
1Scientific Reports |          (2019) 9:9317  | https://doi.org/10.1038/s41598-019-45586-1

www.nature.com/scientificreports

Cardiovascular Magnetic 
Resonance-Based Three-
Dimensional Structural Modeling 
and Heterogeneous Tissue Channel 
Detection in Ventricular Arrhythmia
Jihye Jang1,2, Hye-Jin Hwang1, Cory M. Tschabrunn1,3, John Whitaker1,4, Bjoern Menze2, 
Elad Anter1 & Reza Nezafat1

Geometrical structure of the myocardium plays an important role in understanding the generation of 
arrhythmias. In particular, a heterogeneous tissue (HT) channel defined in cardiovascular magnetic 
resonance (CMR) has been suggested to correlate with conduction channels defined in electroanatomic 
mapping in ventricular tachycardia (VT). Despite the potential of CMR for characterization of the 
arrhythmogenic substrate, there is currently no standard approach to identify potential conduction 
channels. Therefore, we sought to develop a workflow to identify HT channel based on the structural 
3D modeling of the viable myocardium within areas of dense scar. We focus on macro-level HT channel 
detection in this work. The proposed technique was tested in high-resolution ex-vivo CMR images in 20 
post-infarct swine models who underwent an electrophysiology study for VT inducibility. HT channel 
was detected in 15 animals with inducible VT, whereas it was only detected in 1 out of 5 animal with 
non-inducible VT (P < 0.01, Fisher’s exact test). The HT channel detected in the non-inducible animal 
was shorter than those detected in animals with inducible VTs (inducible-VT animals: 35 ± 14 mm vs. 
non-inducible VT animal: 9.94 mm). Electrophysiology study and histopathological analyses validated 
the detected HT channels. The proposed technique may provide new insights for understanding the 
macro-level VT mechanism.

The geometric structure of the myocardium plays an important role in the generation of cardiac arrhythmias. 
Narrow anatomical structures cause slow conduction and generate arrhythmias in the cavotricuspid1 or mitral 
isthmuses2. In infarcted hearts, surviving tissues within the scar create heterogeneous tissue structures that cause 
slow conduction3 and contribute to arrhythmogenesis.

The importance of myocardial structure in arrhythmias has led cardiovascular magnetic resonance (CMR) to 
a promising technique for identifying the arrhythmogenic substrate. Late gadolinium enhancement (LGE) CMR 
allows accurate imaging of the extent and location of the myocardial infarction4,5 and can identify the substrate in 
scar-related ventricular tachycardia (VT). Studies have shown that the scar border/heterogeneous zone defined 
by LGE are associated with VT inducibility6 and spontaneous ventricular arrhythmias7–9.

Studies have identified conduction channels by CMR and correlated them with those defined by electroana-
tomic mapping10–16. In the in-vivo setting, multiple 2D slices of LGE images or endo-to-epi myocardial shells of 
LGE have been reviewed to identify conduction channels13,15,16. In the ex-vivo setting, where higher-resolution 
imaging is possible, 3D reconstruction of the myocardial scar has been performed to identify conduction chan-
nels10,11. However, these data are mainly based on qualitative identification of the channels without a streamlined 
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workflow. That is, readers may identify conduction channels differently given identical LGE scar/myocardial 
images. Furthermore, histological validation in these data is limited.

Despite the potential of CMR to characterize the arrhythmogenic substrate, there is currently no standard 
approach to identify potential conduction channels. Therefore, this study seeks to develop a workflow to identify 
heterogeneous tissue (HT) channels, defined as narrow pathways consisting of healthy tissue, surrounded by scar or 
an electrically non-excitable medium (e.g. fat, blood) and connected to healthy myocardium located within areas of 
dense scarring. The proposed technique was tested in high-resolution ex-vivo CMR images in 20 swine models with 
VT following myocardial infarction, and validated by electrophysiology and histopathological analyses.

