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1School of Natural and Computing Sciences, and 2School of Medicine, Medical Sciences and Nutrition, University
of Aberdeen, Aberdeen, UK
3School of Public Health, Curtin University, Perth, Australia

PAD, 0000-0003-4202-9680; GAD, 0000-0001-5014-9282; NJCS, 0000-0001-7228-2009;
KJF, 0000-0002-7662-8983; FJP-R, 0000-0001-5663-5249

This article reviews modern applications of mathematical descriptions of

biofilm formation. The focus is on theoretically obtained results which have

implications for areas including the medical sector, food industry and waste-

water treatment. Examples are given as to how models have contributed to

the overall knowledge on biofilms and how they are used to predict biofilm

behaviour. We conclude that the use of mathematical models of biofilms has

demonstrated over the years the ability to significantly contribute to the vast

field of biofilm research. Among other things, they have been used to test

various hypotheses on the nature of interspecies interactions, viability of

biofilm treatment methods or forces behind observed biofilm pattern for-

mations. Mathematical models can also play a key role in future biofilm

research. Many models nowadays are analysed through computer simulations

and continue to improve along with computational capabilities. We predict

that models will keep on providing answers to important challenges involving

biofilm formation. However, further strengthening of the ties between various

disciplines is necessary to fully use the tools of collective knowledge in tackling

the biofilm phenomenon.

1. Introduction
It is estimated that bacteria and archaea constitute approximately half of all exist-

ing life on our planet [1]. It should thereby not come as a surprise that microbes

have such a profound impact on our environment and our day to day lives. It is

evident that the control and utilization of these tiny, ubiquitous organisms can

generate huge leaps to advance human society, be it through introducing

improvements in environmental protection [2], general health and well-being

[3] or in various industries, e.g. food [4], energy [5], water treatment [6] or

mining [7]. The immense complexity and diversity of the microbial world, and

its sensitivity to environmental influences, physical or chemical alike, calls for a

joining of forces between various science disciplines (for example biology, phy-

sics, mathematics, engineering or chemistry), to fully equip the research field

with the necessary tools for solving the associated challenges [8–10].

Bacteria may either exist in a ‘free-floating’ planktonic state, or attached to a

surface, forming biofilm communities [11]. There are substantial differences

between these two modes of bacterial existence, chemical gradients and stress

responses being only the tip of the iceberg [12]. In this review we will

focus on the latter situation, i.e. bacteria growing in biofilms, although some

comparisons to bacterial development in planktonic state will be included.

Biofilms can be defined as bacterial communities surrounded by polymeric

matrices of extracellular matter and other associated products, most commonly

attached to a surface or at an interface [13]. The biofilm matrix itself can be an

immensely complicated environment, ranging from one strain and all its associated

products to multiple species (for example oral biofilms can contain more than 500
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species of bacteria [14]). Generally, the associated products

include eDNA, proteins, polysaccharides and lysed cell debris,

but the matrix can also contain enzymes, RNA and abiotic

materials [1,15]. Furthermore, biofilm communities typically

grow in complex environments such as soil; a highly hetero-

geneous and geometrically intricate landscape [16,17],

which affects biological, ecological and physical processes in

complicated ways.

Biofilm formation can be supported by virtually any nutrient

sufficient environment, as is the case for general microbial

growth [13]. The biofilm phenomenon poses a significant

challenge to industries and to human health, as bacteria within

a mature biofilm structure are better protected against harsh

environmental conditions and antimicrobial agents as compared

to planktonic cultures [13]. Indeed, such colonial growth can be

seen as a strategyof unicellular organismsto gain the advantages

that multi-cellular organisms have innately [18].

Biofilm control is of great importance to industries as their

accumulation can cause significant economic losses, by caus-

ing, among other things, deterioration of equipment through

inducing corrosion [19] or increasing fluid resistance [20].

Furthermore, biofilm contamination may affect chemical pro-

cesses involved in production, thus making them less

effective. This is particularly important in the energy and

chemical industries [21]. Other noteworthy examples are

the paper industry, where biofouling may have a detrimental

effect on the quality of the final product, or the accumulation

of biofilms below the waterline on the hulls of ships, which

causes considerable losses for shipping industries by increas-

ing drag, and what naturally follows, fuel consumption [21].

In contrast to generating losses, biofilm formation of some

non-pathogenic bacteria can be used by industries, by e.g.

inhibiting the growth of pathogens [22,23], preventing fungi-

related food spoilage [24] or engineering biofuels [25,26].

Microbes have also been recognized as useful in the treatment

of wastewater [27,28], cleaning up fuel spills [29], and even for

their potential in generating electricity [5,10,30]. The list of

associations between biofilms and industries goes on and on

and it is therefore no wonder that these bacterial communities

are of great interest from an economical perspective.

Apart from generating significant interest directly from

businesses, there are also great health concerns associated

with biofilm formation (which are also connected with econ-

omic factors, albeit indirectly) [31]. The problem is that

there are innumerable species of human pathogens capable of

forming biofilms, and many of these microbes, potentially

dangerous to human health, are our constant co-habitants

[32]. Microbial contamination in the food, agricultural or medi-

cal sectors calls for, among other control measures, detailed

exploration of possible disinfection methods, employed to pre-

vent human disease outbreaks and to reduce the amount of

food waste. The quest to gain control over microorganisms is

extremely difficult, as these organisms have many tools at

their disposal which aid their survival and growth. Developing

resistance to antimicrobials [33] and cooperation with other

microbial species [34], by e.g. quorum sensing (QS) [35], are a

few examples of such survival tools.

It has been repeatedly shown that bacteria in a sessile

growth phase are much harder to control than the bacteria

grown a free-floating state, and studies have been undertaken

to understand what properties of biofilms give the bacteria

embedded within a competitive edge against treatment [36].

Mathematical models have significantly contributed to the
field of biofilm formation in at least two important ways.

First, mathematical models help to understand the key

mechanisms involved in biofilm formation. These include QS

[37–43], effects of multi-species interactions [44–46], antimicro-

bial resistance [47] or the mechanical properties of the

extracellular matrix (ECM) [48]. Second, mathematical models

are routinely used to inform strategies to prevent or promote

biofilm formation in specific situations relevant to, e.g., food

and water security [27,49] or biofuel production [30,50].

In this review, we give a concise summary of the current

stage of application of mathematical models of biofilms,

providing arguments for the continuation and further

strengthening interdisciplinary collaboration within the

field. We emphasize the applications of the models rather

than their mathematical intricacies which are covered by

other reviews [1,51,52]. Section 2 describes results obtained

from mathematical models used to understand key mechan-

isms for biofilm formation (see table 1 for a summary of

the reviewed models and figure 1 for a schematic diagram

of all sections discussed). The importance of mathematical

modelling to address each of the selected topics is demon-

strated by reviewing key findings based on state-of-the-art

models that represent a substantial addition to the

understanding gained through experimental approaches.
2. Understanding biofilm-related mechanisms
with mathematical models

Ever since the 1980s, efforts have been made to use mathemat-

ical descriptions to supplement experimental observations of

biofilm communities. Many biofilm models have appeared

since the initial efforts which considered one-dimensional,

mono-species descriptions [80]. These have been extended to

add more spatial dimensions, more bacterial species, or by

analysing the effects of varying environmental properties

such as temperature, pH, fluid flow or spatial constraints

from rough surfaces or porous media. The biofilm models are

either stochastic [49,59,68,69], taking into account a certain

degree of randomness of biological processes, or determinis-

tic [41,43,54], if the stochasticity analysis is not needed to

answer a particular question. They can be individual-based

[49,60–62,68,77], where each bacterial cell is considered as an

entity, or mesoscopic [42,53,70], where an entity of interest is

a whole colony or a microcolony of cells, and a single event

may be for example population doubling. The models devel-

oped can focus on describing the biofilm at the scale of the

whole population, or at the level of the individual cells,

taking into account the details of cell structure and how it

affects its behaviour [75]. The fact that different models have

been developed to focus on different spatial and temporal

scales reflects the inherent multi-scalar nature of the processes

involved in biofilm formation [81,82].

