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ABSTRACT

Background and Objectives: Screening and early diagnosis for heart failure (HF) are 
critical. However, conventional screening diagnostic methods have limitations, and 
electrocardiography (ECG)-based HF identification may be helpful. This study aimed to 
develop and validate a deep-learning algorithm for ECG-based HF identification (DEHF).
Methods: The study involved 2 hospitals and 55,163 ECGs of 22,765 patients who performed 
echocardiography within 4 weeks were study subjects. ECGs were divided into derivation 
and validation data. Demographic and ECG features were used as predictive variables. The 
primary endpoint was detection of HF with reduced ejection fraction (HFrEF; ejection 
fraction [EF]≤40%), and the secondary endpoint was HF with mid-range to reduced EF 
(≤50%). We developed the DEHF using derivation data and the algorithm representing the 
risk of HF between 0 and 1. We confirmed accuracy and compared logistic regression (LR) 
and random forest (RF) analyses using validation data.
Results: The area under the receiver operating characteristic curves (AUROCs) of DEHF 
for identification of HFrEF were 0.843 (95% confidence interval, 0.840–0.845) and 0.889 
(0.887–0.891) for internal and external validation, respectively, and these results significantly 
outperformed those of LR (0.800 [0.797–0.803], 0.847 [0.844–0.850]) and RF (0.807 [0.804–
0.810], 0.853 [0.850–0.855]) analyses. The AUROCs of deep learning for identification of the 
secondary endpoint was 0.821 (0.819–0.823) and 0.850 (0.848–0.852) for internal and external 
validation, respectively, and these results significantly outperformed those of LR and RF.
Conclusions: The deep-learning algorithm accurately identified HF using ECG features and 
outperformed other machine-learning methods.
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INTRODUCTION

Heart failure (HF) has a prevalence as high as 2% of adults overall (8% of adults aged≥75 
years), affecting 26 million patients worldwide and 3.5 million new patients every year.1) It is a 
critical disease, with 17–45% of patients admitted for HF dying within 1 year and the majority 
of the remaining patients dying within 5 years.2) Patients with HF have reduced physical 
activity, and many are hospitalized repeatedly, leading to deterioration of quality of life and 
great expense. The cost of treatment for patients with HF accounts for 2% of total health care 
expenses and is expected to double by 2030 due to population aging.3)

Various methods are used for the diagnosis of HF. These methods, however, require a 
physical examination, echocardiography, and laboratory tests, as well as a high level of 
expertise for interpretation of results and making a diagnosis.4) Furthermore, existing 
methods are fixed tools that do not account for the relationships among variables and thus 
provide limited performance.5)6) For these reasons, existing screening and early diagnosis 
strategies for HF are limited in value. Electrocardiography (ECG) is non-invasive and simple 
to perform and is widely used as part of a general check-up. The ability to identify HF using 
only demographic factors and ECG could be used for early diagnosis and would enable 
referral for further investigation.

A previous study showed a significant association between HF and ECG features.7) However, 
statistical limitations associated with logistic regression (LR) analysis prevented researchers 
from developing a predictive model for HF using ECG. Several attempts have now been 
made to develop a predictive model for HF using machine-learning.8-10) To achieve high 
accuracy with limited information, we used deep-learning techniques to develop a diagnostic 
algorithm. Deep-learning technique has achieved state-of-art performance in several medical 
domains, such as image detection and clinical outcome prediction.11-13) An advantage of deep-
learning technique is the automatic-learning feature and ability to identify associations using 
available data.14) This study developed and validated a deep-learning algorithm for ECG-based 
HF identification (DEHF).

METHODS

Study population
We performed a multicenter retrospective cohort study involving 2 hospitals. The study 
subjects were ECGs of adult (aged≥18 years) patients who had undergone echocardiography 
within 4 weeks. We excluded patients with missing values (Figure 1). The Sejong General 
Hospital Institutional Review Board (IRB) (No. 2018-0384) and Mediplex Sejong Hospital IRB 
(No. 2018-024) approved this study protocol and waived the need for informed consent due 
to impracticality and minimal harm. We excluded subjects with missing demographic and 
echocardiographic information.

Data management
The characteristics of both hospitals were different (hospital A: a cardiovascular teaching 
hospital, hospital B: a community general hospital). Data from hospital A (October 2016–July 
2018) were split into algorithm derivation and internal validation data by randomization. 
Data from hospital B (March 2017–July 2018) were only used for external validation. The 
derivation data were used to develop the deep-learning algorithm, DEHF. We evaluated the 
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accuracy of the algorithm using internal validation data that were not used for algorithm 
derivation. Furthermore, we used external validation data from hospital B to verify that the 
algorithm was applicable across centers.