Methods
We propose a technique for 3D HT channel detection based on 3D structural modeling of the viable myocardium 
using high-resolution ex-vivo CMR (Fig. 1a). We propose a workflow which uses segmentation of the scar and 
myocardium from CMR images as input and performs automated detection of HT channels (Fig. 1b). In particu-
lar, we focus on detecting macro-level HT channels. The overall processing pipeline consists of 3 steps: (1) 3D 
structural modeling of viable myocardium, (2) 3D skeletonization of viable myocardium, and (3) automated HT 
channel detection. The first step is to extract viable myocardium within areas of dense scar where a cardiac electri-
cal signal propagates. The second step is to simplify the geometry of the viable myocardium and enable automated 
characterization of the structures of the viable myocardium model. The last step is to identify HT channels based 
on the 3D structural properties of the viable myocardium. Each step is detailed in the following sections.

3D structural modeling of the viable myocardium.  Viable myocardium in and around the scar bor-
der plays an important role in VT substrate detection. To explore structural characteristics of viable myocardium 
within dense scar regions, we performed 3D structural modeling using high-resolution ex-vivo CMR images. An 
experienced reader performed scar and myocardial segmentation from CMR images (Fig. 2a). A second reader 
independently performed scar/myocardial segmentation in a subset of 6 animals to assess inter-observer vari-
ability. Given our interest to extract surviving myocardium near the scar, the first step was to perform a spatial 
growth operation to localize the myocardial volume neighboring the scar (Fig. 2b). We extracted any myocardium 
30 mm isotropically within the scar region as a good trade-off between skeletonization and discrimination of nor-
mal myocardium (Supplementary Fig. 1). The segmented scar was then removed from the myocardial volume to 
extract only viable myocardium around the scar (Fig. 2c). Before subtraction, the scar volume was expanded 1 mm 
isotropically to remove partial volume errors. The aforementioned processing was performed using the 3D Slicer17.

3D skeletonization of the viable myocardium.  3D skeletonization was performed to simplify the geome-
try of the complex viable myocardial structures and enable automated characterization of the 3D structural model. 

Figure 1.  (a) A 3D volume rendered view of the 3D ex-vivo cardiovascular magnetic resonance (CMR) 
images (yellow, scar; red, viable myocardium) and 3D structural model of viable myocardium in and around the 
scar generated with triangular surface meshes (yellow, scar; red, viable myocardium). (b) Proposed workflow for 
detection of a macro-level heterogeneous tissue (HT) channel uses scar and myocardium segmentation from CMR 
images as input and performs the following steps. Step 1: A 3D structural model of viable myocardium is generated 
from 3D CMR images to visualize the propagation pathway of a cardiac electrical signal. Step 2: 3D skeletonization 
of viable myocardium is performed to extract the simplified geometry of the viable tissue and enable automated 
structural model characterization. Step 3: HT channels are detected based on the 3D skeleton segmental analysis 
that identify HT channels with a high 3D structural complexity. RV indicates right ventricle; and LV, left ventricle.
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Before performing 3D skeletonization, the 3D structural model was first reduced to a smaller number of faces and 
vertices to reduce processing time and memory allocations (Fig. 3a), followed by removal of duplicate faces. As we 
are interested in the connected pathway of cardiac conduction through viable myocardium, any non-connected 
isolated myocardium less than 100 triangles, typically considered noise, was removed (Supplementary Fig. 2). A 
curved 3D skeleton was then extracted from the 3D viable myocardium model using Point Cloud Skeletons via 
Laplacian-Based Contraction18,19. 3D models were first normalized such that all models were located at the center of 
unit-sized cubes. Point cloud contraction was first performed to smooth and contract the 3D model into an approx-
imate zero-volume mesh that abstracts the given shape and topology. The Laplacian-based maximal voluntary con-
traction (MVC) was first performed via local Delaunay triangulation (Fig. 3b), which was further contracted using 
the Conformal Laplacian operation (Fig. 3c). A final 3D skeletal graph consisting of points (nodes) and connecting 
lines (edges) was created by topological thinning (Fig. 3d). During the skeletonization process, each segment of 

Figure 2.  The proposed pipeline for building the 3D structural viable myocardium model. Upper panels show 
ex-vivo cardiovascular magnetic resonance images with overlaid myocardial segmentation (red), and the 3D 
structural model view of the corresponding segmentation (red) is represented in the lower panels. The whole 
ventricular 3D volume is shown in transparent gray. (a) Scar and myocardium segmentation are used as an 
input to the system. (b) Myocardium in and around the scar was extracted by expanding the 3D volume of 
the segmented scar to include neighboring myocardium. (c) The scar was removed from the myocardium to 
exclude scarred tissues and to focus only on the viable myocardium where electrical signals propagate. Scar 
volume was expanded 1 mm before subtracting to remove partial volume errors.