Although biofilm models may significantly differ from each

other, they also have many things in common. Fundamental pro-

cesses such as attachment, microbial growth, nutrient uptake,

cellular death, extracellular products generation, detachment

and some chemical processes are usually introduced in some

manner, albeit the methods used vary. For example, microbial

growth in an individual-based model is introduced by a division

of a cell with a set of rules governing the structural changes in the

matrix following the introduction of a daughter cell. On the other

hand, in models in which biomass is treated as a continuum,



Table 1. Summary of biofilm modelling work mentioned in this review.

author (date) model description organism purpose

O. Wanner,

S. Gujer (1986)

1D, continuum, deterministic not specified study of the competition between autotrophs and

heterotrophs in a multispecies biofilm [45]

W. Nichols et al.

(1989)

1D, continuum, deterministic Pseudomonas aeruginosa study of antibiotic penetration of biofilms of mucoid

and non-mucoid strains [47]

E. Ben-Jacob et al.

(1994)

2D, cellular automaton, stochastic Bacillus subtilis exploration of patterns of bacterial growth in various

nutrient conditions [53]

O. Wanner,

P. Reichert

(1995)

1D, continuum, deterministic not specified extension of previous work [45]; general approach to

modelling mixed species biofilms, exploring spatial

profiles of chemical compounds and microbial

organisms [54]

P. S. Stewart et al.

(1996)

1D, continuum, deterministic not specified analysis of biocide action against biofilms [55]

C. Picioreanu et al.

(2000)

2D, continuum, deterministic not specified study of the effect of biofilm surface roughness on the

mass transport within the biofilm [56]

M. G. Dodds et al.

(2000)

1D, continuum, deterministic Pseudomonas aeruginosa analysis of antimicrobial resistance mechanisms of

biofilms [57]

J. Dockery,

J. Keener (2001)

1D, continuum, deterministic Pseudomonas aeruginosa general analysis of the quorum sensing mechanism in

biofilms [37]

D. L. Chopp et al.

(2002)

1D, continuum, deterministic Pseudomonas aeruginosa prediction of acyl-HSL and oxygen concentration

profiles within the biofilm and analysis of their

effect on biofilm growth [58]

I. Chang et al.

(2003)

3D, cellular automaton, stochastic not specified effect of transport limitation on microbial growth and

biofilm structure [59]

K. Anguige et al.

(2004)

1D, continuum Pseudomonas aeruginosa analysis of effects of quorum sensing inhibitors and

antibiotics on the quorum sensing mechanism of

biofilms [38]

C. Picioreanu et al.

(2004)

2D/3D, individual-based not specified analysis of the effect of multidimensional gradients on

multispecies biofilm development [60]

J. Xavier et al.

(2004)

3D, individual-based not specified comparison of CLSM data to spatial structures of

multispecies biofilms generated by the model [61]

J. Xavier et al.

(2005)

3D, individual-based not specified introduction of a general framework for IBM modelling

[62] and evaluating the efficiency of biofilm

treatment by detachment promoting agents [63]

K. Anguige et al.

(2005)

1D, continuum Pseudomonas aeruginosa quorum sensing inhibition [39]; extension of [38]

S. M. Hunt et al.

(2005)

3D, cellular automaton not specified analysis of antimicrobial action on biofilms, which

focused on the scope of substrate limitation

contribution on antimicrobial resistance [64]

J. D. Chanbless

(2006)

3D, hybrid differential-discrete

cellular automaton, stochastic

not specified exploration of four hypothetical mechanisms of

antimicrobial resistance, i.e. poor antimicrobial

penetration, stress response mechanism,

physiological heterogeneity within the biofilm and

persister cells [65]

A. K. Marcus et al.

(2007)

1D, conduction-based,

deterministic

not specified modelling the electrochemical processes in microbial

fuel cells biofilms with focus on factors affecting

electron flow [30]

(Continued.)
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Table 1. (Continued.)

author (date) model description organism purpose

J. Xavier,

K. Foster (2007)

2D, individual-based,

deterministic

not specified evolutionary outcomes of exopolymeric substances

producers competing with non-producing

individuals [46]

G. E. Kapellos

(2007)

2D, hybrid differential-discrete

cellular automaton,

deterministic

not specified analysis of biofilm growth dynamics in porous media;

first modelling work to account for fluid flow

through the biofilm [66]

F. Romero-Campero,

M. Pérez-

Jiménez (2008)

P-system Vibrio fischeri quorum sensing analysis using biochemical reaction

networks [40]

J. Ward (2008) 1D, continuum, deterministic not specified investigation of anti-quorum sensing treatment of

biofilms [39]

N. Jayasinghe,

R. Mahadevan

(2010)

1D, continuum model, combined

with genome scale

metabolism modelling

Geobacter sulfurreducens analysis of the effect of maintenance energy

requirements on maximum current production and

thickness of biofilms in microbial fuel cells [10]

M. Frederick et al.

(2011)

2D, continuum, stochastic not specified analysis of how quorum sensing controlled EPS

production affects biofilm formation [42]

Z. Wang et al.

(2011)

2D, cellular automaton,

deterministic

Caldicellulosiruptfor

obsidiansis, Clostridium

thermocellum

study of cellulose degradation by biofilms in biofuel

production [50,67]

L. Lardon et al.

(2011)

2D, individual-based not specified introduction of a biofilm modelling platform for non-

programmers; iDynoMiCS [68]

D. Rodriguez et al.

(2012)

2D/3D, cellular automaton,

stochastic

not specified studying effects of surface roughness patterns on

biofilm formation in the presence of flow [69]

M. Asally et al.

(2012)

2D, hybrid differential-discrete

cellular automaton,

deterministic

Bacillus subtilis theoretical analysis of mechanical forces behind

emergent pattern formation of biofilms [70]

F. Pérez-Reche

(2012)

3D, network, stochastic not specified analysis of network representation of soil samples with

regards to potential microbial invasions [17]

R. Ferrier et al.

(2013)

2D, individual-based, stochastic Listeria monocytogenes estimating counts of food spoilage organisms on the

surface of cheese [49]

A. Ehret,

M. Böl (2013)

3D, continuum, deterministic Pseudomonas aeruginosa study of mechanical role of EPS matrix on biofilms,

representing the EPS matrix as a worm-like chain

network [48]

S. Bottero et al.

(2013)

