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ABSTRACT Clostridioides difficile genetics has rapidly advanced in recent years
thanks to the development of tools for allelic replacement and transposon mutagen-
esis. In this Journal of Bacteriology issue, Müh et al. extend the genetics toolbox by
developing a CRISPR interference (CRISPRi) strategy for gene silencing in C. difficile
(U. Müh, A. G. Pannullo, D. S. Weiss, and C. D. Ellermeier, 2019, J Bacteriol 201:
e00711-18. https://doi.org/10.1128/JB.00711-18). The authors demonstrate the tunabil-
ity and robustness of their CRISPRi system, highlight its utility in studying essential gene
function, and discuss exciting new possibilities for dissecting C. difficile physiology.
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Clostridioides (formerly Clostridium) difficile has long been considered a genetically
intractable organism. Early methods for genetically manipulating C. difficile were

relatively limited, with the first plasmids being conjugated into C. difficile in 2002 (1, 2)
and the first gene disruption mutant being constructed in 2006 (3). The development
of a TargeTron-based gene disruption system (ClosTron [4]) brought C. difficile genetics
out of the Dark Ages, but the off-target effects of this system for some genes limited
its utility, and ClosTron disruption was typically limited to a single gene. Around this
time, C. difficile was emerging as a major nosocomial pathogen, stimulating a small
group of dedicated researchers to usher in a Renaissance in C. difficile genetics. These
efforts led to the development of methods for inducing gene expression (5, 6), silencing
gene expression using antisense methods (5, 7), conducting genome-wide transposon
screens (8), constructing multiple and precise gene deletions using allelic exchange
(9–11), and, most recently, using CRISPR-based methods to repress gene expression
(12, 13).

Development of a CRISPR-based gene silencing system in C. difficile. While
these methods have transformed the ability of researchers to study C. difficile, most of
the methods for manipulating the chromosome have been limited to the most genet-
ically tractable strain of C. difficile, 630Δerm (14), which derives from a clinical isolate
(15) but is less pathogenic than the epidemic, so-called “hypervirulent,” strains (16, 17).
A recent report by Müh et al. in this Journal of Bacteriology issue describes the
development of a CRISPR interference (CRISPRi) method that promises to overcome
some of these limitations and opens up exciting new possibilities for studying C. difficile
biology (18).

Müh et al. (18) show that their optimized CRISPRi system can be used to study the
function of multiple essential genes while also bypassing the lengthy and often difficult
process of constructing mutants in the epidemic strain R20291 (19). They demonstrate
that their CRISPRi system is inducible, titratable, highly effective at repressing gene
expression (20- to 100-fold), and robust, achieving tight repression with all 8 guide
RNAs tested and no off-target effects being observed.

They based their CRISPRi method off a system developed for Bacillus subtilis (20) that
involves constitutively expressing a single guide RNA (sgRNA) to target a nuclease-
deactivated mutant of Cas9 (dCas9) to bind a specific gene sequence and block
transcription by RNA polymerase. The targeted dCas9 can be used to repress down-
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stream as well as upstream gene transcription of operons in the B. subtilis system (20)
and, thus, to study the function of operons as well as individual genes.

To tune the level of dCas9-mediated gene silencing, Müh et al. placed a codon-
optimized dCas9 gene, derived from Streptococcus pyogenes, under the control of a
xylose-inducible promoter (Pxyl), similar to the B. subtilis system (20). This xylose-
inducible system uses the xylose repressor XylR to repress the transcription of the Pxyl

promoter in the absence of xylose, while the addition of xylose alleviates repression
and induces gene expression. Using mCherry as a reporter gene, the authors demon-
strate that the xylose-inducible system induces titratable, uniform gene expression and
is only mildly affected by catabolite repression.