Figure 3.  The proposed pipeline for 3D skeletonization to simplify viable myocardial geometry and enable 
automated quantification of the 3D viable myocardium model. (a) Laplacian-based maximal voluntary 
contraction (MVC) (b) and conformal contraction (c) were performed to abstract and smooth the shape of 
the complex structures of the 3D model. 3D skeletonization was performed by topological thinning, resulting 
in a 3D skeleton with its simplified geometry represented by lines. (d) During the skeletonization process, 
each segment of the structural model is contracted as a point on the 3D skeletal graph, so that the structural 
properties of the model can be automatically characterized using the skeletal graph (e).
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the structural model was contracted into nodes of the 3D skeletal graph, and the connection of each segment was 
represented as connecting edges of the 3D skeletal graph (Fig. 3e).

Heterogeneous myocardial channel detection.  A skeletal graph enables automated characterization of 
structural properties of each segment and their connectivity. An anatomic or structural HT channel was defined 
as a narrow pathway consisting of healthy tissue surrounded by scar or an electrically non-excitable medium and 
connected to healthy myocardium. HT channel detection consisted of two key steps. First, any narrow tissue 
channel strip, defined as connected thin tissue segments, were detected. For each node of the skeletal graph, its 
orthogonal axis was computed based on the direction of its two adjacent nodes, and its cross-sectional plane 
was calculated. Skeletal node segments with a cross-sectional area less than 90 mm2 were automatically detected 
to discriminate narrow channels from normal myocardium, as determined by the typical thin right ventricle 
(RV) wall thickness ([90 mm2] ≈ [3 mm minimal RV wall thickness in normal20,21] × [30 mm neighboring volume 
expansion (Supplementary Fig. 1)]) (Fig. 4a). The minimal number of connected segments was set to 3 to mini-
mize detection of normal myocardium segments (left ventricle (LV), RV, and septum) (Supplementary Fig. 3a). 
Second, viable myocardial channels with high 3D structural complexity were detected. As heterogeneous myo-
cardium is often a mixture of preserved and scarred tissue, it forms a complex 3D structure compared to smooth 
normal tissue. Structurally complex objects require a higher number of faces to model the finer details. Therefore, 
we defined the HT index as the number of triangular faces per unit length (mm) (Fig. 4b). The HT index was set 
to 26 to discriminate smooth vs. heterogeneous myocardial tissue channels (Supplementary Fig. 3b). The pro-
posed algorithm was implemented in MATLAB (MathWorks, Natick, MA).

Animal study.  An animal study was performed to test the proposed techniques in swine with scar-related 
VTs using high-resolution ex-vivo CMR images in 20 animals. The study was carried out in strict accordance 
with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes 
of Health. The protocol was approved by the Institutional Animal Care and Use Committee (Protocol Number: 
100-2014). All experiments were performed under general anesthesia with isoflurane inhalation (1.5–2.5%) and 
mechanical ventilation (12–16 breaths/min with tidal volumes between 300–400 ml), and animals were eutha-
nized with pentobarbital sodium.

Animal model.  Twenty pigs (30–35 kg) underwent 180-minute balloon occlusions of the mid-left anterior 
descending (LAD) artery as previously described22,23. An angioplasty balloon was inflated in the mid-LAD 
under fluoroscopic guidance. After 180 minutes, the balloon was deflated and withdrawn, in order to create an 
ischemia-reperfusion mediated myocardial infarction.