2D, cellular automaton, stochastic not specified examination of factors influencing the development

of flow paths in a biofilm formed in porous

media [71]

W. Harcombe

(2014)

2D, differential-discrete model,

combined with genome scale

metabolism modelling

Escherichia coli

Salmonella enterica

Methylobacterium

extorquens

proposed a modelling framework for incorporating

genomic scale information on the scale of microbial

communities with the aim to predict the behaviour

of multispecies consortia [72]

N. Jayasinghe et al.

(2014)

1D, continuum model, combined

with genome scale

metabolism modelling

Geobacter sulfurreducens metabolic modelling of spatial heterogeneity of

biofilms in microbial fuel cells [73]

(Continued.)
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Table 1. (Continued.)

author (date) model description organism purpose

J. Cole et al. (2015) 3D, continuum model, combined

with genome scale

metabolism modelling

Escherichia coli analysis of the effect of metabolic interactions within

densely packed biofilm colonies, i.e. the relation

between a cell’s position within a colony and its

metabolism [74]

B. Emerenini et al.

(2015)

2D/3D, continuum, deterministic not specified analysis of biofilm detachment regulated by quorum

sensing mechanism [43]

R. Bennett et al.

(2016)

hydrodynamic, deterministic Pseudomonas aeruginosa

et al.

analysis of individual cells flagellar spinning

movements on the surface in early biofilm

development [75]

P. Phalak et al.

(2016)

1D differential-discrete model

combined with genome scale

metabolism modelling

Pseudomonas aeruginosa,

Staphylococcus aureus

role of metabolic factors on the spatial distribution of

cells in a two species biofilm; the species were

chosen for their common occurrence in chronic

wound infections [76]

M. Azari et al.

(2017)

activated sludge model Candidatus brocadia et al. wastewater treatment reactor study [27]

B. Né Dicte Martin

et al. (2017)

2D, cellular automaton, stochastic Streptococcus gordonii,

Porphyromonas gingivalis

assessment of mixed species interactions in oral

biofilms [44]

I. Tack et al. (2017) 2D, individual based, stochastic Escherichia coli analysis of the effect of various environmental factors

on the biofilm morphology [77]

K. Coyte (2017) 2D, hydrodynamic, game theory Escherichia coli analysis of the relative success of microbial strategies

in porous media for various flow conditions [78]

S. Stump et al.

(2018)

2D, cellular automaton, stochastic not specified study of the competition between cooperators and

cheaters within a microbial community [79]
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growth may be portrayed in terms of continuous biomass expan-

sion and movement [1]. Furthermore, diffusion of chemical

compounds is generally introduced by solving Fick’s law, con-

vection is often governed by Navier–Stokes equations for fluid

flow or their approximations, and nutrient uptake and biomass

growth implementation usually includes a form of Monod

equation [51,52].

The following section presents examples in which math-

ematical modelling has proven instrumental to understand

complex factors in biofilm growth whose elucidation using

experimental methods remains a challenge. We will discuss

the role of ECM and QS, the emergent antimicrobial resist-

ance of biofilms and models which test viability of

treatment methods, biofilm formation in complex structures

and in mixed species biofilms. The list of topics presented

here is by no means exhaustive. Due to the complexity of

the field, we were forced to leave out many aspects, for

example, the effect of motility of cells or factors influencing

attachment (see, e.g. [75,83,84] for mathematical models

incorporating some of these factors). We believe however,

that the aspects we present give a taste of how mathematical

modelling has been employed in biofilm research to this date.
2.1. Role of extracellular substances
The general role of the biofilm ECM is to hold the biofilm

together and fix it in place, but it has also been reported to

be used by cells as a nutrient source [1,15]. By keeping the
cells closer together, accumulation of QS signalling molecules

is more likely to occur, making communication mechanisms

more effective [15]. Furthermore, the immobilizing properties

of the ECM have the effect of keeping extracellular enzymes

close to the cells and thus the ECM may act as an external

digestive system [85]. Other fundamental roles include facili-

tating gene transfer [86] or inducing formation of complex,

self-organized structures [70]. The ECM has also been

reported to protect the biofilm cells from desiccation, biocides,

antibiotics, heavy metals, UV light, host immune responses

and protozoan grazers [85].

In individual based model (IbM) models, individual

agents such as bacteria cells or exopolymeric substances

(EPS) are treated as discrete entities, with specific properties

assigned to them, such as their biomass, size and interactions

with the environment. These agents are typically placed in

continuous space, which is what puts IbM models apart

from cellular automaton (CA) models, in which space is

discretized in the form of a lattice [60].

A study using an IbM in three dimensions has been con-

ducted to assess the potential of enzymic disruption of the

ECM as a biofilm control strategy [62,63]. Prior to the theoreti-

cal study, the ability of NaOH to break down Staphylococcus
epidermidis biofilms was confirmed experimentally, resulting

in the need to identify factors affecting the efficiency of the

treatment which could potentially be applicable for other bac-

terial species [87]. The simulations had two stages. In the first

stage, a biofilm was developed without the presence of
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food spoilage and
safety (3.1)
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Figure 1. Schematic diagram of the review. The biofilm models are categorized according to their purpose. Firstly, models that aimed to understand various biofilm
formation mechanisms are discussed. We give examples of how mathematical modelling explained some observed phenomena arising from mixed species inter-
actions, extracellular substances, quorum sensing mechanism, apparent antimicrobial resistance of biofilms and biofilm formation in complex structures. Secondly,
attention is turned to the second type of biofilm model, which aim to predict levels of biofilm accumulation. These models are generally specific to a given area of
interest. We give examples of applications of these predictive models in the food industry, wastewater management and in engineering biofuels.
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disruptive enzymes. Subsequently, after a simulation time of

60 days, the biofilm was treated with a chemical compromising

the ECM matrix, along with activating flow in order to trigger

the detachment effect of the weakened biofilm structure. The

modelling study found that 99% of biofilm removal resulting

from the treatment occurred quickly, i.e. within a couple of

hours. However, it took much longer for the remaining biofilm

to be removed, i.e. 94% of the total treatment time. Another

interesting result obtained by the study was that the efficiency

of the treatment in the simulations depended strongly on the

ratios between the decay rate of the treatment substance in

the biofilm, the rate at which the substance was able to compro-

mise the ECM produced by the bacteria in question, and the

rate at which the bacteria produced ECM. In some cases, the

production of ECM was sufficient to counteract the effects of

the treatment, resulting in persistence of the biofilm. The results

of the study thus underlined the role of ECM material in bio-

film prevalence, as well as provided possible reasoning

behind differences in the relative success of biofilm treatment

targeted at various bacterial strains.

