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Pathogens often rely on their host for dispersal. Yet, maximizing fitness via

replication can cause damage to the host and an associated reduction in host

movement, incurring a trade-off between transmission and dispersal. Here,

we test the idea that pathogens might mitigate this trade-off between repro-

ductive fitness and dispersal by taking advantage of sexual dimorphism in

their host, tailoring responses separately to males and females. Using exper-

imental populations of Daphnia magna and its bacterial pathogen Pasteuria
ramosa as a test-case, we find evidence that this pathogen can use male

hosts as a dispersal vector, and the larger females as high-quality resource

patches for optimized production of transmission spores. As sexual

dimorphism in dispersal and body size is widespread across the animal

kingdom, this differential exploitation of the sexes by a pathogen might be

an unappreciated phenomenon, possibly evolved in various systems.
1. Introduction
Many pathogens rely on their host for dispersal, yet maximizing the trans-

mission benefits of within-host replication is often at odds with the need to

disperse and encounter new hosts, since sick hosts are generally unlikely

to move large distances [1]. Such a trade-off places limits on the evolution of

pathogens in spatially explicit settings, as a pathogen’s long-term fitness is

highly dependent on their ability to disperse once the local pool of susceptible

hosts has been exhausted [2,3]. Thus, for non-vectored pathogens, host move-

ment, and how this is altered by infection [4], is essential for understanding

any constraints on the epidemiology and evolution of infectious disease

across space [5,6]. If infection reduces host dispersal, for example, selection is

expected to favour more prudent host exploitation strategies at the front of

an expanding host population [6].

Predictions for pathogen evolution in a patchy landscape often centre on a

pathogen’s dispersal ability relative to that of a generic host [7,8], implying that

there is one optimal dispersal strategy. In nature, however, hosts commonly

vary in their dispersal capacity and provided resources, with one common

source of host heterogeneity being sexual dimorphism. Each sex often differs

in size, dispersal [9,10] and in the prevalence and severity of disease [11–13].

Studies have captured the interplay between these key fitness components by

linking one sex to the spatial distribution of a pathogen [14] and revealing

how investment in dispersing life-stages [15] or modes of transmission [16]

depends on host sex. Based on these findings, it is clear that sexual dimorphism

influences both the evolution of a trade-off between within host replication and

virulence [17–20] and the potential redistribution of pathogens [7,14]. Yet, it

remains to be tested if a pathogen can optimize both transmission and dispersal

simultaneously by tailoring their infection strategies separately to males

and females.
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Figure 1. Probability of dispersal (mean+ s.e.) from a crowded habitat to a
neighbouring uninhabited habitat for infected (solid line and circles) and uninfected
(dashed line and triangles) male and female Daphnia. (Online version in colour.)
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Here, we propose the idea that pathogens may be able to

mitigate the trade-off between dispersal and within-host

replication by taking advantage of sexual dimorphism of

their host. In particular, we suggest that sexual dimorphism

in host dispersal and size will play a crucial role in mitigating

any trade-offs for a pathogen. For example, where there is

strong sexual dimorphism in size—often a proxy for the

resources that a host provides to a pathogen—we might

expect pathogens to maximize production of transmission

propagules in the larger host. Likewise, with sexual dimorph-

ism in dispersal, pathogens may maximize dispersal via the

more dispersive sex. Where these two situations align, such

that the sex providing the fewer resources is also the more dis-

persive, we would expect to see particularly strong

opportunities for pathogens to exploit host sexual dimorphism.

In this study, we test this idea by using Daphnia magna
and its pathogen Pasteuria ramosa. Daphnia are freshwater

crustaceans, reproducing via cyclical parthenogenesis

(females can produce genetically identical male and female

offspring). Transmission of P. ramosa occurs exclusively

horizontally, and infection is facilitated by filter-feeding,

after which the pathogen sterilizes and kills its host [21].

Males are smaller and have a shorter lifespan than females

[22,23] and display behavioural differences in mate-finding

[24]. Males are also more resistant to infection, constrain the

production of transmission spores and suffer from less patho-

gen-induced reduction in lifespan relative to females

[19,22,23]. With this system, we then explored how host sex

and infection interact to shape host dispersal behaviour in

two different contexts: (i) the probability of dispersal from a

crowded habitat and (ii) the rate and magnitude of any

potential dispersal events. Overall, our experimental data

suggest that pathogens are able to utilize male hosts as a

vector for dispersal, and the female host as a high-quality

patch for optimized spore production.
2. Material and methods
We performed two experiments to investigate host sex and infec-

tion differences in (i) probability of dispersal from a crowded

habitat (two-patch microcosms), and (ii) movement capacity of

individuals (unlimited continuous microcosms). The host geno-

type used for these experiments originated from Hungary

(HUHO-2), and the two P. ramosa genotypes originated from

Russia (C1) and Germany (C19) and have previously been

shown to vary in transmission and virulence strategies [19,25].