Figure 4.  The proposed algorithm for automated heterogeneous tissue (HT) channel detection. The algorithm 
consists of two steps: (1) skeleton segmental analysis of the cross-sectional area to detect narrow and connected 
segments to identify viable myocardial channels, and (2) HT channel detection based on the 3D structural 
complexity to detect HT channels which are known to cause slow conduction. (a) For each skeletal point, 
its orthogonal axis is computed based on its two adjacent nodes, and the cross-sectional plane is calculated. 
Any connected segments with a cross-sectional area less than 90 mm2 are automatically detected to identify 
narrow strips of tissue. (b) Detected myocardial channels are further evaluated for tissue heterogeneity based 
on the 3D structural complexity defined as the unit number of triangular faces. Any myocardial channel with a 
heterogeneity index (unit number of triangular faces) greater than 26 was identified as an HT channel.
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CMR study.  CMR imaging was performed using a 1.5 T scanner (Philips Achieva, Best, The Netherlands) with 
a 32-element cardiac phased-array receiver coil. Upon completion of the electrophysiology study, the animal was 
euthanized and the heart was explanted. An intravenous injection of 0.15–0.2 mmol/L gadobenate dimeglumine 
was performed 15 minutes before euthanasia. Atria was excised and ventricles were filled with kinetic sand to 
maintain basic geometry. Scar imaging was performed using a high-resolution 3D gradient echo sequence. Typical 
imaging parameters were as follows: spatial resolution = 0.4 × 0.4 × 0.5 mm3; FOV = 130 × 130 × 100 mm3; TR/
TE = 16/7.4 ms; flip angle = 25°; low-high phase-encoding order; signal averaging = 4.

Electrophysiology study.  All animals underwent electrophysiology study after an 8-week survival period. 
Percutaneous femoral arterial and venous access were obtained. Under fluoroscopic guidance, a 6Fr pentap-
olar diagnostic catheter (Bard EP, Lowell, MA) was placed in the right ventricular (RV) apex to allow pacing. 
The proximal electrode was positioned in the inferior vena cava and served as an indifferent unipolar electrode. 
Electrical stimulation was performed from the RV apex using a current strength twice the capture threshold 
and pulse width of 2 ms. Programmed ventricular stimulation at paced cycle lengths of 600 and 400 ms with 1–4 
extra-stimuli down to ventricular effective refractory period were performed to induce VT. If electrical stimula-
tion from the RV apex failed to induce VT, stimulation was repeated from the LV endocardium and epicardium 
near the infarct region until the animal was inducible. Animals were only considered non-inducible if a VT could 
not be induced despite stimulation from all sites. Sustained monomorphic VT was defined on 12-lead electro-
cardiogram (ECG) as a tachycardia lasting >30 seconds with a consistent morphology. A macroscopic site of 
VT origin was identified using a surface 12-lead ECG24,25 to compare with the region of detected HT channels. 
Furthermore, activation mapping during VT was attempted to identify the detailed site of VT origin.

Histopathological analysis.  After the ex-vivo CMR study, the hearts were placed in a 10% buffered formalin 
solution for >1-week for tissue fixation, then serially sectioned parallel to the atrioventricular groove into 5-mm 
thick slices starting from the apex. Tissue samples were paraffin-embedded using large tissue histology cassettes. 
The tissue was sectioned with a 5-µm thickness, and slides were stained with Masson’s trichrome for collagen 
detection and digitized. The corresponding CMR slides were identified and compared to histological regions of 
infarction for characterization of myocardial fibrosis and surviving tissue in the region of detected HT channels.

Statistical analysis.  To test the null hypothesis that there are no non-random associations between VT 
inducibility and the existence of the detected HT channel, Fisher’s exact test was performed. A result was consid-
ered statistically significant at P < 0.05.

Results
Animal model.  All animals had extensive anterior-septal LGE at 8 weeks post myocardial infarction. VT was 
inducible in 15 animals. The remaining 5 post-infarct animals were non-inducible.

3D structural modeling and HT channel detection.  Three dimensional structural modeling enabled 
visualization of surviving myocardium in and around the scar region in a true 3D manner. Examples of 3D struc-
tural models are shown in animals with inducible VTs (Fig. 5a) and non-inducible VTs (Fig. 5b). Three dimen-
sional structures for all animal models are shown in Supplementary Figs 4–7a.

The skeletal graph simplified the complex 3D structure and enabled quantification of structural properties of 
the 3D model, thereby facilitating automated identification of the HT channels. Figure 5c,d and Supplementary 
Figures 4–7b show 3D skeletonization results represented by red lines in all animals.