The results of mathematical analysis of the role of ECM in

protecting cells from antimicrobials will be discussed in later

sections on antimicrobial resistance of biofilms. Now we
introduce another modelling example, which analysed the

influence of the ECM on the interactions between different

species within the biofilm community [46]. This individual

based modelling study of mixed species biofilms has chal-

lenged the common perception of EPS production within the

ECM matrix as a purely cooperative behaviour. Computational

analysis identified the potential evolutionary advantage of EPS

production in terms of aiding the propagation of an individ-

ual’s genes. The study considered two species, in all other

aspects equal, except that one produced EPS and the other

did not. The non-EPS producer grew faster, as it had more

resources available to allocate for reproduction compared to

the other species. Simulations of the competition between

two species have shown that the outcome was strongly depen-

dant on the ratio of EPS produced per biomass formed and the

ratio between the density of the EPS to the biomass. In some

cases, the non-producing species indeed had an advantage

over the EPS producers. It is interesting, however, that the

EPS producers were favoured when the density of the EPS

was lower than the density of biomass, for a wide range of

EPS production rates and diffusion coefficients of the

growth-limiting compound. This extended to being able to

‘suffocate’ its rival with its generated product, while displacing
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the individuals of its species towards the top of the biofilm,

where nutrients were more abundant. The authors of this

study argued that considering EPS-producing behaviour

solely as a group-benefiting sacrifice may be wrong, as this be-

haviour may be capable of causing a detrimental effect towards

the neighbours of the producers.
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2.2. Role of quorum sensing on biofilm formation
QS is a means of cell–cell communication using signal mol-

ecules (autoinducers), allowing bacteria to sense the

changes in their environment and react appropriately by acti-

vating or inhibiting gene expression [88]. This phenomenon is

thought to have a greater impact on bacterial communities in

biofilms, as opposed to the planktonic phase, due to closer

clustering of cells, which increases the number of signalling

molecules in the external environment of the cells and may

thus be a cause of increased QS associated gene expression

[36]. The QS mechanism has been reported to greatly affect

biofilm formation. It has been suggested to play a significant

role in attachment of cells or their detachment. For example,

disrupting the QS mechanism in P. aeruginosa biofilms has

been observed to result in thinner biofilms [89]. The effect

of QS on P. aeruginosa biofilms may well be a consequence

of the fact that approximately 6% of all P. aeruginosa genes

seem to be regulated by this communication mechanism [90].

Synthetic engineering of QS inhibitors (QSI) has been

suggested as a possible solution to aid eradication of unwanted

biofilms. It has been observed experimentally that supplement-

ing tobramycin as an antibiotic treatment of P. aeruginosa
biofilms with a garlic extract, a natural QSI, was successful in

killing all biofilm cells, a result that was not obtained when

using either one of the compounds alone. Interestingly, dis-

rupting the growth of cells within biofilms through

manipulating their QS mechanism is not solely a man-made

concept. For example, it has been observed that inhibition of

QS can be imposed on one bacterial species by another

within a mixed species biofilm [91].

Several mathematical models have been developed over

the years to describe the role of QS on biofilm communities

[37,39–43,58,92]. For instance, the study in ref. [92] predicted

a diminished role of the QS mechanism in a biofilm exposed

to high flow rates, in agreement with experimental

observations.

The factors that may influence the effectiveness of

P. aeruginosa biofilm treatment by disrupting cell–cell com-

munication were analysed in a theoretical study [39]. A

critical biofilm depth was predicted, above which the treatment

with QSI would not be successful. This is thought to be partly

due to a predicted exponential increase of the successful con-

centrations of QSI, or for that matter, any kind of

antimicrobial compound, with biofilm depth [39]. In contrast,

in the case of planktonic cultures, the concentration of antimi-

crobials needed to eliminate the population of cells has been

predicted by a previous theoretical study to increase linearly

with the amount of treated biomass [38], which may be one

of the direct causes of the difference in antimicrobial sensitivity

between these two modes of bacterial growth.

In another application, a two-dimensional, deterministic

model designed to study the QS mechanism has been pro-

posed by Frederick et al. [42]. Specifically, it aimed to

investigate whether the QS regulation of EPS production by

cells may be beneficial compared to a non-regulated, steady
extracellular excretion process. Cases when EPS could serve

as a nutrient source and when it could not, were investigated

separately under high and low nutrient conditions. It was

found that upregulated EPS production does not provide an

advantage in terms of achieving higher population numbers,

when compared to steady, low EPS production. It may, how-

ever, increase the optical density of the biofilm and thus

protect the cells from environmental stresses or trap nutrients

and thus lead to out-competition of the low-EPS producing

rivals in nutrient rich conditions, even though EPS

production comes at a cost of slower growth [42].
2.3. Increased antimicrobial resistance
The structure and chemical composition of a mature biofilm

provides a barrier which in many cases protects embedded

cells from antimicrobials. This causes significant concern in

the medical sector, among other industries [93]. Biofilm-

caused infections often result in the development of chronic

illnesses in patients, with available treatments inadequate in

completely eradicating the bacteria within the biofilm. These

can include foreign-body infections, e.g. biofilm formation on

surgically inserted medical implants, or infections of regular

tissue, e.g. lung tissue [36]. Chronic patients must often

undergo constant, lifelong treatment with antibiotics in order

to keep the biofilms at a manageable level. However, this sol-

ution, among other things, disrupts the normal gut flora

which may cause further deterioration of the overall health of

the patient and may as a consequence cause the emergence

of bacterial infections resistant to all types of available anti-

biotics. This in turn renders further treatment even more

challenging and ultimate eradication of the infection difficult

[36]. Increased antimicrobial resistance of cells in biofilms is

believed to be caused by many factors including, for example,

increased levels of mutation in biofilms in comparison to their

planktonic counterparts. This phenomenon in turn is believed

to emerge due to increased cell–cell communication in the bio-

film community, where cells are naturally bundled closer

together than in the case of bacteria floating in a free planktonic

state [36]. The increase in mutations can cause upregulation of

genes responsible for production of enzymes which degrade

antimicrobial agents, or increased activity of efflux pumps,

which expel the antimicrobial agent out of the cell membrane,

making the bacteria more tolerant to antibiotic exposure.

In addition to increase in mutations and its effects in

increasing antimicrobial resistance, development of chemical

gradients in the biofilm layers is also believed to contribute to

the persistence of treated biofilms. The chemical gradients of

nutrients and other substances within the biofilm structure

cause the emergence of dormant cells in the layers of the bio-

film where nutrients become limited, while the dividing cells

occupy the outer layers, closer to the biofilm surface. Some

commonly used antibiotics exclusively target either dormant

or active cells which is why using only one type may not

prove sufficient to kill all cells within the biofilm. However,

applying both of those antibiotics at the same time seems

to be able to overcome this particular problem. For example,

synergistic treatment with ciprofloxacin and colistin have

been observed to be successful in clinical trials on patients

in the early stages of cystic fibrosis [36].

Another advantage gained by the cells from the structural

properties of the biofilm matrix is that diffusion of antimicro-

bials through the matrix may be significantly delayed, or
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even inhibited due to the chemical composition of the matrix,

by breaking down or trapping the antimicrobial compound

before it reaches the cells within biofilm depths. Pre-

treatment of the biofilm with enzymes degrading the biofilm

matrix has been demonstrated to be a successful strategy by

rendering the biofilm more susceptible to the application of

antimicrobials in a study involving P. aeruginosa biofilms [36].

Numerous modelling efforts have been employed in

order to address the challenge of biofilm treatment with

antimicrobials [47,55,57,62,64,65,94], for example, a hybrid

differential-discrete approach which tested four biofilm

survival mechanisms separately (i.e. slow penetration, stress

response, altered microenvironment and emergence of persis-

ters). It was found by the study that the survival behaviours

predicted by the simulations for each of the mechanisms were

clearly distinct from each other. This result can be useful for

determining the most dominant protection mechanism in an

observed scenario and thus could prove informative in terms

of choosing prospective disinfection strategies [65].