The primary endpoint was detection of HF with reduced ejection fraction (HFrEF), defined 
as ≤40% on echocardiography.4) The secondary endpoint was detection of HF with mid-
range to reduced ejection fraction (EF), defined as ≤50% on echocardiography.4) We used 
demographic information and ECG features including age, sex, weight, height, heart rate, 
presence of atrial fibrillation (AF) or atrial flutter (AFL), QT interval, QRS duration, R wave 
axis, and T wave axis, as the predictive variables. For use of the algorithm in AF, we did not 
include the P wave axis or PR interval as predictive variables.

Development of deep-learning algorithm
As shown in Figure 2, we developed the deep-learning algorithm, DEHF, using only 
derivation data. The algorithm was developed using deep neural network (DNN), a method 
of deep-learning with 5 hidden layers, 45 nodes, and dropout layers.15) Because there was no 
gain in accuracy with more than 5 layers, we used 5 to minimize the parameters to be learned. 
The first to fifth layers consisted of 15, 13, 11, 10, and 6 nodes, and used a rectified linear unit 
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59,805 ECG of 24,376 patients
who underwent echocardiography within 1 month.

Model performance test

Model performance test

Prediction model (DEHF) development

Derivation data
34,708 ECG of 13,486 patients

Internal validation data
9,965 ECG of 3,378 patients

55,163 ECG of 22,765 patients admitted to 2 hospital
Hospital A (teaching hospital): 44,673 ECG of 16,864 patients 
Hospital B (community hospital): 10,490 ECG of 5,901 patients

External validation data
Hospital B

10,490 ECG of 5,901 patients

Hospital A data

Excluded due to missing information
4,642 ECG of 1,611 patients

Divided by hospital for external validation data

Randomly selected 20% ECGs
for internal validation

Figure 1. Study flow chart. 
DEHF = deep-learning algorithm for electrocardiography-based heart failure identification; ECG = electrocardiography.
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1. Model derivation data and processing

2. Model fitting

Numeric change for
categorical variable

Normalization for
continuous variable

Numeric change for
categorical variable

Normalization for
continuous variable

Comparison

Real patient outcome Predicted outcome

Heart failure

Outcome
variable

4. Performance test of developed model

3. Validation data and processing

Figure 2. Development and validation of DEHF. 
DEHF = deep-learning algorithm for electrocardiography-based heart failure identification; ECG = electrocardiography; HF = heart failure.

https://e-kcj.org


as the activation function.16) The last layer consisted of 1 node, which represented the risk of 
each outcome and used a sigmoid function.

We used TensorFlow (the Google Brain Team) as the backend.17) Furthermore, we used the 
Adagrad optimizer with default parameters and binary cross-entropy as the loss function. As 
shown in Figure 2, the value at 1 node of the DNN is added by multiplying the values from the 
upper layer nodes (xk) by their weights (wk). The added value, (x1+w1+x2+w2+...+xkwk+c), is 
processed by the activation function, and the value of f(x1+w1+x2+w2+...+xkwk+c) is sent to 
the next node.

As shown in Figure 2, before using the derivation data for DEHF development, we replaced 
the values of the categorical variables with binary numeric values and normalized the value 
of the continuous variables.18) This data preprocessing was separately performed for the 
derivation, interval validation, and external validation data.18) To train the deep-learning 
algorithm, we input each value of the derivation data in the input layer and adjusted the 
weight (wk) using back propagation.18)

Development of machine-learning-based algorithm for comparison
We also developed LR and random forest (RF) machine-learning algorithms, for comparison 
of performance with the DEHF. In previous studies, LR and RF were the most commonly 
used machine-learning methods and showed better performance than traditional methods 
in several medical domains.19) We identified the best LR algorithm among all possible 
algorithms using the glmulti package in R (R Foundation, Vienna, Austria).20)21) We used 
original Akaike IC as the information criterion and used pairwise interactions. For LR 
algorithm selection, we used forward-backward directions.

RF is used to construct a multitude of decision trees. Each decision tree partitions the 
sample data by splitting the variables at discrete cut-points. Each tree is derived by randomly 
selecting data from the derivation data, and the RF algorithm concludes with a summary 
result for each decision tree. In this study, the RF algorithm consisted of 10,000 decision 
trees using the randomForest package in R (R Foundation).21) The optimal number of 
variables, which were randomly sampled as candidates at each split, was determined using 
10-fold cross-validation.