HT channels were detected in all inducible VT animals and highlighted in red (Fig. 5e and Supplementary 
Figs 4–6c). HT channels were mostly undetected in the animal with the non-inducible VT (Fig. 5f and 
Supplementary Figures 7c). The examples of the 3D rendered view of the results are shown in Supplementary 
Videos 1 and 2.

Inter-observer agreement between two independent readers was strong with a Dice index for scar segmenta-
tion of 0.79 ± 0.07. HT channel detection results from both readers are shown in Supplementary Fig. 8.

HT channel and VT inducibility.  In 15 animals with inducible VTs, 22 viable myocardial channels were 
detected (an average of 1.5 per animal). Among the 22 viable myocardial channels, 16 myocardial channels were 
detected as heterogeneous myocardial channels (average of 1.1 per animal). In 5 animals with non-inducible 
VTs, 3 viable myocardial channels were detected (average 0.6 per animal), which resulted in only 1 HT chan-
nel (average 0.2 per animal). HT channels were characterized by heterogeneous myocardium features mingled 
with scar, typically located along the anterior side of the interventricular groove, at the subepicardium and/or 
mid-myocardium underneath epicardial fat surrounding the LAD.

Animals with inducible VTs were more likely to have HT channels than animals with non-inducible VTs 
(P < 0.01, Fisher’s exact test; Fig. 6a). The HT channel in one non-inducible VT animal was shorter in length com-
pared to those in animals with inducible VTs (inducible-VT animals: 35 ± 14 mm vs. non-inducible VT animal: 
9.94 mm; Fig. 6b).

Site of origin of VT.  Among 20 animals with prior myocardial infarction, VTs were induced in 15 ani-
mals (75%) by a programmed stimulation or spontaneous premature ventricular contractions. One animal was 
excluded from the analysis due to the lack of ECG data. A total of 31 monomorphic VTs were induced in 14 swine 
and the average number of induced VTs was 2.2 per animal. Since previous studies showed that left bundle branch 
block (LBBB) pattern VT arose from the RV or the interventricular septum (IVS) and right bundle branch block 
(RBBB) pattern VT arose from the LV24, we further analyzed whether the site of VT origin could be related to the 
location of detected HT channels. The mean cycle length of VTs was 244 ± 38 ms and the duration of QRS was 
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126 ± 23 ms. 90% (28/31 VTs) had LBBB pattern, while only 10% (3/31 VTs) had RBBB pattern. All animals with 
LBBB VTs had structural breakthrough sites at the RV or IVS, at the RV apex and the anteroseptum of the mid-LV, 
corresponding to the distal end and the proximal end of the HT channels, respectively.

More detailed localization of the VT origin was identified in electro-anatomic mapping (EAM) by activation 
mapping during the VT in 3 animals, which was compared to the location of the detected HT channels. VT exit 
sites were identified as the earliest activation points. Bipolar voltage maps of both left and right ventricles during 
the sinus rhythm were compared to localize exit sites on the VT activation maps. For all animals, VT exits were 
located near the anterior side of the interventricular groove, where HT channels were predominantly detected 
(Fig. 7), suggesting potential involvement of detected HT channels in the VT.

Comparison to histology.  Histopathological analysis revealed a complex viable myocardium structure in 
the anterior wall post-infarction due to the involvement of the RV and IVS. The overall architecture and distribu-
tion of scar were consistent with the CMR data (Fig. 8). Analysis of the scar distribution showed heterogeneous 
distribution of collagen within the infarct and particularly along the anterior side of the interventricular groove, 
consistent with the typical location of detected HT channels (Fig. 8).

Figure 5.  Example of 3D structural viable myocardium models, 3D skeletons, and detected heterogeneous 
tissue (HT) channel in an animal with an inducible ventricular tachycardia (VT) and an animal with a non-
inducible VT. The 3D viable myocardium model was able to represent surviving and viable myocardium in 
and around the scar in a true 3D manner for each case. (a,b) 3D skeletonization enabled simplification of the 
geometry of the viable myocardium. (c,d) An HT channel was detected in the animal with the inducible VT (e), 
whereas it was not detected in the animal with the non-inducible VT (f).

