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The rate of adoption of new information depends on reinforcement from

multiple sources in a way that often cannot be described by simple contagion

processes. In such cases, contagion is said to be complex. Complex contagion

happens in the diffusion of human behaviours, innovations and knowledge.

Based on that evidence, we propose a model that considers multiple,

potentially asymmetric and competing contagion processes and analyse its

respective population-wide dynamics, bringing together ideas from complex

contagion, opinion dynamics, evolutionary game theory and language compe-

tition by shifting the focus from individuals to the properties of the diffusing

processes. We show that our model spans a dynamical space in which the

population exhibits patterns of consensus, dominance, and, importantly,

different types of polarization, a more diverse dynamical environment that

contrasts with single simple contagion processes. We show how these patterns

emerge and how different population structures modify them through a natu-

ral development of spatial correlations: structured interactions increase the

range of the dominance regime by reducing that of dynamic polarization,

tight modular structures can generate structural polarization, depending

on the interplay between fundamental properties of the processes and the

modularity of the interaction network.
1. Introduction
The study of how information—opinions, diseases, innovations, norms, attitudes,

habits or behaviours—spreads throughout social systems has occupied the

physical and social sciences for decades [1–8]. In that context, the propagation

of information has traditionally been assumed to happen through simple

contagion—a contact process in which information spreads through pairwise

interactions [9–19]. However, recent empirical evidence suggests that different

types of information spread differently [20–27]. In particular, the acquisition of

information that is either risky, controversial or costly seems to require reinforce-

ment from multiple contact sources [7,8]. Contrary to simple contagion, these

processes result in propagation impediments to, and through, isolated regions

of social networks [28] and were coined as complex contagion. Its implementation

typically occurs in the context of cascading phenomena [29], where each individ-

ual is activated with some property if a set fraction of neighbours already has that

property. Several tools and different perspectives have addressed complex conta-

gion in a context of competition between opposing information elements, but little

has been done in merging it to the literature of population dynamics [30–35].

A related literature regards that of opinion formation, for which the voter

model (VM) is a prototypical example. The unpublished work by Durrett &

Levin, referenced in [36], showcases the competition of complex contagion pro-

cesses by introducing the threshold VM, where two processes with fixed

thresholds like the one described above propagate simultaneously. However,

empirical work suggests that individuals’ response—given all underlying pro-

cesses of decision making—does not result in fixed thresholds but provides

support for a range of smooth responses to the neighbourhood configuration

[20,21,23–25]. A body of the literature that comes close to a smooth response of
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Figure 1. (a) Graphical depiction of the complex contagion process under study. Individuals revise their state taking into consideration those of their friends, which,
jointly with the complexity of the diffusing information, define the likelihood of an update (see equation (2.1)). (b) A popular approach in the literature is to
consider threshold models, in which the probability of updating to a new state is one if the number of friends in such a state is above a specified threshold,
being zero otherwise. Here we show that our model corresponds to considering a mean-field description of a population with a distribution of thresholds and
holds similar dynamical properties. For instance, lower complexities are dynamically equivalent to scenarios with lower thresholds, while high complexities
return a similar outcome as expected from high threshold processes. (Online version in colour.)
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individuals to their surroundings is that which is concerned

with mean-field approximations of the q-VM [37,38]. There,

individuals change their state if a neighbourhood of size q
has, unanimously, the opposing state. Even though this is a ver-

sion of the threshold VM with a unanimous threshold, the

mean-field approximations provide a description that is not dis-

crete, even if the underlying model is. Other works [39,40] break

the symmetry between the propagating processes by consider-

ing either competition between or coexistence of simple and

complex contagion processes. An important generalization of

these processes was developed independently by Molofsky

et al. [41], in a model considering competition between two

species happening in space (lattice): depending on the

number of individuals of each species, say n of species 1,

there is a probability vector pn that a target site becomes a

1. These effective probabilities are necessarily a combination

of the processes happening between the two specific species.

The model we propose is also general and adequate to be

extracted from data for particular processes but explicitly

characterizes each process instead of their combination [42].

Here, we provide a characterization of the spread of competing

information under generalized complex contagion processes.