Validation of algorithm performance and statistical analysis
After we developed the deep-learning and machine-learning algorithms, we compared their 
performance using the internal and external validation data that were not used for algorithm 
development. We used the area under the receiver operating characteristic curve (AUROC) as 
the comparative measure. The AUROC is a frequently used metric and the receiver operating 
characteristic (ROC) curve shows the sensitivity against 1-specificity. We evaluated the 95% 
confidence interval (CI) using bootstrapping (10,000 times resampling with replacement).22)

We confirmed characteristics of the HF patient group as shown in Table 1. Continuous 
variables are presented as mean and standard deviation and compared using the unpaired 
Student's t-test or Mann-Whitney U-test. Categorical variables are expressed as frequencies 
and percentages and compared using the χ2 test.

We confirmed the importance of variables in each developed algorithm. We confirmed 
the deviance difference of each predictive variable in the LR model and mean decrease in 
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Gini coefficient for each predictive variable in RF to assess the importance of the variable. 
For variable importance in the deep-learning model, we assessed the decrease in accuracy 
(AUROC) when each variable was excluded.

RESULTS

We included 59,805 ECG studies of 24,376 patients with value of left ventricular systolic 
function confirmed on echocardiography within 4 weeks. We excluded 4,642 ECG studies 
of 1,611 patients with missing values. As shown in Figure 1, the study population comprised 
22,765 patients, of whom 1,391 had HFrEF. Baseline characteristics of study subjects are 
shown in Table 1. A deep-learning predictive model was developed using 34,708 ECG studies 
with derivation data. The performance test was conducted using 9,965 interval validation 
data from hospital A and 10,790 external validation data from hospital B. We provided the 
deep-learning algorithm (DEHF), coding book for input data, example of input data, and 
python code for validation as a supplemental file to this article.

As shown in Table 1, HF patients had a significantly prolonged QT interval and QRS duration, 
as well as a significantly greater heart rate, longer T wave duration, and significantly shorter R 
wave duration. HF patients also had a greater proportion with AF/AFL.

634https://e-kcj.org https://doi.org/10.4070/kcj.2018.0446

Deep-Learning for Heart Failure Diagnosis

Table 1. Baseline characteristics

Characteristics HFrEF  
(EF≤40%)

HFmrEF  
(40%≤EF≤50%)

Normal left ventricular systolic function 
(50%≤EF) p value*

Total patients 1,391 1,538 19,836
Age (years) 64.30±14.20 64.82±13.30 60.83±15.03 <0.001
Female 504 (36.21) 558 (36.28) 9,796 (49.38) <0.001
Body surface area (m2) 1.68±0.21 1.69±0.20 1.68±0.20 0.082

Echocardiography data
EF 27.97±7.36 44.07±2.77 59.90±6.50 <0.001
Left atrial dimension (mm) 45.84±12.64 43.67±9.47 40.34±8.46 <0.001
Septal dimension (mm) 10.08±1.87 10.61±1.74 10.12±1.90 <0.001
Posterior wall thickness (mm) 9.82±1.66 10.14±1.60 9.73±1.59 0.036
Aortic dimension (mm) 32.85±4.96 33.14±4.53 31.60±4.12 <0.001
E 69.32±25.22 63.94±21.35 65.03±18.56 <0.001
A 65.71±23.73 71.78± 20.78 70.75±19.58 <0.001
Deceleration time 167.34±59.73 191.50±56.06 203.87±52.25 <0.001
E′ 4.81±2.11 5.37±1.96 6.53±2.51 <0.001
A′ 6.26±2.52 7.59±2.28 8.47±2.13 <0.001
E/E′ 17.35±9.79 14.17±8.12 11.45±5.71 <0.001
Peak TRPG 27.76±12.18 23.59±10.05 21.91±7.92 <0.001
Estimated PA pressure 33.75±14.31 27.97±11.08 25.63±9.05 <0.001
Left ventricular systolic dimension (mm) 46.62±10.98 36.23±6.94 29.19±5.11 <0.001
Left ventricular diastolic dimension (mm) 57.94±9.55 51.03±6.47 47.24±5.29 <0.001

Total Electrocardiograms 7,405 5,560 42,198
AF or AFL 2,010 (27.14) 1,369 (24.62) 5,036 (11.93) <0.001
Heart rate 85.41±22.91 79.08±20.00 73.76±17.66 <0.001
QT interval 410.43±58.77 412.54±55.91 405.42±46.52 <0.001
QTc 478.00±40.83 463.76±41.19 442.17±36.75 <0.001
QRS duration 111.95±27.81 102.65±23.04 96.21±18.36 <0.001
R wave axis 24.19±68.54 30.59±56.06 37.32±45.62 <0.001
T wave axis 94.04±87.79 69.10±81.08 49.94±59.54 <0.001