Figure 6.  Results of heterogeneous tissue (HT) channel detection. (a) HT channel was detected in all animals 
with inducible ventricular tachycardias (VT), whereas it was only detected in one animal with a non-inducible 
VT. Animals with inducible VTs were more likely to have HT channels detected than animals with non-
inducible VTs (P < 0.01, Fisher’s exact test). (b) Of all animals with detected HT channels, only one non-
inducible VT animal had a shorter channel length (inducible-VT animals: 35 ± 14 mm vs. non-inducible VT 
animal: 9.94 mm).
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Discussion
CMR shows promise to characterize the arrhythmogenic substrate. Our study proposes a streamlined workflow 
to identify HT channels located within areas of dense scarring from high-resolution ex-vivo T1-weighted CMR 
images. 3D structural modeling was performed to extract viable myocardium in and around the scar. The 3D 
skeleton was created to automate characterization of structural properties of the viable myocardium model. Based 
on the skeleton, the cross-sectional area and tissue heterogeneity were characterized to detect HT channels, which 
are of interest for causing slow conduction. The proposed technique was successfully tested in 20 animals with 
prior myocardial infarction, 15 with scar-related VT and 5 without VT. Our results suggest that animals with 
inducible VT are more likely to have HT channels than animals with non-inducible VTs. We used 12-lead ECG 
and EAM to identify the site of origin during VT, which showed preference to the LBBB pattern, consistent with 
the structural breakthrough site observed at the hinge point of HT channels located at the interventricular groove 
anchored to two different regions of intact healthy myocardium. Histopathological analyses confirmed heteroge-
neous distribution of the viable tissue along the anterior side of the interventricular groove where HT channels 
were predominantly detected.

We focused on the modeling of the viable tissue, where electrical signals travel, rather than the scar. 3D mod-
eling of the viable myocardium enables us to understand cardiac impulse propagation in a true 3D manner. 3D 
skeletonization enables visualization of potential reentrant circuits based on the anatomical structure, reducing 
physician burden to imagine potential anatomical electrical pathways. Visualizing anatomical circuits may fur-
ther improve our understanding of structural and anatomical substrates for arrhythmias.

The proposed technique allows automated quantification of 3D structural properties based on segmented skel-
etal analysis. The 3D skeletal graph consists of nodes and edges, which abstract a shape of the structural model. 

Figure 7.  3D viable tissue model and detected HT channels compared to the electroanatomic mapping data in 
3 animals with inducible VT. Bipolar voltage maps during sinus rhythm in both right and left ventricles show 
similar scar distribution compared to the CMR 3D model. VT exits identified in the activation maps during VT 
are located near the anterior side of interventricular groove, consistent with where HT channels were detected.
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3D graphical representation of the structure allows automated quantification of the structural properties of each 
segment and their connectivity. Therefore the structural characteristics of the model, such as length, area, and 
thickness can be automatically quantified based on the simplified graph. It may be useful to quantify the length 
of the anatomical pathway, as reentry is only initiated when the length of the anatomical circuit is greater than 
the wavelength26. Automated quantification of the anatomical isthmus may offer an automated diagnosis of VT 
vulnerability.

The proposed technique allows automated pinpointing of HT channels and can be applied to any region of 
the heart to localize any heterogeneous structure or anatomical isthmus that may be susceptible to slow conduc-
tion. This technique can be further extended to detect any desired structure with certain structural properties. If 
merged with electroanatomic data or computer simulation, our understanding of the VT mechanism would be 
improved and could support personalized planning for VT ablation. Outcome of effective ablation of such struc-
tures identified on the proposed technique should be studied further.

Our study has several limitations. The proposed technique in this study is purely an anatomical approach 
and not applicable to functional mechanisms of arrhythmias. We did not study whether ablation of anatomic 
regions identified with the proposed technique would improve VT ablation outcome. The correlation between 
HT channels, the site of VT origin, and histology was made as carefully as possible; however, it is based on gross 
estimation. The technique was not tested in-vivo, although it is expected to be applicable with the advancement 
of high-resolution in-vivo CMR imaging technique. This study focused on macro tissue structures. Future studies 
will have to account for micro tissue structures by generating the 3D model in higher resolution and performing 
image segmentation and structural modeling in finer detail.

Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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