In another example, a continuous, diffusion-reaction, one-

dimensional model, has been employed in order to predict

antibiotic penetration into P. aeruginosa biofilms, in order to

test the viability of antibiotic treatment for cystic fibrosis

patients [47]. Tobramycin and cefsulodin were chosen as anti-

microbial compounds, and a mucoid and non-mucoid

version of the P. aeruginosa biofilm were modelled in the cal-

culations, in order to assess how the physical barrier of

mucus affects the resistance of the biofilm embedded bacteria

to chemical treatment. Interestingly, the results pointed to the

conclusion that even though the diffusion of the antibiotic

was substantially delayed in the mucoid phenotype when

compared to the non-mucoid phenotype, the penetration

time difference was not significant enough to account for

the reported antimicrobial resistance. That is, the time it

took for the antibiotic concentrations to reach high levels at

the base of a 100 mm thick biofilm was still well within the

common treatment time of cystic fibrosis patients. Further-

more, even when accounting for adsorption of the antibiotic

to the exopolysaccharide, the concentration of the antibiotic

at the base of the biofilm was eventually able to reach the con-

centration at the substratum. In the light of these calculations,

it was concluded that the exopolysaccharide itself should not

be considered as a significant physical protection barrier for

P. aeruginosa biofilms against antibiotics.

Another hypothesis tested in [47] was whether the effect

of bacterial production of enzymes is sufficient to effectively

break down the antimicrobial compound. Assuming the

enzymatic breakdown of an antibiotic in the model led to a

phenomenon in which the concentration of antibiotic at the

base of the biofilm could not rise above a certain threshold,

as the diffusing substance would be continuously removed

by the cell-produced enzymes. Simultaneously, it was

observed that bacterial cells exposed to cefsulodin grew

very slowly, and thus it was hypothesized that slow growth

may be another likely reason for increased tolerance of the

bacteria. There may be many reasons for this phenomenon,

for example, bacteria in a state of low metabolic activity

may naturally allow less uptake of substances into the cells,

therefore decreasing uptake of the toxin. Furthermore, low

metabolic activity may be caused by upregulated production

of toxin-degrading enzymes or upregulated activity of toxin-

expelling efflux pumps. Results of experimental studies

support the hypothesis that the concentration of biocides
required for successful disinfection is much greater when

applied to biofilms compared to planktonic cultures [95].

In another theoretical study, the efficiency of a biocide, ben-

zalkonium chloride and peracetic acid, against P. aeruginosa
biofilm was analysed [95]. When comparing the susceptibility

of different strains of P. aeruginosa to benzalkonium chloride

treatment, considerable differences have been found between

the resistance of strains grown in biofilms (in contrast with

planktonic cultures where no significant difference was

found). In particular, the difference in the time it took for the

antimicrobial activity to reach the depths of the biofilm cluster,

and the resulting changes in the total inactivation rate of the

bacterial cells, all seemed to confirm the crucial role of the

ECM in determining disinfection efficiency. Moreover, it has

been found that, in agreement with the modelling study,

most cells within the biofilm have been deactivated during a

short treatment time of 25 min, with few live cells remaining.

At present, biofilm treatment with enzymes is applied

in industrial [96] and marine applications, and research is

being undertaken to apply this strategy in the hospital setting

with regards to development of antibacterial coatings for

implants [36,97].
2.4. Biofilm formation in complex structures
Experiments and models often describe biofilm communities

growing on relatively simple substrates (e.g. flat surfaces). How-

ever, extremely flat surfaces on, e.g., the micrometre scale are an

exception only found in some artificial settings [69] and most

natural biofilms grow on rugose surfaces or porous media.

Indeed, most bacteria on the planet inhabit structurally complex

environments such as oceans or soils [16,98].

The opacity of natural porous media makes it very challen-

ging to study biofilm formation using only experiments. This

fact has been recognized in e.g. predicting biofilm growth

inside the cheese matrix, among other complex food structures

[99] or questions regarding bacterial invasions of the gut [100].

Applications of mathematical modelling to understand

microbial growth in porous media is still limited but we

believe that mathematical models can significantly help under-

standing this phenomenon. A theoretical framework for

generic biological invasions in porous media found that the

shape, size and connectivity between pores within the

medium plays a fundamental role in determining the extent

of a potential microbial invasion [17]. In this study, the struc-

tural heterogeneity of the soil pore space was captured

through a network description with edges and nodes repre-

senting channels and bifurcation points in the pore space,

respectively. Biological invasions were numerically simulated

as a stochastic epidemic spreading on the pore space network.

Based on the topology of the networks of the porous medium,

the authors argued that structural heterogeneity typically

favours biological invasions. The growth of biofilms in

porous media has recently been studied experimentally [101]

and theoretically [66,71,78,102] but understanding is still lim-

ited due to the complexity of the problem. The difficulty of

considering microbial accumulation in porous media is ampli-

fied by the fact that this network of flow channels is generally

not static, i.e. various events, including microbial activities,

lead to repeated clogging and unclogging of channels, for-

mation of new channels, etc. [71]. An approach combining

fluid dynamics with game theory and experimental techniques

revealed that in porous media, relatively strong and weak flow
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conditions favour fast and slow growing microorganisms,

respectively [78].

Mathematical models have also been applied to study the

effect of heterogeneity of abiotic surfaces on biofilm formation

[69,103–106]. Some of these studies use computer fluid

dynamics (CFD) modelling which may be combined with

reconstruction of specific surface topography by surface

element integration (SEI) techniques, to assess the combined

effect of flow and roughness patterns on biofilm accumulation

[103,105]. These are highly advanced models, which can pro-

vide a detailed analysis of biofilm formation in a specific

scenario. However, we discuss below in more detail results

of a study that addressed the effect of surface roughness on

biofilm formation with a cellular automaton, which we believe

give a more general view of the problem [69]. In cellular auto-

mata, space is discretized into equally sized patches, forming a

lattice. Each patch may contain several objects (e.g. cells, extra-

cellular material, oxygen or nutrients in [69]) and rules are

introduced as to how objects interact with each other and

with their environment. Properties of both objects and the

environment may be defined as required. The authors in ref.

[69] argued that surface roughness may aid or inhibit biofilm

formation when the flow of liquid above the biofilm is of con-

siderable force, depending on the topography of the surface

[69]. The study focused on roughness on the length scale of

a bacterial cell, i.e. at around 1 mm. The motivation for study-

ing surface roughness of such magnitude was to address

biofilm growth on mechanically milled surfaces, as the effect

of roughness patterns of these surfaces may be an important

factor for industrial applications. The modelling study found

that in the case when flow is an important factor, biofilms

growing on flat surfaces are easily washed out. However, for

otherwise identical environmental conditions, if blocks of

size comparable to a single bacterium are fixed on the surface,

the bacteria at the cracks between these blocks may become

sheltered from the erosion effects of the flow, and are thus

allowed to colonize, expand, and spread to downstream

regions of the surface. This study found that one of the key fac-

tors determining whether roughness was beneficial to the

development of the biofilm or not, was the spacing between

the roughness blocks. If the spacing was too small, the result-

ing biofilms were flat, with less cells, as space for development

was scarce; if the spacing was too large, the sheltering

effect was insufficient to prevent flow-induced detachment.

