boolean arithmetic to derive new structures from existing ones. 

The segment labeler tool (https://github.com/cerr/CERR/wiki/Segment-Labeler) in CERR 

makes it convenient for users to graphically score different parts of auto-segmentation 

results, which can then be used for evaluating and improving algorithms. CERR also 
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provides wrappers for Plastimatch (15) for image registration, useful for longitudinal as well 

as multi-modality analyses.

Radiomics results are made permanently accessible by extending CERR’s data structure to 

store radiomics metadata along with the results. This provides a permanent record of 

calculation parameters, simplifies the bookkeeping for computations across a collection of 

images, and works seamlessly with longitudinal imaging data. In addition to the native 

support for CERR’s data structure, the calculation routines were designed to be compatible 

with MATLAB’s three-dimensional (3D) matrices and logical masks used to define the 

region of interest (ROI). Hence, CERR’s radiomics can be called from other applications by 

just passing the matrices for the image and the labels.

B. Radiomics maps and pre-processing filters

Radiomics generated from small neighborhoods around each voxel results in a composite 

radiomics map, which has the same size as the ROI. These maps, which can be displayed, 

carry spatial radiomics information and could have implications both in the setting of 

outcome modeling and image segmentation. The radiomics maps provide another level of 

image transformations that highlight characteristics of sub-regions within the ROI. CERR 

allows for the generation of Haralick feature maps (16), Law’s filters maps (17-19), and first 

order statistics maps in addition to various pre-processing filters (https://github.com/cerr/

CERR/wiki/Texture-calculation). Figure 2 illustrates the influence of parameters and 

methodology in generating radiomics. CERR provides computation of various flavors of the 

same features for both radiomics maps and scalar radiomics. As described in section D, a 

unique aspect of CERR is the speedup of radiomics map calculations using a novel matrix 

formulation. In addition to the computation of Haralick, Law’s and first order statistical 

radiomics maps, CERR provides various pre-processing filters like Wavelet, Sobel, Gabor, 

and Laplacian of Gaussian. The parameters for radiomics maps as well as pre-processing 

filters can be defined in batch mode or through a graphical user interface. The maps can then 

be visualized side-by-side along with the original image. This is helpful for quality 

assurance as well as understanding the impact of pre-processing the original image. Figure 3 

shows an example of 3D Wavelet pre-processing of CT image. Another pre-processing 

option is to interpolate the image to a user-defined resolution. This is crucial to standardize 

heterogeneous datasets where patient scans are acquired at different resolutions. 

Normalization of image intensities is necessary for images that don’t have standard units. 

CERR provides tools to compute standard uptake values from FDG PET scans and wrappers 

for external normalization tools as has been shown in work by Li, et al. (24) for bias field 

correction in MRI scans. Moreover, CERR’s data structure provides convenient access to 

images and associated metadata, making it straightforward for users to define custom 

normalizations or use filters from libraries such as ITK and MATLAB image processing 

toolbox.

C. Scalar radiomics

Scalar radiomics features used to model outcomes can be derived from the original images 

as well as from the pre-processed images/radiomics maps. CERR provides six classes of 

scalar radiomics (class definitions according to arXiv:1612.07003 (9): (i) First-order/
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histogram statistics, (ii) Intensity-volume histogram, (iii) Peak/Valley, (iv) Shape, (v) Size, 

and (vi) Texture, which refers to the higher-order radiomics where the ROI is reduced to a 

scalar, as opposed to a voxel-wise, radiomics map. CERR provides the computation of such 

scalar texture using: (a) Gray level co-occurrence matrix (GLCM) (16), (b) Neighborhood 

gray tone difference (20), (c) Neighborhood gray level dependence (21), (d) Run length (22), 

and (e) Size zone (23) matrices. CERR provides the ability to parameterize these radiomics 

calculations via the graphical interface or batch scripts. CERR also provides the ability to 

compute gray level co-occurrence and run length features separately for each direction, or by 

combining frequency contributions from all the directions. Feature calculation can also be 

parameterized for two-dimensional (2D) or 3D calculation. Such flexibility is useful to 

accurately reproduce radiomics signatures. The features can be stored within MATLAB’s 

data structure or output to a CSV file.