Data are shown as mean±standard deviation or number (%).
AF = atrial fibrillation; AFL = atrial flutter; EF = ejection fraction, HFrEF = heart failure with reduced ejection fraction; HFmrEF = heart failure with mid-range 
ejection fraction; PA = pulmonary artery, TRPG = trans-tricuspid pressure gradient.
*An alternative explanation for this p value is based on differences between the 3 groups.
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As shown in Figure 3, the ROC curve of the DEHF was above the ROC curve of the other 
models for the primary and secondary endpoints. This means that the DEHF is more 
accurate than the other models in all aspects of sensitivity and specificity. During internal 
validation for identification of the primary endpoint (HFrEF), the AUROC of the deep-
learning algorithm, DEHF, was 0.843 (95% CI, 0.840–0.845), and this result significantly 
outperformed RF (0.807 [0.804–0.810]) and LR (0.800 [0.797–0.803]). In the external 
validation, the AUROC of the DEHF was 0.889 (0.887–0.891), and this result significantly 
outperformed the RF (0.853 [0.850–0.855]) and LR (0.847 [0.844–0.850]). The AUROC 
values of DL were significantly higher than those of RF and LR (p<0.001). At the 90% 
sensitivity point in external validation, the specificities of DL, RF, and LR were 0.604, 0.587, 
and 0.487, respectively. As shown in Figure 3, the AUROC values of DL for identification of 
the secondary endpoint, i.e., mid-range to reduced left ventricular EF (≤50%), were 0.821 
(0.819–0.823) and 0.850 (0.848–0.852) for internal and external validation, respectively, and 
the AUROC value of DL was significantly higher than that of RF or LR (p<0.001).

As shown in Table 2, the variable importance was different for each prognostic model. All 3 
models used T wave duration as an important predictive variable. While LR and RF used heart 
rate and QRS duration as important predictive variables, their importance in deep-learning is 
low. Instead, deep-learning used weight and presence of AF or AFL as important variables.
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Figure 3. AUROC of each algorithm for identification of HF. 
AUROC = area under the receiver operating characteristic curve; EF = ejection fraction; HF = heart failure; HFrEF = heart failure with reduced ejection fraction; 
HFmrEF = heart failure with mid-range ejection fraction.
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DISCUSSION

This study developed and validated a deep-learning algorithm, DEHF, for identification of 
HF using ECG. Through validation, this study confirmed that the performance of the deep-
learning algorithm was excellent for identification of HF, with greater accuracy than that 
using RF or LR.

HF has high prevalence, and is associated with increased health care expenses, repeated 
hospitalization, and significant reduction in quality of life, which may be resolved with 
rapid diagnosis and effective treatment. Recent guidelines from the American College of 
Cardiology and American Heart Association4) for the initial diagnosis of HF and referral 
for echocardiography recommend the use of B-type natriuretic peptide in combination 
with clinical assessment. These methods, however, require consultations and many tests, 
as well as a high level of expertise for interpretation of large amounts of complex data and 
determination of a treatment plan. Furthermore, existing methods are fixed tools that do not 
account for the relationships among variables and thus provide limited performance for early 
diagnosis and screening.5)6)

This led to various attempts to use a new method, i.e., machine-learning, for the diagnosis 
of HF. Deep-learning and machine-learning are branches of artificial intelligence science, 
a study of algorithms that allows computers to independently collect data and make new 
predictions. Thus, machine-learning enables computers to establish a new predictive 
algorithm without direct and explicit input by a human. Son et al.23) and Masetic and Subasi24) 
developed machine-learning predictive algorithms based on age, sex, blood pressure, 
and findings of hematology; echocardiography; ECG; radiography; and physical activity 
in populations ranging from 15 to 4,489 patients, with an AUROC of 0.77 to 0.95 for the 
accuracy of HF diagnosis. Betanzos et al.25) and Isler26) developed classification algorithms 
based on the type of HF (HF with preserved EF, mid-range EF, and reduced EF). Melillo et 
al.27) developed classification algorithms based on the severity of HF. Guidi et al.28) developed 
a remote care system and a monitoring tool for patients with HF.