For both experiments, animals were prepared by collecting

female Daphnia from stock cultures and rearing following stan-

dard conditions (208C, 16 L : 8 D). Males were generated via

hormone treatment ([23], see electronic supplementary material).

To produce infected individuals, each animal was exposed to

20 000 spores of one of the two pathogen genotypes (C1 or

C19) or an equivalent placebo-solution (i.e. unexposed and unin-

fected controls) at age 3 and 4 days (40 000 spores individual21).

(a) Experiment 1: The probability of dispersal from a
crowded habitat

Two-patch microcosms were built by interconnecting two 950-ml

containers with PVC-piping (15 mm diameter) and a closing

valve between patches. We have previously shown that high-

density conditions in a local patch directly induce Daphnia
dispersal [26] and that info-chemicals contained in ‘crowded’

water influence Daphnia life-history [27]. To stimulate dispersal,
we simulated a high-density environment in the first patch

using crowded-conditioned water (electronic supplementary

material) and introduced 20 infected individuals (by pathogen

C1 only) and 20 unexposed controls (i.e. uninfected) of each

sex (2 sexes � 2 treatments (infected and uninfected) � 20

individuals � 15 replicates ¼ 1200).

After a 24 h acclimatization period, we opened the valves

and allowed for dispersal to the second patch, containing fresh

Daphnia media. Six days later, we quantified the number of

animals of each sex and treatment (infected or uninfected) in

patch 2. With this population-level approach, we cannot comple-

tely rule out differences in mortality between males and females

(nor uninfected or infected animals) contributing to the observed

results, but our approach does allow us to focus on the biologi-

cally meaningful aspect for this study: the probability of

dispersal to a new patch.

(b) Experiment 2: The rate and magnitude of individual
dispersal

To assay the movement capacity of individual Daphnia, we used

continuous microcosms built from 50 ml falcon-tubes intercon-

nected by 10 cm silicon tubing (internal diameter 8 mm and

outer diameter 12 mm). For both host sexes, infected (pathogen

C1 and C19) and uninfected animals were introduced individually

into the first patch of a continuous microcosm system at 20 days

post-infection. Each treatment was replicated 20 times (2 sexes �
3 treatments ([2] pathogens þ controls] � 20 replicates ¼ 120

animals) and checked daily for mortality and dispersal (back-

dispersal was prevented by closing the tube after any dispersal

event). At death, individual Daphnia were frozen in 500 ml RO

for later spore count, using an Accuri C6 flow cytometer (BD Bio-

sciences, San Jose, CA, USA) following standard procedures [22].

(c) Statistical analyses
All data analyses were performed in R (ver. 3.3.3; R Development

Core Team). For Experiment 1, we analysed the probability of

dispersal using a generalized linear model with a binomial distri-

bution and logit-link function, with infection treatment (C1, C19

and uninfected), host sex and their interaction as fixed effects.

For Experiment 2, we analysed dispersal rate by fitting a linear

mixed model using an accumulated number of patches as the

response variable, time as a covariate, host sex, infection
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Figure 2. Individual dispersal in interconnected microcosms. (a) The accumulated number of patches moved over time for male (blue triangles and dashed line) and
female (green circles and solid line) Daphnia, infected with pathogen C1, C19 and uninfected. Coloured dots represent individual replicates and solid lines a fitted
linear model. (b) Total distance (number of patches). (c) Pathogen spore load (millions) at death. Post hoc tests for difference between males and females in slope
(a) or traits (b, c) are indicated at the top of each panel (ns. p . 0.05, *p , 0.05, **p , 0.01, ***p , 0.001).
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treatment and their interaction as fixed effects. We used a two-

factor analysis of variance to analyse total distance covered and

spore loads (both response values square root transformed

before analysis), with pathogen treatment (both pathogen geno-

types, including uninfected when analysing total distance), host

sex and their interactions as fixed effects.
3. Results
(a) The probability of dispersal from a crowded habitat
The probability of dispersal from a crowded patch to a neigh-

bouring patch depended on an interaction between host sex

and infection status (d.f. ¼ 1, x2 ¼ 16.22, p , 0.001; electronic

supplementary material, table S1). In general, males

appeared less likely to disperse from crowded conditions

than females (figure 1), but the impact of infection reversed

dispersal behaviour within each sex. Infected females were

three times less likely to disperse than uninfected females

(d.f. ¼ 1, x2 ¼ 28.80, p , 0.001). By contrast, infection in

males substantially increased their probability of dispersal

from a crowded patch (d.f. ¼ 1, x2 ¼ 6.91, p ¼ 0.009).