To maximize the expression of the sgRNA, the authors identified Pgdh as an optimal
promoter for driving sgRNA-mediated transcriptional repression. The sgRNA and dCas9
genes were cloned into a C. difficile-Escherichia coli shuttle plasmid vector (5) and
conjugated into R20291. By simply exchanging the sgRNA encoded, the authors
knocked down the expression of three genes predicted to play an important role in the
biogenesis and integrity of the cell envelope (8). They validated the ability of their
system for studying gene essentiality by showing that knockdown of ftsZ, which
encodes a key division protein conserved in almost all bacteria (21), and cdr20291_0712
(pbp-0712), a monocistronic gene encoding a previously uncharacterized bifunctional
(class A) penicillin-binding protein (22), markedly decreased cell viability and induced
distinct cell division defects. Their analyses also confirmed that repressing the expres-
sion of the gene encoding the major S-layer protein, slpA, renders cells susceptible to
lysozyme, similar to the slpA mutant isolated from bacteriocin-based selection (23).

Impact of the research. The utility of the CRISPRi system in C. difficile was also

recently shown by Marreddy et al., who developed a similar xylose-inducible CRISPRi
system to show that the fatty acid biosynthesis gene fabK is essential in C. difficile (24).
The CRISPRi system developed by the Hurdle group was not necessarily optimized for
C. difficile, which may explain why their antisense RNA approach for knocking down
fabK expression was more effective at repressing gene expression than their CRISPRi
system. Since antisense repression systems can have limited utility due to variable
efficacy (25), and since Müh et al. observed a 100% success rate for gene repression
with their CRISPRi system, the optimized CRISPRi system described in this special issue
is likely to be more broadly applicable to studying gene function in C. difficile.

The xylose-inducible system developed by Müh et al. also represents an advance in
C. difficile genetics, since the existing (anhydro)tetracycline (5)- and nisin (6)-based
inducible systems can exhibit toxicity at high levels of the inducer. Furthermore, their
system expands the options for studying gene function in C. difficile, since the different
inducible systems can be combined to titrate the expression of multiple gene targets.

CRISPRi also enables multiple genes to be simultaneously targeted, which facilitates
the study of genetic redundancy, particularly for essential pathways; obviates the need
for complex strain construction (20, 26); and minimizes the chance that gene deletions
cause compensatory changes in gene expression. Furthermore, the ease with which
CRISPRi can generate targeted and genome-wide libraries of gene knockdowns has
been exploited in phenotype screens for determining gene function (20, 27–29) and
identifying drug targets, since strains producing smaller amounts of the drug targets
are sensitized to the inhibitor (20, 29). Remarkably, large-scale libraries of CRISPRi have
recently been used to conduct genome-wide screens with even greater efficacy than
transposon sequencing (TnSeq) libraries (28). While these larger-scale approaches will
likely require additional advances in C. difficile genetics due to their low conjugation
efficiencies (see below), the construction of targeted libraries is an exciting possibility.

One of the most important applications of the C. difficile CRISPRi system is its
potential to be used for studying gene function in C. difficile strains that have largely
been resistant to genetic manipulation. It is generally much easier to acquire transcon-
jugants than to generate strains that require even single recombination events, and
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heat shock can increase plasmid uptake in the epidemic R20291 strain (30). Thus, it
seems likely that their system will have broad utility in C. difficile.

Conclusions and future directions. In demonstrating that their optimized xylose-
inducible CRISPRi system is tunable and robust, Müh et al. have markedly expanded the
tools available for genetically manipulating C. difficile. Their plasmid system should
permit the study of less genetically tractable C. difficile clinical isolates, since CRISPRi
was recently applied to difficult-to-manipulate Staphylococcus aureus clinical isolate
strains (31).

Nevertheless, modifying the C. difficile CRISPRi plasmid-based system to permit
integration onto the chromosome would allow gene function to be studied during
infection, since antibiotic maintenance of the plasmid can be challenging. A recent
study described the development of a “mobile CRISPRi” system that allows for the ready
integration of the gene silencing system onto the chromosomes of diverse bacteria (32,
33). While it remains to be seen whether this type of system could be adapted for use
in C. difficile, there are clearly many applications possible for their CRISPRi system in
studying C. difficile physiology and drug susceptibility. Improving the methods for
reliably introducing DNA into C. difficile would further advance the utility of this system.
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