
Review Article

Visc Med 2019;35:28–37

Immunotherapy: Pancreatic Cancer and 
Extrahepatic Biliary Tract Cancer

Lukas Perkhofer    Alica K. Beutel    Thomas J. Ettrich    

Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany

Received: January 9, 2019
Accepted: January 28, 2019
Published online: February 7, 2019

Dr. Thomas J. Ettrich
Klinik für Innere Medizin I, Universitätsklinikum Ulm
Albert-Einstein-Allee 23
DE–89081 Ulm (Germany)
E-Mail thomas.ettrich @ uniklinik-ulm.de

© 2019 S. Karger AG, Basel

E-Mail karger@karger.com
www.karger.com/vis

DOI: 10.1159/000497291

Keywords
Biliary tract cancer · Cancer · Checkpoint inhibition · 
Cholangiocarcinoma · Immunotherapy · Pancreatic ductal 
adenocarcinoma

Abstract
Pancreatic ductal adenocarcinoma (PDAC) and extrahepatic 
biliary tract cancer (BTC) are among the malignancies with 
the highest morbidity and mortality. Despite increasing 
knowledge on biology and novel therapies, outcome re-
mains poor in these patients. Recent progress in immuno-
therapies created new hopes in the treatment of PDAC and 
extrahepatic BTC. Several trials tested immunotherapies in 
various therapeutic situations as monotherapies or in com-
binations. Although responses were seen in some of the tri-
als, the value of immunotherapy in PDAC and extrahepatic 
BTC remains unclear in the current situation, especially re-
garding the complex biological characteristics with a high 
stroma component, intrinsic resistance mechanisms and an 
immunosuppressive, hypoxic microenvironment. These ma-
jor hurdles have to be taken into account and overcome if 
immunotherapies should be successful in these tumor enti-
ties. Thereby, combinational approaches that allow on the 
one hand targeted therapy and on the other restore or boost 
the function of immune cells are promising.

© 2019 S. Karger AG, Basel

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of 
the most lethal malignancies with a devastating 5-year 
survival rate of approximately 8% for all stages combined 

[1]. At early stages, pancreatic cancer is usually asymp-
tomatic whereas at advanced stages presenting symptoms 
may include jaundice, abdominal pain, weight loss, steat-
orrhea and new-onset diabetes. Due to its silent nature in 
early stages, PDAC is often diagnosed at an advanced or 
metastatic stage.

Surgical resection at best in combination with adjuvant 
systemic chemotherapy is the only potentially curative 
treatment, but less than 20% of patients are eligible for sur-
gery with curative intent at the time of primary diagnosis. 
A recently published randomized phase III trial (PRODIGE 
24) showed a significant survival benefit from adjuvant 
modified FOLFIRINOX (mFOLFIRINOX: 5-fluoroura- 
cil [FU]/leucovorin/irinotecan/oxaliplatin) compared to 
standard of care therapy with gemcitabine. The overall 
survival rate at 3 years was 63.4% in the mFOLFIRINOX 
group compared to 48.6% in the gemcitabine group, how-
ever at the expense of a higher toxicity [2]. However, not 
all patients can receive adjuvant treatment due to postop-
erative morbidity or prolonged convalescence. The strat-
egy of adjuvant chemotherapy following surgery is cur-
rently challenged by several ongoing clinical trials of neo-
adjuvant or perioperative chemotherapy concepts in 
patients with borderline resectable tumors in order to in-
crease the R0 resection rate and consecutively the survival 
rate. Gemcitabine has been the standard of care for locally 
advanced or metastatic PDAC patients since 1997. How-
ever, over the last few years the therapeutic landscape de-
veloped with implementation of two efficacious regimens 
in the management of advanced PDAC. The results from 
the MPACT trial demonstrated an improvement in me-
dian overall survival from 7 to 8.5 months for the combi-
nation of gemcitabine and nab-paclitaxel when compared 
to gemcitabine alone [3]. The results of the PRODIGE 4/
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ACCORD 11 have proven the FOLFIRINOX regimen to 
be superior to gemcitabine alone with an extended median 
overall survival of 11.1 months, however with an increased 
toxicity [4]. Results from the NAPOLI-1 trial have recent-
ly shown that nanoliposomal irinotecan in combination 
with 5-FU and leucovorin extends survival in patients with 
metastatic PDAC (mPDAC) who had previously received 
gemcitabine-based therapy. Another option for second-
line therapy is a combination of oxaliplatin with 5-FU/fo-
linic acid (OFF) as the phase III trial CONKO-003 has 
demonstrated [5]. For the first time, sequential treatment 
algorithms are proposed based on available data for pa-
tients with mPDAC. However, despite the advances in sys-
temic cytotoxic chemotherapy strategies, the overall sur-
vival benefit is modest, and the prognosis of mPDAC still 
remains dismal. An even worse situation regarding limited 
evidence-based systemic treatment options is found in ad-
vanced extrahepatic biliary tract cancer (BTC) with platin 
(cisplatin, oxaliplatin)/gemcitabine as being the only stan-
dard of care therapy [6, 7].