Furthermore, increasing the height of the blocks was also pre-

dicted to present a problem for the bacteria, as at sufficiently

low niches nutrients could become limited, inhibiting biofilm

development at the sheltered locations.

The results of the study discussed above provide a better

understanding of how exactly some surface roughness pat-

terns affect biofilm formation. In comparison, through

experimental observations, it has been reported that when

mimicking the conditions of a drinking water system,

with flow adjusted to 10 cm s21, matt stainless steel accumu-

lated a significantly greater number of microorganisms than

electro-polished or bright annealed stainless steel [107]. A sep-

arate experimental study on 316 L stainless steel confirmed that

bacteria may exhibit higher colonization levels at the cavities

present on the unpolished metal surface [108]. Interestingly,

although many experimental studies simply conclude that

increased surface roughness seems to promote biofilm accumu-

lation [107–110], when investigated more closely, the surface

topography, i.e. the depth and size of the cavities on the
surface, has been found to be of more importance [111–114].

The latter conclusions are supported by the modelling study

of Rodriguez et al. [69].

It is worth noting that nowadays the engineering of surface

coatings with topographies designed to reduce biofouling

are extensively studied, as technological advances allow for

creating topographies of exquisite detail [113–115]. In addition

to the topography, other fundamental factors have to be

taken into account in such designs. These include, but are not

limited to, the surface free energy, wettability, elasticity and

antimicrobial properties of the surface [114].
2.5. Mixed species interactions
A single species biofilm is in most cases a laboratory construct,

as the natural environment is full of microbial life and growth

of single species seldom occurs in isolation. It is therefore

mixed-species biofilms that are mostly apparent in situ, and

thus the study of inter-species interactions within a biofilm is

of great importance in addressing the challenges associated

with biofilm control. Studying the role of mixed species

interactions on biofilm growth is experimentally challenging

[44] and mathematical models can be of great help [44,46,60].

In particular, we describe two recent applications of mathe-

matical models which reveal key mechanisms in biofilm

communities involving multiple species.

Recently, a new 2D cellular automata (discrete space and

time) model has been developed to study biofilm formation of

two species of bacteria, Streptococcus gordonii and Porphyromonas
gingivalis [44]. These two species have been identified as the

leading causes of periodontitis, commonly referred to as gum

infection, which can lead to tooth loss around the infected

area. The study was performed to address the gaps in knowl-

edge on the initial development of this two species biofilm,

which follows after adhesion to periodontal tissues. Exper-

iments informed by the model were performed to verify

simulation outputs against observation. The model was

designed to test whether the relationship between S. gordonii
and P. gingivalis in the initial stages of biofilm development

was independent, competitive or detrimental. The results of

the simulations agreed with experimental observations only

for the detrimental case, i.e. when it was assumed in the

model that S. gordonii produces a compound that slows down

the growth of P. gingivalis. This finding is in line with the fact

that S. gordonii is known to be able to produce hydrogen per-

oxide, while P. gingivalis is known to be sensitive to this

compound. Furthermore, it has been suggested by array analy-

sis and reverse transcription PCR that oxidative stress response

may be triggered in P. gingivalis in the presence of S. gordonii
[116]. In summary, the model has been able to provide evidence

for a detrimental effect of S. gordonii on the growth of P. gingivalis
in a two-species biofilm, following adhesion.

In another recent example, a stochastic two-dimensional

cellular automaton model was applied to study mutualism

versus exploitation in a microbial context [79]. In particular,

the study analysed potential mechanisms that could promote

the success of bacteria producing nutrients for other organ-

isms, over ‘cheating’ bacteria which did not produce any

nutrients. The results of the contest between the two species

exhibiting these distinct behaviours were mapped against

the distance between the microbes and the distance at which

the produced resources could reach other microbes. It was

shown that, consistently, for high cell dispersal and high
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reach of the shared resource, cheaters had a competitive

advantage, and after reaching a certain threshold for these par-

ameters, extinction of the cooperators was predicted. It was

reasoned that for these conditions, the cells were forced to

interact with many random neighbours, thus making coopera-

tors open to exploitation. In contrast, the case when both cell

dispersal and reach of the resources were low, provided an

opportunity for groups of cooperators to persist against the

invasion of the cheaters. Interestingly, for intermediate con-

ditions, i.e. high cell dispersal and low reach of the resource,

or low cell dispersal and high reach of the resource, the coop-

erators also were found to persist. In the former case, it was

found that the uncertainty of the interactions between neigh-

bours harmed the exploiter, as it led to uncertainty of

resources. In the latter case, the community exhibited self-

organized pattern formation, in which cooperators organized

themselves into stripes or spots. The conditions within these

organized groups were such that they limited the growth of

cheaters. It is noteworthy that such patterns are reminiscent

of similar phenomena observed in biofilms.
20190042
3. Applications of mathematical models in
predicting biofilm formation

Biofilm models have proliferated due to a need to answer

particular questions stemming from areas where biofilm for-

mation is a significant concern. Today, modern theoretical

biofilm models are recognized for their ability to, among

other things, analyse spatial interactions between organisms

within a biofilm on an individual scale [117]. Other models

may focus their analysis on predictions of biofilm formation

in specific environments [10,26,27,32]. In the previous section,

we have discussed the former, i.e. models developed in order

to understand the role of various factors on biofilm formation.

In this section, we will focus on the models which aim to pre-

dict accumulation of biofilms. For example, the output of such

models may be a prediction of bacterial counts on a given

surface [49], or a detailed biofilm composition in the studied

environment [27].

3.1. Food spoilage and safety
It is recognized that food spoilage depends on factors such as

storage conditions, initial unwanted microbial counts in

the food and their properties, and finally, the properties

of the food involved, such as its pH or moisture. Estimating

the shelf life of food products has been aided by means of

mathematical models developed as early as the nineteenth

century [118,119], and the value of these microbial count

models for the food industry is now widely appreciated at

the product development stage [99].

Empirical models build on data obtained from storage trials

are common among models employed to predict shelf life

[120–122]. These models are characterized by a systematic

experimental approach, in which the effect of a specific variable

(e.g. temperature) on microbial growth is assessed. Data collec-

tion is followed by fitting experimental data with a theoretical

curve in order to analyse the correlations between considered

factors, formulate general hypotheses, and subsequently allow

for making better predictions. One of the notable examples in

this area is the work by Ratkowsky et al. [122], in which the

authors proposed a general law governing the relationship
between the temperature and growth rates of bacteria. The

results of the Ratkowsky et al. study were found to fit experimen-

tal data better than what was predicted by Arrhenius Law

[118,123] (this is a classical law describing the relation between

chemical reaction rates and temperature). Furthermore, a slight

modification of the Ratkowsky et al. model [122] was found to

fit empirical data for a temperature dependency study of Lacto-
bacillus plantarum growth [121]. Apart from temperature, other

factors affecting growth have been empirically modelled, e.g.

the effect of carbon dioxide on growth of Photobacterium
phosphoreum and Shewanella putrefaciens [120].