Studies to date have shown potential for the diagnosis of HF; however, the fact that they 
use test results from various modalities limits their use for early diagnosis of HF as a 
screening tool. Because of this, we developed an identification algorithm using only baseline 
demographic information and ECG features. We used deep-learning to develop a high-
performance algorithm. An important advantage of deep-learning compared with machine-
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Table 2. Importance of variables in derivation data for each algorithm

Variable importance LR  
(deviance difference)

RF  
(mean decreased Gini)

Deep-learning  
(difference in AUROC)

1 Heart rate (−1,265.7) T-wave axis (777.0) T-wave axis (0.103)
2 T-wave axis (−821.7) QRS duration (416.0) Weight (0.087)
3 QRS duration (−502.6) Heart rate (299.5) AF/AFL (0.073)
4 QT interval (−323.9) R wave axis (183.4) Age (0.070)
5 Sex (−176.8) Height (76.1) Heart rate (0.069)
6 AF/AFL (−106.3) Age (65.7) QT interval (0.067)
7 R-wave axis (−30.1) QT interval (44.8) R-wave axis (0.064)
8 Weight (−29.0) AF/AFL (44.7) QRS duration (0.063)
9 Height (−2.2) Weight (40.6) Height (0.061)

10 Age (−0.4) Sex (34.4) Sex (0.055)
AF = atrial fibrillation; AFL = atrial flutter; AUROC = area under the receiver operating characteristic curve; LR = 
logistic regression; RF = random forest.
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learning is feature learning.14) Machine-learning techniques are limited in their ability to 
process natural data in their raw form. Machine-learning requires careful engineering to 
design a feature extractor that transforms the raw data into suitable internal representation. 
This process requires a lot of manpower, and important information may be missed. On 
the other hand, deep-learning includes feature learning, which is a set of methods that 
allows a model to be created using raw data for automatic identification of the features and 
relationships needed to perform a task.14) It is important to note that feature learning is not 
designed by humans. As this process is conducted automatically, it is effective at identifying 
intricate structures in high-dimensional data without information loss and requires very little 
engineering by humans.14) Therefore, it can be quickly applied to other tasks with ease. Owing 
to these prospects, deep-learning has been applied in various domains, and shows better 
performance than all other methods.14)

In general, the predictive accuracy of external validation is lower than that of internal 
validation. However, in the present study, the accuracy of external validation outperformed 
internal validation in all predictive models. As shown in the Supplementary Figure 1, hospital 
A (internal validation) had a greater proportion of HF patients, as well as a greater proportion 
of patients in bordering areas. This finding may be due to differences in the characteristics 
of the 2 hospitals (hospital A: a cardiovascular teaching hospital, hospital B: a community 
general hospital). Therefore, the task of predicting HF using internal validation might be 
easier than that using external validation.

DEHF, LR, and RF predicted endpoints using different structures. The patients in whom each 
model correctly predicted the endpoints also differed. Moreover, the variable importance 
of DEHF is different from that of LR or RF, as shown in Table 2. For this reason, different 
algorithms can complement each other's weaknesses; thus, many researchers attempt to 
improve accuracy by combining predictive algorithms. This method, called an ensemble 
algorithm, is our next area of research.

Several limitations were present in our study. First, deep-learning is considered a black box. 
Although we can fit the deep-learning algorithm by confirming each weight, we cannot 
interpret the algorithm in terms of the approach to the decision for a clinical endpoint. 
For example, if the deep-learning algorithm in this study predicts that a patient has HF, 
the reason for the prediction cannot be ascertained. Attempts to explain deep-learning are 
recent, and this will be our next area of study.29) Second, as this study was only conducted in 
2 hospitals in Korea, it is necessary to validate this model in HF patients in other countries.30) 
For this reason, we have provided supplemental files with our deep-learning model (DEHF), 
data preprocessing method, and code for validation. The deep-learning algorithm can be 
developed more easily than a machine-learning method. Using our results, other researchers 
can develop algorithm for their own patients. Third, we did not use raw ECG signals but 
instead used features of ECG. We aimed for easy application of DEHF in local clinics and 
general check-ups, but this method could limit the performance of a predictive algorithm. 
We plan to conduct a study with raw ECG signals for prediction of HF. Despite several 
limitations, deep-learning has achieved high predictive performance in several medical 
domains. Medical researchers should investigate the applicability and future development of 
deep-learning in various domains of medicine.

Competency in medical knowledge: this study developed and validated a DEHF. With this 
algorithm, we can identify HF using only demographic and ECG features. Many patients can 
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be identified at an early stage and referred for diagnostic investigation. The deep-learning 
algorithm achieved state-of-the-art performance in identification of HF and outperformed 
other machine-learning algorithms.

Translational outlook: deep-learning technology has not been widely applied in the medical 
field. Hence, further investigation and validation are required in various medical fields.

SUPPLEMENTARY MATERIAL

Supplementary Figure 1
Distribution of EF in validation groups.

Click here to view
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