We want to understand the effect for the outcome on collec-

tive behaviour of the interaction between the propagation of

opposing information (in its broad sense) with intrinsically differ-

ent contagion properties. What is the impact of such interaction in

terms of social influence and its dependence on the social struc-

ture? On a population with competing processes, we first need

to characterize realistic underlying processes and describe their

dynamics, simplistically interpolating different behaviours. For

adherence to reality, the underlying process must be adaptable

and, preferably, built in a way that is measurable as a property

of the type of process involved. Below, we provide a characteriz-

ation of the spread of competing information under complex

contagion, describing each piece of information as a nonlinear

non-deterministic complex contagion. We show the emergence

of different patterns for different types of networks and delineate

their macroscopic properties. By doing so, we make explicit the
relationship between two seemingly different dynamics: opinion

formation and complex contagion.
2. Model
Our processes progress in a finite population of Z individuals

who hold alternatively one of two opinions, say A or B. For con-

venience, we discuss our results in light of a population holding

different opinions. It is, however, important to stress that our

model is more general and can describe any non-overlapping

information that can diffuse through a population. At each

moment, there are k individuals with opinion A and Z 2 k
with opinion B. The number of contacts an individual i has

defines its degree, zi. Individuals revise their opinion by

taking into consideration the opinion composition in their

neighbourhood. We assume that such events are taken uni-

laterally by the individuals and that the likelihood that

individuals successfully update their opinion is reinforced by

multiple contact sources, the definition of complex contagion

[7]. Formally, an individual i with opinion X and nY
i contacts

with opinion Y = X changes to opinion Y with some

probability function. Let us consider the following function:

pX!Y
i ¼ nY

i

zi

� �aXY

, (2:1)

where X and Y = X can take the values A or B (figure 1). The

probabilities pX!X
i are given by the reciprocals of pX!Y

i .

Equation (2.1) allows us to interpolate between scenarios

where opinions require few and many reinforcement sources

to propagate (notice that with aXY¼ 1 the probability of

changing strategy is that of a voter model). We say that aXY

accounts for the complexity of opinion Y when learned by an

individual that holds opinion X. Simpler opinions require less

reinforcement from peers than complex ones. When aXY =

aYX, we say the population evolves under asymmetric complex-

ities, while symmetric scenarios happen whenever aXY ¼ aYX.
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In the latter case, the dynamics are not affected by an

interchange of opinions.

This notion of complexity of acquisition can be better

understood in the light of the parallel with the thresholds

models we discuss in the introduction [43,44]. Our approach

directly maps to a scenario in which individuals are not

restricted to having a fixed threshold. As mentioned, a frac-

tional threshold implies that there is a well-defined threshold

of neighbours above which an individual adopts new infor-

mation and below which does not. Dynamically, such a

definition results in a deterministic process that either perco-

lates or becomes contained to a few elements of the system

[45–48]. Intuitively, higher thresholds correspond to higher

complexities, information that is more difficult to acquire,

whereas lower thresholds correspond to lower complexities.

One can consider that this threshold is not fixed for all

individuals but, instead, as a non-homogeneous distribution.

Figure 1b shows different examples of probability distributions

from which individuals can sample their threshold. Let us say

individuals change their opinion if the fraction of neighbours

with that opinion is greater than a threshold, 0 �M � 1. That

threshold is not fixed but has a probability distribution d(M)

given, e.g. by d(M)/MaAB�1, which can also be seen as a

mean-field description of heterogeneous thresholds through-

out the population [49,50]. In this convenient case, aAB ¼ 1

provides no bias towards high or low thresholds, aAB , 1 has

a bias towards low threshold (representing a simpler adoption

process), and aAB . 1 has a bias towards high threshold (repre-

senting a more complex adoption process). Then, the

probability that an individual changes from opinion A to B is

the probability that it samples a threshold smaller than the frac-

tion of individuals of opinion B in its neighbourhood, xB
i , i.e.

pA!B
i ¼

Ð xB
i

0 d(M)dM ¼ (xB
i )aAB , corresponding to equation(2.1)

with xB
i ; nB

i =zi. Different distributions will result in different

shapes of pA!B
i . We provide an analysis of a general pX!Y

i in

the electronic supplementary material.