PDAC and extrahepatic BTC are associated with high 
morbidity and mortality, and there is an urgent need for 
novel treatment options besides chemotherapy to im-
prove survival outcomes and quality of life. An innovative 
treatment modality is immunotherapy which aims at 
augmenting the body’s own immune system to fight can-
cer cells. Cancer immunotherapy has experienced a 
breakthrough in various cancer types and revolutionized 
traditional cancer treatment in various entities. The rap-
idly growing field of immunotherapies includes immune 
checkpoint blockade therapies, cancer vaccinations and 
chimeric antigen receptor (CAR) T-cell therapies. This 
review aims to provide an overview on the current state 
of immunotherapies in PDAC and extrahepatic BTC and 
to give an outlook on future directions.

Checkpoint Inhibition as a New Therapeutic Strategy

The immune system has the ability to recognize and 
eliminate cancer cells [8]. CD8+ cytotoxic T cells identify 
tumor-specific antigens that are presented by the major 
histocompatibility complex (MHC) class I molecule ex-
pressed on antigen-presenting cells through their T-cell 
receptor. 

Immune checkpoints are pathways that regulate the 
duration and amplitude of immune responses in physi-
ological conditions in order to maintain self-tolerance 
and prevent autoimmunity [9]. Utilization of these path-
ways is an important mechanism of immune evasion of 
cancer cells. Tumor cells exploit immune checkpoints to 
avoid recognition and elimination by the immune sys-
tem. The immune checkpoints that have been intensively 
studied are mainly cytotoxic T lymphocyte-associated 
protein 4 (CTLA-4) and programmed cell death-1 (PD-1)  
(Table 1). CTLA-4 and PD-1 are co-inhibitory receptors 
expressed on the surface of T cells that function as nega-
tive regulators of T-cell activation. Monoclonal antibod-
ies targeting these immune checkpoint regulators can en-
hance endogenous antitumoral activity. So far, inhibition 
of immune checkpoints has been shown to be particu-
larly effective in several malignancies such as melanoma 
[10], non-small cell lung cancer [11], urothelial carcino-
ma [12], renal-cell carcinoma [13], head and neck cancer 
[14] and hepatic cancer [15]. 

Inhibition of the CTLA-4 Pathway

CTLA-4 is a co-inhibitory receptor, whereas CD28 is a 
co-stimulatory receptor expressed on activated CD4+ and 
CD8+ T cells. CTLA-4 and CD28 compete in binding the 

Table 1. Results from clinical trials with checkpoint inhibitors in pancreatic cancer and extrahepatic biliary tract cancer

Molecule Regimen Phase Patient population Results Reference

Ipilimumab 
(anti-CTLA-4)

Monotherapy II Locally advanced or metastatic 
PDAC, n = 27

No objective response  
(1 delayed response after 
initial progression)

Royal et al. [18]

Combination with gemcitabine Ib Advanced PDAC, n = 16 2 PR, 5 SD Kalyan et al. [20]

Tremelimumab 
(anti-CTLA-4)

Combination with gemcitabine I Metastatic PDAC, n = 34 2 PR Aglietta et al. [19] 

BMS-936559 
(anti-PD-L1)