D. Speed-up using matrix algebra

Radiomics feature calculation in CERR makes extensive use of matrix algebra, and the code 

is vectorized for speed. Haralick texture features, commonly used in radiomics, are a prime 

example of involved computation because they require processing the neighborhood around 

each voxel in the ROI. We demonstrate the use of matrix algebra and the resulting speedup 

for Haralick texture calculation. The computation involves counting neighbor pairs with all 

gray level combinations along a particular direction and within a neighborhood around each 

voxel. The time complexity of computing such a radiomics map is O(N3) for an image of 

size N × N × N voxels in the local region. However, the most time-consuming operation 

occurs at the unit step for each voxel while populating the co-occurrence matrix (25). It 

involves: (i) determining neighbors in the given direction and offset, (ii) filtering out 

neighbor-pairs outside the ROI, (iii) determining voxels within the neighborhood around the 

voxel for the sliding window-based calculation, and (iv) adding entries to the co-occurrence 

matrix, which has a computational complexity O(NL
2), where NL is the number of gray 

levels. All previously suggested approaches to speed this computation up (25, 26) use 

parallelization of steps (i)-(iv) across all voxels. Although parallelization reduces the total 

computational time, it does not address the computational cost per voxel involved in (i)-(iv). 

Instead, using the proposed matrix approach, repetitive bookkeeping is replaced by fast 

indexing operations for all the voxels in the concerned ROI (Supplementary material A0; 

Examples A1 and A2). This eliminates the computational overhead associated with each 

voxel. For example, computing patch-wise Haralick radiomics features using an image 

discretized into 32 bins resulted in a speedup of 3.5 times over ITK (Figure 4).

E. Testing and reproducibility between software implementations

Differences in radiomics between software systems arise from incorrect/inconsistent 

definitions or programming errors. Professionally engineered software like ITK provides 

good coverage with their unit tests. However, such testing may not uncover subtle 

differences in radiomics definitions. Hence, developing tests that compare different software 

systems is the only way to address the problem of reproducibility in radiomics. CERR’s 

radiomics was tested by matching results from the digital phantom provided by IBSI. 

Additionally, CERR provides tests for its radiomics features to ensure reproducibility with 

other software systems. This “test suite” compares CERR generated radiomics with those 
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computed from ITK and PyRadiomics. The tests between CERR and ITK have involved 

GLCM (scalar and patch-wise) and run length matrix (RLM) features whereas the tests 

between CERR and PyRadiomics have involved the first order, shape and higher order 

(texture) features. In addition to testing feature calculation, tests have also been developed to 

evaluate pre-processing filters. The eight Wavelet decompositions used in (1) have been 

tested between CERR and PyRadiomics. In all, the tests covered 1024 radiomics features 

that were computed from original and pre-processed images and 9 patch-wise Haralick 

radiomics maps. Although all the tests between CERR and PyRadiomics have indicated 

agreement, the following tests between CERR and ITK have failed. The next sections 

provide details of subtle discrepancies with ITK that have been uncovered by this inter-

software testing:

Correlation and Haralick correlation (15) from ITK—The ITK documentation as well 

as the code use the formula for “Correlation” feature as i − μ j − μ g i, j

σ2 , where μ =   i▪g i, j

is the weighted pixel-mean, σ =   i − μ 2▪g i, j  is the weighted pixel variance and g 
represents the co-occurrence matrix. The correct formula has σ as the standard deviation 

( σ =   i − μ 2▪g i, j ) instead of the variance ( σ =   i − μ 2�g i, j ), as has been coded and 

documented in ITK.

Investigation of “Haralick correlation” calculation from ITK has revealed that the levels run 

from 0 to the maximum gray level minus 1. This is different from the definition in 

Haralick’s original paper where the levels ran from 1 to the maximum gray level (16).

Run length matrix (RLM) (21) from ITK—The RLM computed in ITK is designed to be 

a square matrix, and the maximum number of run length bins can be at most the number of 

gray levels into which the image has been discretized. This leads to a loss in resolution in 

cases with relatively less gray levels. Moreover, ITK computes run lengths in physical units, 

which are accumulated into the specified number of bins whereas most other radiomics 

software compute the run lengths in units of voxel lengths, as defined and suggested by 

Galloway (21). Within CERR, the computation of the RLM can be performed using either 

physical or voxel units.

F. Integration with clinical software

Software tools, such as MIM (MIMvista, MIM software Inc., Cleveland, OH; https://

www.mimsoftware.com/), Eclipse (Varian Medical Systems, Palo Alto, CA; https://

www.varian.com/), and RayStation (RaySearch Laboratories, Stockholm, Sweden; https://

www.raysearchlabs.com/), provide application programming interfaces (APIs) for data 

access. Such APIs provide integration of site- and organ-specific radiomics, and thus allow 

for the use of radiomics for clinical investigations. Radiomics extension was developed 

using MIM’s MATLAB API in which users can pass images and ROIs from MIM to CERR 

and export the derived radiomics map back to MIM. Figure 5 demonstrates CERR radiomics 

Extension’s workflow to generate and display the radiomics maps within MIM. The CERR 

radiomics Extension provides options for setting parameters for generating radiomics maps. 