More recently, predictive modelling has been employed to

estimate bacterial growth in seafood, dairy, bakery, vegetable,

meat products and other products, e.g. infant formula or acid-

ified sauces [99]. For example, one of the recent approaches

used an individual-based stochastic model, able to accurately

predict Listeria monocytogenes counts on soft cheese [49].

The individual based approach, so far uncommon in the

area of predicting the microbial shelf life of food products,

was introduced in order to account for variability in the

microenvironment of individual cells.

The area of predictive modelling for food safety is so vast

that it is beyond the scope of this review to go into the

amount of detail it deserves. For an extensive, recent evalu-

ation of this particular topic, the reader is encouraged to

turn to the book by Mahony & Seman [99].

It is noteworthy that apart from predicting growth of

microorganisms during food storage, empirical mathematical

modelling has also been applied to address other food safety

concerns. For example, a relationship describing cross con-

tamination of Escherichia coli and Listeria monocytogenes from

slicer to deli meat has been proposed based on experimental

data [124,125].
3.2. Wastewater management
The use of bacteria in the activated sludge (AS) process,

designed to treat water systems, dates back over a hundred

years and it is safe to say that this invention revolutionized

wastewater management [126]. Computational modelling of

microbial communities can contribute to engineering safe

water treatment reactors by, for example, testing for math-

ematically plausible causes for the occurrence of some

observed phenomenon. This may include testing the nature

of interactions between microorganisms present in the reactor

[27]. Such models aim to simulate a typical environment of a

wastewater system, in order to predict the distribution and

relative concentrations of various microorganisms and their

effectiveness in water treatment.

Activated sludge model (ASM) is the name given to the

specific type of a biofilm model designed to optimize the

AS process. ASMs describe processes such as oxygen

consumption, sludge production, nitrification and denitrifica-

tion in the AS designed to treat water systems [127]. ASMs

serve as a good example for specialized models that can be

widely adopted in the field they are designed for [128].

These models can aid the daily operations of plants, as well

as the development of plans for introducing modifications.

Careful design and continuous improvement are fundamen-

tal in using ASMs as tools for the wastewater industry, as

significant decisions with financial and environmental impli-

cations may be based on their predictions. With the

incorporation of computational models into water treatment
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industry comes the necessity to develop stringent procedures

for accurate software usage and interpretation of the model’s

outputs, a task that has been taken on by the International

Water Association [129]. It was estimated that in 2009, the

number of ASM users worldwide was between 3000 and

5000 and included university and public researchers, as

well as private company employees [129].

The ASM1 model describes the water purification system

by a series of processes that take place in the reactor. The pro-

cesses are governed by substrate-dependant rates and by the

stoichiometry of the occurring reactions in each process [128].

The rates of all processes are described by various equations;

for example, growth of biomass is unsurprisingly modelled

by use of Monod relationships [130]. The other processes

modelled by ASM1 are the decay of biomass, ammonification

of organic nitrogen and hydrolysis [128].

A very recent example of a biofilm model designed for

wastewater management purposes was presented by Azari

et al. [27]. The model had been developed with the aim of

identifying the most important parameters affecting biofilm

formation in an anammox reactor; a reactor engineered to

remove ammonium from wastewater. The framework of the

study was based on ASM1. It has been found by the model

that biofilm formation and ammonium removal was most

affected by the maximum specific growth rate of organisms

and heterotrophic biomass yield. The levels of nitrogen com-

pounds and biofilm composition predicted by the model

were in good agreement with experimental findings,

suggesting that the results obtained by the simulations were

reliable [27].
3.3. Biofuels
With advancements in technology, energy consumption has

been rapidly rising. The need to move from non-renewable

energy sources such as fossil fuels, to sustainable solutions

which rely on renewable energy sources, is apparent. Most

people are aware of such solutions being applied in the form

of harnessing solar, wind, geothermal or tidal energy. Surpris-

ingly, it does not seem to be commonly known that microbes

are also being used by the energy industry, for instance in

engineering biofuels such as e.g. bioethanol, biodiesel or bio-

hydrogen [131]. However, biofuels have been claimed to have

the biggest potential for reducing CO2 release into the atmos-

phere [26]. This is largely due to the fact that the demand for

fuels makes up a majority of the overall demand for energy

[132]. Biofuels can be produced by thermochemical means or

by microbial fermentation [26]. In the latter case, degradation

of biomass (e.g. cellulose) by microbes (e.g. yeast, bacteria or

mould) is a key process in biofuel production [133]. Although

there is already an established procedure for engineering bio-

fuels, research is being undertaken to make this process more

efficient [25,50]. The area of biofuels is a multifaceted one, as

for instance complex chemical and biological reactions, as

well as engineering solutions have to be designed and perfected

for process optimization. Advanced technologies, e.g. geno-

mics, have been identified to be fundamental for maximizing

the efficiency of biofuel production methods [25]. Furthermore,

given the undeniably immense global scale impact of the

energy industry, the efforts for engineering biofuels should be

done in close cooperation with environmental scientist [134].

One review on microalgal biofuels listed fundamental biology,

systems biology, metabolic modelling, strain development,
bioprocess engineering, integrated production chain and the

whole system design, as areas that need to be included in the

biofuel research portfolio. The biggest share of mathematical

modelling in aiding biofuel production process engineering

probably lies in metabolic modelling, which is a key part of

the systems biology approach to metabolic engineering [135].

However, as such techniques are performed on the scale of gen-

omes, rather than bacterial populations, these models are

beyond the scope of this review. Although we have not found

in the literature the link of population scale metabolic modelling

to biofuel production, it should be noted that some recently

published studies combined genome scale metabolic recon-

structions with differential equations for the diffusion of

metabolites, thus creating genome scale resolution models of

biofilm populations [76].

There are not many papers available that explicitly link

biofuels to biofilm formation, and this may be due to the

fact that smaller scale modelling integrated in the system

biology approach has been found more applicable for this

field. We will presently discuss the results of a modelling

study that did focus on population scale degradation of

cellulose.

A cellular automaton model has been developed which is

able to mimic experimentally observed structure of biofilms

formed by Caldicellulosiruptor obsidiansis [67], and in a separ-

ate study, those formed by Caldicellulosiruptfor obsidiansis and

Clostridium thermocellum on cellulose substrate [50]. In the

latter study, the observed thickness of the biofilm was

achieved in the simulation by incorporating a detachment

mechanism, which was activated once the biofilm thickness

approached an observed threshold. It is quite plausible that

a colony that feeds on the substrate to which it adheres will

exhibit such behaviour, as this allows detached cells to float

towards areas where nutrients are unexploited, i.e. to the

non-colonized areas of the substrate.

Analysis of both experimental and computational results

obtained from the study published in [50] seemed to point to

the conclusion that cellulose degradation was synchronous to

biofilm formation of the particular species. Moreover, only cel-

lulose areas to which bacterial cells were attached exhibited

degradation and increasing number of planktonic cells in the

culture did not produce a significant effect. In the light of the

obtained results, the authors concluded that the process of cel-

lulose degradation could theoretically be sped up by covering

the cellulose substrate with a highly concentrated inoculum of

cellulose-degrading cells [50].