Monotherapy I Multiple entities, advanced or 
metastatic PDAC, n = 14

No objective response Brahmer et al. [23]

Combination with chemotherapy Ib/II Multiple entities, metastatic  
PDAC, n = 11

3 PR, 8 SD Wiess et al. [25] 

Nivolumab 
(anti-PD-1)

Combination with nab-paclitaxel ± 
gemcitabine

I Locally advanced or metastatic 
PDAC, n = 17

5 PR, 7 SD Wainberg et al. [26]

CTLA-4, cytotoxic T lymphocyte-associated protein 4; PDAC, pancreatic ductal adenocarcinoma; PR, partial remission; SD, stable disease; PD-L1, pro-
grammed cell death ligand-1; PD-1, programmed cell death-1.
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ligands B7-1 (also known as CD80) or B7-2 (also known 
as CD86) on antigen-presenting cells. CTLA-4 attenuates 
the activity of T cells by outcompeting CD28 in binding 
CD80 and CD86 and delivering inhibitory signals to the T 
cell [9, 16]. Blockade of CTLA-4 has been shown to induce 
antitumoral activity [17]. Ipilimumab, a fully humanized 
IgG1 monoclonal antibody, blocks the ligand-receptor  
interaction of B7-1/B7-2 and CTLA-4. In 2010 ipilimu
mab was tested in a phase II trial in patients with advanced 
PDAC suggesting that single-agent ipilimumab does not 
demonstrate significant activity in the treatment of ad-
vanced PDAC [18]. A phase I dose escalation trial of 
tremelimumab, a fully humanized IgG2 monoclonal anti-
body antagonizing CTLA-4, demonstrated a safe profile 
when combined with gemcitabine in chemotherapy-naïve 
patients with metastatic PDAC [19]. A phase Ib trial of 
ipilimumab in combination with gemcitabine in advanced 
pancreatic cancer confirmed tolerability. However, the 
objective response rate did not seem to be significantly 
improved over gemcitabine alone in both trials [20].

The PD-1/PD-L1 Pathway

PD-1 is a co-inhibitory receptor expressed on T cells, 
B cells, monocytes and natural killer T cells [21]. PD-1  
has two ligands (PD-L1 and PD-L2) that are expressed on 
antigen-presenting cells. Binding of PD-L1 or PD-L2  
to PD-1 downregulates the expression of anti-apopto- 
tic molecules and attenuates T cell activation [22]. Anti-
PD-1 inhibitors block the interaction with PD-L1 and 
PD-L2 resulting in decreased tumor growth.

In a phase I clinical trial of anti-PD-L1 (BMS-936559) 
therapy in advanced pretreated solid tumors, no antitu-
mor activity was seen in the 14 PDAC patients included. 
Other solid tumors like melanoma, lung cancer and re-
nal-cell cancer did however show significant tumor re-
gression [23]. Preclinical data from murine transplant 
models showed an antitumoral effect for PD-1 or PD-L1 
blockade combined with chemotherapy [24]. A phase Ib 
trial evaluated pembrolizumab, a humanized IgG4 mono-
clonal antibody against PD-1, combined with various 
chemotherapies across multiple advanced solid tumors. 
In total 11 patients with metastatic PDAC (after first-line 
chemotherapy or treatment naïve) received chemothera-
py in combination with pembrolizumab. Two patients 
showed a partial remission, 6 patients had a stable disease 
[25]. Interim results from a phase I trial combining 
nivolumab plus nab-paclitaxel with or without gem-
citabine showed a response in 12 out of 17 patients (5 pa-
tients partial remission, 7 patients stable disease) with lo-
cally advanced or metastatic PDAC [26]. These results 
appear promising but larger clinical trials are needed to 
evaluate any statistically significant clinical benefit. 

Regarding biliary tract cancer, encouraging results 
have recently been published. Thirty-four patients who 
had progressed on at least one line of systemic therapy 
received nivolumab. Out of 29 evaluable patients, 5 pa-
tients achieved partial remission and 11 patients achieved 
stable disease [27]. Phase II trials with mono or dual 
checkpoint inhibition or combined with gemcitabine/cis-
platin are currently recruiting (e.g. NCT03101566, 
NCT02829918). 