Our model contains the key elements to study complex

contagion of competing non-overlapping processes, though,

as stated above, alternative forms could be used [41]. In par-

ticular, we will show that even being non-deterministic,

it allows for ideas to be contained (for arbitrarily long

times) in a subset of the population [51], both in dynamic

and structural ways.
3. Results and discussion
3.1. Complex contagion in well-mixed populations
We model propagation by means of a network of social inter-

actions, where nodes correspond to individuals and links to

social interactions between pairs of individuals. A limiting

case happens when we consider well-mixed populations

(zi ¼ Z 2 1), those in which individuals can interact with the

entire population without constraints. In such a case, all poss-

ible configurations of the system can be defined by k, the

number of individuals with opinion A, and assessing the tran-

sition probabilities between configurations allows the full

description of the dynamics. This scenario is essential for set-

ting a baseline in which all individuals in the network are

identical and there are no spacial correlations. It will be crucial

for characterizing and understanding the dynamics in different

structures. For this, we can use standard procedures to describe

the dynamics of such a system. Assuming the probability that
two changes of opinions occur in a small time interval, t, to be

O(tb), withb . 1, we can reduce the problem to a one-step pro-

cess [52] and simply compute the probabilities of increasing or

decreasing k by one (0 � k � Z), respectively,

Tþk ¼
Z� k

Z
pB!A and T�k ¼

k
Z

pA!B: (3:1)

The rate of change in the average abundance of individuals

with opinion A is given by the so-called gradient of selection,

g(x) [53,54], where x ; k/Z. The gradient of selection is equiv-

alent to the drift term in the Fokker–Planck equation

describing the probability distribution of the stochastic pro-

cesses [52] and thus can be used to accurately characterize

properties of finite population distributions [55]. In the limit

of very large populations, Z!1, the dynamics of the fraction

of individuals becomes deterministic and can be described by a

nonlinear differential equation of the form

_x ; g(x) ¼ x(1� x)(xaBA�1 � (1� x)aAB�1), (3:2)

which, for aXY = 1, has two trivial solutions, at x ¼ 0 and

x ¼ 1, and an additional internal fixed point that can be

inspected by solving the transcendental equation

1� x ¼ xg, (3:3)

where g ¼ (aBA 2 1)/(aAB 2 1). A detailed derivation of

equations (3.2) and (3.3) can be found in the electronic

supplementary material.

Equation (3.2) holds a similar form to the replicator

equation from evolutionary game theory [56], where xaBA�1

and (1� x)aAB�1 play the roles of the fitness of individuals

with opinion A and B, respectively. Indeed, the dynamical

patterns of opinion Dominance, Polarization and Consensus

derived from equation (3.2) are identical to the Prisoner’s

Dilemma, Stag Hunt and Snowdrift Game [57,58] so often

studied in that literature. This result provides another inter-

pretation of competitive complex contagion processes: while

here individuals change opinions unilaterally, this process is

equivalent to a fitness-driven contact process. Importantly,

equation (3.2) also makes clear that, when implementing com-

plex contagion in a competition context, one ends up in a

formulation that is equivalent to previous models of opinion

formation. Additionally, when one of the complexities is infi-

nite, making opinion adoption irreversible, we recover the

dynamics of a single cascading contagion.

Figure 2a shows how the different dynamical patterns

map into the aAB � aBA domain, while figure 2b illustrates

the different shapes of g(x) that define the dynamics in

each region. In region (ii), g(x) is characterized by an unstable

internal fixed point leading to a coordination-like dynamics

towards a consensus, which depends only on the initial abun-

dance of opinions. In region (iv), g(x) has an internal stable

fixed point that results in the polarization of opinions,

which is distinguished by the sustained prevalence of both

opinions. In both cases, the specific location of the internal

fixed point depends only on the relationship between the

complexities of both opinions. In regions (i) and (iii), g(x)

does not have any internal fixed point, and one of the two

opinions will invariably dominate the population. We rep-

resent two additional special points, S and P. In S, aAB ¼

aBA ¼ 1, every possible configuration of the system corre-

sponds to a fixed point, and finite populations evolve

under neutral drift. For P, aAB ¼ aBA ¼ 0, the dynamics on
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finite populations reduce to an Ornstein–Uhlenbeck process,

with linear drift and constant diffusion.

While equation (3.2) describes large populations, finite

populations are characterized by stochastic effects that perturb

the system whenever diffusion is non-zero. A particularly

interesting measure in finite populations is the time (tk0
) the

population takes to reach a consensus when starting from con-

figuration k0. Since, for aXY . 0, the system has two absorbing

states, at k ¼ 0 and k ¼ Z, it constitutes an absorbing Markov

chain. Thus, the time to consensus (fixation) starting from

configuration k can be formally computed as [59]

tk ¼ �t1

XZ�1

j¼k

Yj

m¼1

gm þ
XZ�1

j¼k

Xj

l¼1

1

Tþl

Yj

m¼lþ1

gm (3:4a)

and

t1 ¼
1

1þ
PZ�1

j¼1

Q j
m¼1 gm

XZ�1

j¼1

Xj

l¼1

1

Tþl

Yj

m¼lþ1

gm, (3:4b)

where gm ¼ T�m=Tþm .