(b) The rate and magnitude of individual dispersal
Both the rate of dispersal (patches travelled per time,

figure 2a) and total patches travelled by an individual

(figure 2b) were affected by an interaction between host sex

and infection treatment (dispersal rate: x2 ¼ 666.5, p ,

0.001; total distance: F2,93 ¼ 13.49, p , 0.001; electronic sup-

plementary material). For uninfected animals, dispersal rate
was only marginally higher in males compared to females

(slopes: male ¼ 0.73 versus female ¼ 0.56, p , 0.001), and

with no difference in the total number of patches travelled

( p ¼ 0.612). When infected with each pathogen, however,

females moved substantially more slowly than males

(figure 2a) and travelled less far (fewer patches; figure 2b).

Finally, the number of spores that a pathogen would release

at host death in the final patch was four times higher in

females, albeit influenced by pathogen genotype (F1,35 ¼

14.962, p ¼ 0.001; see electronic supplementary material for

details on size-corrected spore loads).
4. Discussion
Sexual dimorphism manifests across a range of taxonomic

groups, with sex differences in body size and dispersal

being among the most commonly observed [9,10]. The ubi-

quity of sexual dimorphism may present pathogens with an

opportunity to specialize the tasks of optimizing fitness and

dispersal to different host sexes. Such specialization poten-

tially allows pathogens to mitigate the trade-off between

within-host replication and dispersal, such that one sex can

be exploited for dispersal, and the other for maximizing

transmission. Despite the ubiquity of host sexual dimorph-

ism, the possibility that pathogens might tailor exploitation

strategies has gone largely unexplored in the literature

(but see [9,19,24]). Here, we explored this possibility using

D. magna and its bacterial pathogen P. ramosa.

In line with our hypothesis, pathogens produced up to

four times more spores in female hosts (figure 2c), but in
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doing so caused a substantial reduction in host dispersal.

Infected females were less likely to leave crowded con-

ditions and suffered a severe reduction in both dispersal

rate (figure 2a) and total distance (figure 2b). For a pathogen,

this should maximize the chance for secondary infections, as

the release of a large number of transmission spores from a

dying female is likely to coincide with a high-density popu-

lation of (non-dispersing) animals. By contrast, while males

allow for the production of fewer spores, infection increased

the likelihood of dispersal (figure 1), and infected males

showed dispersal rates and total distances comparable to

uninfected males.

The differences we observe in dispersal behaviour

between infected males and females appear to be a direct

result of how the host sexes interact with the pathogen, and

not an inherent property of each sex. Uninfected males and

females, for example, had very similar rates and magnitudes

of individual dispersal (figure 2a,b) and females were more

likely to disperse from crowded habitats (figure 1). However,

both patterns disappear once each sex is infected. The

reduced dispersal of uninfected males from high-density con-

ditions may be caused by the presence of females in these

populations, since males might invest more energy in

mating relative to dispersal (high-density conditions are one

of the triggers for sexual reproduction in Daphnia [24,28]).

In this situation, the increase in dispersal probability in

infected males could be a direct pathogen-induced manipu-

lation (as observed in other species [4,29]), or an indirect

outcome of the partial sterilization [30].

Other studies have investigated how host sex may impact

on the spatial spread of disease. The spread of vampire bat

rabies between genetically isolated host populations, for

example, is facilitated by dispersing male bats alone [14].

Mixed dispersal strategies for each sex also arise when micro-

sporidia infect Aedes mosquitoes and invest a larger

proportion of dispersing life-stages in females relative to

males ([15], see also [16]). However, by tracking pathogen
proliferation and dispersal simultaneously, we here connect

these two observations and show how a pathogen can lever-

age the sex of its host to maximize the transmission benefits

of within-host replication, but also achieve dispersal within

and between host patches.

In summary, motivated by isolated examples linking sex

differences to the mode of pathogen transmission and the

spread of disease [14–16], our test-case formally explored

how sex differences would alleviate the impact of pathogens

on the movement of sick hosts. Whatever the proximate

mechanisms, our results are consistent with the prediction

that Pasteuria favours the production of spores in females,

and host-assisted dispersal in males. This suggests that the

sexes offer a mixed dispersal strategy, and a form of bet hed-

ging for the pathogen [15,16]. However, the degree to which

our prediction holds in other systems will be sensitive to the

direction of sexual dimorphism and the relative density of

the two host sexes. As of yet, any theory on pathogen

evolution in sexually dimorphic hosts is currently limited to

the evolution of virulence and proliferation alone [18,19]

and does not account for dispersal in a spatial setting.

Our work shows that pathogens can exploit this variation

in their environment and suggests that pathogen strategies

tailored to sexual dimorphism might be widespread and

have important implications for disease dynamics.
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