Immunogenic Subtypes of PDAC and Extrahepatic 
BTC

A small subset of PDAC patients with mismatch repair 
deficiency (MMR) showed significant clinical benefit 
with immune checkpoint inhibitors. In a phase II study 
conducted by Le and Durham [28], 86 patients with 
MMR-deficient advanced tumors of 12 different tumor 
types demonstrated efficiency with anti-PD-1 therapy. 
Eight patients with PDAC were included in the study and 
achieved an objective response rate of 62%. The mis-
match repair system corrects DNA damage introduced 
into microsatellites (short tandemly repeated sequences) 
during replication to maintain genomic stability [29]. De-
fects in the MMR system or loss of function of MMR pro-
teins (MLH1, MSH2, MSH6, PMS2) lead to an accumula-
tion of mutations in microsatellites, resulting in a micro-
satellite instable (MSI) phenotype [30]. Unfortunately, 
MSI is a rare event that only occurs in about 1% of all 
PDAC tumors and in about 5–13% of extrahepatic BTC 
[31–33]. However, National Comprehensive Cancer Net-
work guidelines encourage to consider MSI and/or MMR 
testing on tumor tissue for patients with locally advanced 
or metastatic PDAC [34].

Generally tumor immunogenicity is caused by the de-
gree of structural epitope differences compared to normal 
cells that allows T cell recognition and interference [35]. 
A defective DNA repair system increases the tumor mu-
tational burden (TMB) resulting in a higher neoantigen 
load. Thereby the increased neoantigen expression fur-
ther sensitizes to immune checkpoint blockade irrespec-
tive of the tumor type. High TMB is positively correlated 
with response to checkpoint inhibition across diverse tu-
mor entities [36, 37]. But compared to other solid tumors 
PDAC has a low TMB with a median number of about 1 
somatic mutation per megabase as opposed to solid tu-
mors with a high mutational load of about 10 somatic 
mutations per megabase (melanoma, lung cancer, blad-
der cancer) [38]. Tumor-infiltrating lymphocytes (TILs) 
are crucial in the complex immunogenic response and 
increased in high TMB [39]. But within the pronounced 
desmoplastic stromal compartment TILs are rare and 
classify PDAC more or less as noninflamed [40, 41]. Im-
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munosuppressive cells like T regulatory cells or myeloid 
cells are frequently found in the stroma and are contra-
dictory to TILs [42]. Additionally, the stroma-related hy-
poxic tumor microenvironment favors these non-TIL 
cells in response to activated cancer-associated fibro-
blasts [43–45]. In sum, the previously mentioned factors 
contribute to the immunosuppressive tumor microenvi-
ronement that enables a therapy resistance mechanism as 
a possible explanation for the unresponsiveness to check-
point inhibition. As a consequence, pro-immunogenic 
strategies are needed in PDAC, as far as various tumor-
associated antigens (TAAs) are known. Similar condi-
tions are found in extrahepatic biliary tract cancer. Single 
agent immune checkpoint inhibitors have only very lim-
ited efficiency in both cancer entities unless the tumor is 
microsatellite instable and so there is a need for combina-
tion strategies.

Adoptive T-Cell Therapy

CAR T-cell therapy is a form of immunotherapy that 
redirects patients’ T cells to specifically target and destroy 
tumor cells. Adoptive T-cell therapy has demonstrated 
impressive results in hematological B cell malignancies 
like B cell lymphoma [46–49] and acute lymphoblastic 
leukemia [46, 50]. 

As a first step in the manufacturing process, T cells are 
isolated from peripheral blood of the patient by means of 
leukapheresis. Ex vivo T cells are activated and virally 
transducted with the vector encoding the CAR, an artifi-
cial T cell receptor. CAR T cells are further extended and 
reinfused into the patient. CAR T cells recognize tumor 
surface antigens independently from MHC restriction 
and kill tumor cells upon antigen contact. 