Although finite populations always reach a consensus, the

time required to do so can be extremely long, in particular for

region (iv). Indeed, for that region, even for small populations

of 100 individuals, the time to consensus is of the order of

1013 generations, making it more likely to find the population

in a polarized state, as we would expect from the existence of

a stable fixed point in the corresponding deterministic limit.

Figure 2c shows the time required for reaching consensus
starting from a perfect mix of opinions (50–50) for different

combinations of aAB and aBA. Figure 2d shows, under the

same conditions, the expected evolutionary outcome after

106 generations. In the electronic supplementary material, we

show that the fixation time has a non-monotonic relationship

with complexity by varying r at a fixed angle. Indeed, assum-

ing fairly distributed initial conditions, for high adoption-

complexity ideas (corresponding to region (ii), i.e. u [ (0, p/2)),

there is a complexity value that minimizes the time to fixation:

for small r the dynamics are close to a random walk, as

described for point S; as r increases, selection of opinions

through coordination increases the speed of conversion, to one

or either side; finally, for large complexity, the adoption rates

decrease again, as it becomes harder to find neighbourhoods

containing enough reinforcement for either opinion.
3.2. Complex contagion processes in complex networks
Most application cases do not fall into the category of the pre-

vious section. In fact, social systems, but also propagation of

properties resulting from aggregated processes in abstract

networks, are marked by peer influence, which induces spatial

correlations between individuals, or nodes, in their interacting

network. We turn our attention to the case in which individuals

are only able to interact with a small subset of the population

(zi , Z). We focus on five network topologies with a fixed

average degree: lattice with periodic boundaries; homo-

geneous random [60]; Erdös–Rényi random [61]; scale free

Barabási–Albert [62]; and a modular network that comprises
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Figure 3. Opinion dynamic under complex contagion in structured populations. Panel (a) shows the fixation times, measured in Monte Carlo steps, for different
population structures (green, red, orange and blue curves) and well-mixed (dashed black lines), starting from a 50 – 50 distribution of As and Bs. We measure time
in Monte Carlo steps. Panel (b) shows the average final fraction of individuals with opinion A in the population for different population structures (green, red, orange
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aAB ¼ 1 þ rsinu, with r ¼ 1/2. Notice that g ¼ cotan u, which defines the position of the internal fixed point in equation (3.3), is independent of r. Other
parameters: Z ¼ 103 and average degree is 4. (Online version in colour.)
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two scale free Barabási–Albert networks where 4% of the

nodes have internetwork uniformly random connections.

A detailed description of how these networks were generated

is in the electronic supplementary material.

Figure 3 compares the results of opinion dynamics under

complex contagion in different population structures along

the four dynamical regions we previously identified: consen-

sus, A dominance, polarization and B dominance. Generally,

the dynamical patterns observed in structured populations

follow what we previously observed in well-mixed popu-

lations. However, there are two eye-catching differences.

Population structure significantly shortens the domain where

polarization is observed (region iv), increasing dominance.

The mismatch is highlighted in figure 3b with a grey area.

This change in the width of the polarization region is a conse-

quence of the spatial correlations introduced by the structure,

which facilitate the dominance of highly populated opinions.

However, the same spatial correlations that facilitate dominance

slow down the rate at which invasion of opinion happens.

Notice how, in figure 3a, fixation times, including those for

dominance regions, increase in structured populations relative

to the well-mixed scenario. That difference is partially due

to group-size restrictions and said correlations. The second

notable difference occurs in the consensus region with the mod-

ular networks with a spike in fixation times comparable to the

one occurring in region (iv). These networks are distinguished

by a funnel effect in which only a few individuals are the

bridge between (in our case two) sub-networks or communities.

Modular networks introduce a substantial change in the

dynamics observed in region (ii). This is due to the fact that

now the communities can achieve a distinct consensus and

thus generate a polarization that is driven by an interplay

between the network structure and the high complexity of the

information, which contrasts with the dynamical polarization

observed in region (iv). This is in fact the strong property of

complex contagion, which, to a greater extent, only occurs in

this region of complexity. To elucidate this phenomenon, we

need to better understand, not only the temporal dynamics

we described, but the spatial distribution created by the
propagation on these structures. We keep in mind that, for

most connected regions, the dynamical outcomes are identical

to but slower than the ones obtained in well-mixed populations

and, in particular, the boundaries that divide the regions of

behaviours with respect to complexity are well approximated

by the mean-field description detailed by equation (3.2).
3.3. Characterization of spatial correlations
It is well known that information diffusing over a social network

generates spatial correlations among traits of individuals and

those of their neighbours. Surprisingly, even though our

model is suitable to be analysed by pair approximation methods

[63,64], these correlations tend to extend beyond the dyadic

nature of individual relationships [19,65]. Likewise, here we

show that similar correlations naturally emerge in both the con-

sensus and polarization regimes, although their extension and

nature are quite different and dependent on the underlying

topological features of the social network.