Compiling CERR code is independent of the operating system because it is purely 
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MATLAB-based. CERR can therefore be easily integrated with clinical software that does 

not provide MATLAB APIs. It is emphasized, of course, that CERR is not Food and Drug 

Administration- approved software, and can only be used to derive research data with 

appropriate safeguards.

Discussion

The capabilities of CERR covered in this work include key aspects of accurate radiomics 

representation and associated research: data import, transformation, segmentation, 

visualization, radiomics calculation, and bookkeeping in a user-friendly MATLAB 

environment (Figure 1). CERR is distributed on gitHub (http://www.github.com/cerr/

CERR), which provides an extremely stable platform for CERR releases and information 

related to various modules. Each software change is tested for integrity using the Jenkins 

framework (http://jenkins.io). Extensive documentation is provided via gitHub Wiki (https://

github.com/cerr/CERR/wiki/Radiomics). CERR’s user group (https://groups.google.com/

forum/#!forum/cerr-forum) has 536 members as of June 2018.

CERR offers the ability to choose from a wide range of radiomics implementations and 

parameters, and thus also makes this platform useful to validate radiomics-based models 

across institutions as exemplified for Haralick contrast in Figure 2. It addresses the lack of 

reproducibility in generated radiomics, which is critical for deriving radiomics-based 

models. CERR provides a wide range of radiomics features, and an extensible data structure 

to add new ones. The role of CERR as a radiomics platform includes sharing and 

reproducing radiomics results across institutions as well as across software tools, e.g., for 

external validation of generated radiomics models.

CERR provides a computational speedup of Haralick radiomics calculation over other 

commonly used implementations such as the C++-based ITK version 4.12. This is crucial 

for clinical implementation of developed radiomics. The matrix formulation for speeding up 

Haralick texture calculations can be easily translated into other programming languages, and 

on-going work focuses on such implementations both for Julia (http://julialang.org) and 

Python (https://www.python.org).

A further step towards clinical implementation of radiomics is the integration of CERR with 

the Food and Drug Administration-approved MIM software. The MIM Extension for 

CERR’s computational radiomics (Figure 5) is distributed along with the source code, which 

makes it possible for MIM users to readily use it as a template for research purposes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flow diagram describing the main components of computational radiomics pipeline in 
Computational Environment for Radiological Research (CERR)
The pipeline consists of (a) data import, (b) segmentation, (c) parameter selection, (d) 

radiomics map/pre-processing filters, and (e) extraction of scalar radiomics features for 

further analysis.

* Texture radiomics scalars based on gray level co-occurrence matrix: Gray level co-

occurrence (16), Neighborhood gray-tone difference (20), Neighborhood gray-level 

dependence (21), Run length (22), and Size zone (23) matrices.
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Figure 2. Different approaches to calculating the same feature lead to different radiomics maps
This often ignored aspect is critical when validating radiomics signatures across institutions. 

(a) T1 post-contrast image from a breast cancer patient. (b) Local gray level co-occurrence 

matrix (GLCM) Contrast averaged across two-dimensional (2D) directional offsets. (c) 

Local GLCM Contrast averaged across three-dimensional (3D) directional offsets. (d) Local 

GLCM Contrast computed by accumulating co-occurrence frequencies from 2D directional 

offsets into a single co-occurrence matrix. (e) Local GLCM Contrast computed by 
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accumulating co-occurrence frequencies from 3D directional offsets into a single co-

occurrence matrix.
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Figure 3. Graphical user interface (GUI) to define parameters for pre-processing filters and 
radiomics maps
(a) GUI allows user to select a filter and its associated parameters. For example, three-

dimensional wavelets filter. (b) The radiomics maps and the pre-processed images can be 

visualized along with the original image. For example, computed tomography scan and the 

HLH direction Coiflet1 wavelets (1) pre-processed image.
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Figure 4. Comparison of runtime between Computational Environment for Radiological 
Research (CERR) and Insight Toolkit’s Haralick radiomics maps
(a) Runtime as a function of digital phantom size when the image is discretized into 32 gray 

levels. CERR is about 3.5 times faster compared to Insight Toolkit (ITK). (b) The ratio 

between runtimes of ITK and CERR as a function of the number of gray levels. As the 

number of gray levels increases, CERR loses some of its speed advantages. This is because 

the time required to accumulate the co-occurrence frequencies ( O NL
2 ) dominates the gains 

from indexing and bookkeeping in the matrix-based approach.
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Figure 5. Computational Environment for Radiological Research (CERR) radiomics extension as 
integrated into the Food and Drug Administration-approved MIM software
(a) computed tomography scan from a prostate cancer patient in MIM software. (b) The 

Extension presents users with options to select parameters for radiomics calculation and 

displays thumbnails for radiomics maps. (c) The resulting radiomics map (correlation from 

Haralick gray level co-occurrence) for the selected scan and the structure is displayed in 

MIM.
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