3.4. Application of genome-scale reconstructions in
biofilm modelling

With recent advancements in genomics, proteomics and

metabolomics, there has been a rise in biofilm models that

incorporate genome-scale data for obtaining more sophisti-

cated predictions for microbial communities [10,72–74,76].

The aim of incorporation of genome scale data in biofilm

modelling is to improve the quantitative understanding of

spatial and temporal variation of the microenvironment of

cells embedded within a biofilm, which is believed to have

a critical impact on biofilm development [76]. A table of

available genome-scale metabolic reconstructions which

have been validated by experimental data can be accessed

through the Systems Biology Research Group web page

[136]. These reconstructions can be used to feed more
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information into biofilm models, e.g. the metabolic by-pro-

ducts, compound uptake fluxes, or the secretion of toxins

and growth inhibitors of the documented strains. It has

been suggested that the accuracy of predictions related to

spatial partitioning of species within a mixed-species biofilm

is enhanced by inclusion of the effect of metabolic factors

[72,76].

The studies which explicitly coupled genomic scale data and

biofilm modelling have targeted e.g. illness related biofilms [76]

or microbial fuel cells biofilms [10,73]. In another study of this

kind which focused on E. coli biofilms, it was suggested that a

similar methodology may also be useful for models of tissues

or tumours [74]. In essence, these studies incorporate differential

equations for the diffusion of metabolites in population scale

models, and they do seem promising in terms of improving pre-

diction power of mathematical models of biofilms. For example,

in a modelling study of E. coli colonies grown on glucose mini-

mal agar, incorporation of data from E. coli metabolic

reconstruction led to the discovery of a feature of E. coli colonies

which has not been recognized previously. The study found that

glucose and oxygen gradients within the colony gave rise to four

distinctly spaced metabolic phenotypes, namely, rapidly grow-

ing cells at the bottom edge of the colony, where both glucose

and oxygen concentrations were high, nearly dormant cells in

the interior, where both glucose and oxygen levels were low,

and two other subpopulations between which acetate cross-

feeding was found to take place. The first subpopulation,

located at the base of the agar, exhibited high glucose consump-

tion and acetate production due to high glucose concentrations.

The second subpopulation, located at the regime of high oxygen

concentrations and low glucose concentrations, exhibited a

phenotype that favoured acetate consumption. In terms of the

predictive power of this modelling study, the height to width

ratios of simulated colonies were in agreement with those of

colonies grown experimentally [74].
4. Conclusion
Mathematics can be used to understand and exploit the

world around us. Examples of mathematical models of bio-

film formation presented in this review only scrape the

surface of the vast number of models which have been devel-

oped, from their earliest descriptions until the present. We

presented some examples of biofilm models which signifi-

cantly advanced our understanding of biofilm communities

and generated results applicable, for example, to medicine,

the food industry, dentistry, water management and for

engineering more environmentally friendly energy.

Although computational models have been found useful

over the years in providing practical answers about microbial

communities, they do all have considerable limitations. The

fact that a model is necessarily a significant simplification of

reality is both a handicap and a strength, depending on the

point of view and application. Just as the biofilm field is com-

plex, so is the branch of biofilm modelling. This creates

obstacles between model development and applications,

because if the model is to be trusted, it must be verifiable in a

specific set-up for which it has been created. Furthermore,

the wide use of any given model is difficult to achieve, as

any model would have to go through modifications to

become usable for another research problem. This requires

understanding of the language in which the model source
code was written, and a thorough grasp of the implemented

processes. Luckily, when building a model to address a specific

problem, one may build on the general rules adapted by exist-

ing models and choose suitable methods of implementation for

the question that needs to be answered. For instance, empirical

models give an idea of the relations between specific factors

affecting biofilm formation, e.g. the relationship between temp-

erature and growth rates. Although these are built on specific

experimental results, as evidence of their reliability builds

up, they become widely adapted, as has been the case with

Monod growth equations, for example. Empirical modelling

has been particularly favoured when estimating bacterial

counts is the priority of the study, as is the case in e.g. develop-

ing food spoilage prevention methods. On the other hand, in

studying the interactions between biofilm components on the

scale of bacteria cells, the mechanisms of biofilm organization

and structuring, or when considering structurally complex

environments such as rough surfaces and porous media,

spatial, individual based or cellular automaton models seem

to be a suitable choice, as does the game theory approach. Fur-

thermore, treating the biomass as a continuous, viscoelastic

substance, may allow for applying mechanics laws in studying

the material properties and behaviour of the biomass. Finally,

for analysis of e.g. antimicrobial penetration of a biofilm, a

one-dimensional model treating biomass as a continuum

may be fitting for its purpose.

In their current form, mathematical models of biofilms can

play a key role in addressing many important questions. For

example, a proper combination of experimental and theoretical

approaches will help understanding the behaviour of biofilm

communities in some habitats that can be reasonably complex

(e.g. through structural or chemical heterogeneity). Other ques-

tions will require holistic approaches accounting for biofilm

formation at multiple scales, interactions between species and

other factors. For instance, biofilms are likely to promote survi-

val and persistence of pathogens in food-related environments

[137]. In this context, biofilms can be regarded as just one

element of a larger multifaceted problem involving domains

ranging from the natural environment to food production fac-

tories and consumers. Integrating the key factors in a single

framework to address biofilm-associated problems (e.g. risk

assessment of food contamination), is a challenge that will

necessarily involve mathematical modelling and data

analysis combined with experimental approaches.

It seems that although great improvement has been seen

over the years with regards to computational models of biofilm

formation, with substantial useful information gathered from

computational analysis, much work is yet to be done to

bridge the gap between theoretical and practical aspects, in

order to synergistically build a general set of principles by

means of which microbial development can be understood.

Although not an easy endeavour, it is a necessary next step

to fully realize the potential of biofilm models in addressing

new challenges associated with biofilm control and utilization.

A relatively recent, however fast developing field of systems

biology promises to provide such an integrated framework

[138]. Systems biology has already been successful in engineer-

ing new solutions for e.g. biofuel or the pharmaceutical

industry [139]. The idea behind this research field is to develop

fine-detailed models of ecosystems which take advantage of

the new advances in genome sequencing data collection

[140]. Among a plethora of potential applications of this tech-

nology, when paired with advances in computing, it can lead
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to development of highly sophisticated biofilm models. The

high resolution methodology of systems biology has already

been to some extent applied at the scale of whole populations

of bacteria cells, for example by combining genome-scale meta-

bolic modelling techniques with partial differential equations

to model the spatial distribution of metabolites within the bio-

film [76]. The systems biology approach requires a high level of

cooperation between various disciplines. In building such fine-

resolution models, apart from biology, expertise in fields such

as chemistry, physics, engineering and informatics may be

necessary, depending on the research question. It is likely we

will see more field-specialized biofilm models develop, as is

the case with ASM models for wastewater management or

shelf life prediction models. Before incorporating solutions to
challenges of microbial control and utilization on a large

scale, potential environmental concerns should be addressed,

thus further widening the desirable network of collaboration

in the biofilm research field. This sentiment has already

been expressed by researchers in the biofuel field [134],

however, it should extend to all areas capable of producing a

large-scale impact on the environment.
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