Figure 4 shows four snapshots at different times of two repre-

sentative simulations in lattices, showing the different type of

spatial patterns that emerge in the consensus (figure 4a) and

polarization (figure 4b) regimes. It is noteworthy to say that

the spatial patterns in figure 4a are transient, as under the

dynamical conditions (high complexity) the population will

converge to a consensus. However, for very high complexity,

the system would take a long time to move away from its

initial condition, a behaviour also found for deterministic

threshold models [36].

In the consensus regime, modular structures recover the

classical result of complex contagion identified by Centola

et al. [51]. That is, a structural polarization that results from

each network module reaching a different consensus and

then being unable to invade each other (figure 5a). In such

a scenario, all dynamical activity is restricted to the individ-

uals that lie at the interface between the two clusters. This

contrasts with the dynamical polarization that emerges in

the polarization regime (figure 5b), which stems from the

low complexity of the information being diffused. Even
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though those are both scenarios of polarization, with the

population being split between different opinions, they

have different statistical properties. In figure 5c, we compute

the increase in the probability that a neighbouring individual

at a fixed distance shares the same state as a focal individual

relative to random sampling. If this value is positive, a neigh-

bour tends to share the same opinion as a focal individual.

If it is negative, a neighbour tends to have the opposite

opinion. The distance at which the sign changes corresponds

to the range of the clustering of opinions. Dynamical polariz-

ation, the one well described by the well-mixed population

model (happening in region iv), is characterized by a decay

to zero of the relative increase in the probability of matching
states as the distance between nodes increases. Structural

polarization, on the other hand, can be identified by a plateau

of high increased probability followed by a sharp transition

from positive to negative correlation of strategies. For more

than two sub-networks, the transition is expected to be

smoothed out, as now there are more nodes past the funnel

with the same strategy, though the plateau should remain.

4. Conclusion
We presented a new model of competitive, complex contagion

dynamics that contains dynamical patterns of dominance,

polarization and consensus, depending only on the relative
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complexity of the diffusing information. These patterns are in

many ways equivalent to the ones obtained in other contexts,

namely in evolutionary game theory, which deals with pro-

blems as diverse as the spin-flips [66], selection of gut biome

[67], management of common and public goods [68,69] and

socioecological resilience [70]. We show there is an additional

a strong equivalence between modelling complex contagion

in a competition context and opinion dynamics. Our work

raises important questions in terms of feasibility of assessing

empirically which mechanisms are at play. Are empirical pat-

terns the result of game-theoretical reasoning of agents that

influence strategy adoption or the result of the spreading of

information with different levels of complexity? Such an equiv-

alence is in fact enlightening. For instance, the assumption

considered here—that the processes are dependent on the frac-

tion of the neighbouring types—shows strong invariance to

network topology, whereas processes for behaviour change

that depend on the total number of neighbours are known to

change the macroscopic nature of the evolutionary dynamics

[71]. This provides a testable way for understanding, in a

specific practical situation, which mechanisms are present in

decision-making by looking for such an invariance.

Social planners or other network intervenients who aim at

understanding the macroscopic behaviour of the population

can derive important conclusions from our work. In fact,

we show that polarization can arise both from a modular

network structure concerning processes with high adoption

complexity, but it can also follow from low acquisition com-

plexity and, in the latter, targeting network structure (e.g. by
making it more modular) or providing particular individuals

with incentives towards opinion changing might have a small

impact on the final outcome. Alternatively, planners can act

in the system by modifying the complexity of what is being

spread to improve the chances of getting a dominant behav-

iour. This, however, can lead to an arms race and drive the

system to a polarization trap.

Open questions have been left for future research as, for

instance, expanding the model to scenarios that involve

more than two competing opinions, the exploration of differ-

ent functional forms of contagion [34], of optimal seeding

strategies in competitive scenarios under complex contagion,

and the impact of situations in which individuals are able to

modify the interaction network [34,72,73].
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