Multiple early phase I studies demonstrate efficacy in 
CAR T-cell therapy in preclinical models of pancreatic 
cancer. Targeting against the tumor antigen mesothelin 
[51, 52], carcinoembryonic antigen [53], prostate stem 
cell antigen [54, 55], HER2 neu, CD24 [56], CD133 and 
mucin-1 (MUC-1) [57] has shown activity in preclinical 
tumor models. Currently, multiple clinical phase I and II 
trials using CAR T-cell therapy targeting prostate stem 
cell antigen (e.g. NCT02744287) are ongoing.

CAR T-cell therapy has made tremendous successes in 
hematological malignancies, its application in PDAC and 
extrahepatic BTC is still at the beginning.

Vaccination Strategies in PDAC and Extrahepatic BTC

A key characteristic of PDAC is its low immunogenic-
ity that is driven by various means. As mentioned before, 
TMB is low in PDAC and extrahepatic BTC with only 

rarely expressed neoantigens, limiting the response to im-
munotherapies [37, 38]. Pro-immunogenic strategies are 
warranted to overcome this hurdle as far as various TAAs 
are known for both cancers, especially the highly immu-
nogenic neoantigens driven by KRAS mutations in PDAC 
[58]. Particularly immune modulation via vaccination 
strategies seems to be promising in both cancer types. 
Thereby, vaccine immunotherapy in cancer treatment 
aims to activate an immune response by achieving TAA 
presentation. Therefore, different concepts exist includ-
ing whole-cell, dendritic-cell (DC), DNA and peptide 
vaccines.

Peptide and Protein-Based Vaccines 
Various TAAs are described in PDAC and BTC that 

can be targeted, like mucin 5AC [59], C-ERC/mesothelin 
[60, 61], mutS homolog 2 (MSH2), postmeiotic segrega-
tion increased 1 (PMS1) [62], cancer-testis antigens [63] 
and Forkhead box M1 [64]. In line a phase I study ob-
tained first interventional steps with an autologous vac-
cine HSPPC-96 (heat shock protein gp96) purified from 
completely resected PDACs. In total 10 patients received 
each 4 doses of autologous HSPPC-96. Safety was proved, 
and no correlation between immune response and prog-
nosis could be seen [65].

KRAS has been in the focus as the key TAA knowing 
that in up to 90% of PDAC KRAS point mutations are 
found (most frequent KRASG12D) that can allow cytotox-
ic T cell recognition [66–69]. Initial trials with RAS vac-
cines could verify safety and showed a transient T cell 
PDAC response [70]. Following that, two phase II clinical 
trials used subcutaneous KRAS vaccination combined 
with GM-CSF in the adjuvant setting [71, 72]. In total 23 
patients were treated, 10 patients with a single peptide 
vaccine that corresponded to the KRAS mutation of the 
cancer and 13 patients with a mixture of the 7 most com-
mon mutated RAS peptides in PDAC. Vaccination was 
well tolerated, and survival times after 10 years were 20% 
(4/20 evaluable patients) compared to 0% (0/87) in a co-
hort of nonvaccinated patients treated in the same period 
[71, 72]. Similar results were achieved in another adju-
vant use of a RAS peptide vaccine in 5 PDAC patients 
with a mean overall survival (OS) time of 44.4 months 
[23]. Finally Abou-Alfa et al. [73] vaccinated 24 resected 
PDAC patients harboring a KRASG12D mutation with a 
21-mer peptide vaccine containing the KRAS mutation of 
the patient’s tumor. The therapy was well tolerated, and 
9 patients were evaluable for immune response. The me-
dian OS time in this study was 20.3 months. Currently 
under investigation is the combination of the RAS vac-
cine TG01 (a mixture of 7 RAS peptides)/GM-CSF with 
gemcitabine versus gemcitabine monotherapy as an ad-
juvant treatment in resected (R0 or R1) RAS-mutant 
PDAC patients (NCT02261714). A first interim analysis 
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of 19 patients showed promising results with a 2-year OS 
rate of 68.4% and a median OS of 33.1 months [74]. How-
ever, these promising results in the adjuvant setting could 
not directly be transferred to the palliative setting when 
used as monotherapies. Gjertsen et al. [70] treated 38 pa-
tients with advanced PDAC and showed a significant sur-
vival benefit that depends on the immune response (me-
dian OS 148 days vs. 61 days in nonimmune responders; 
p = 0.0002), when using a KRAS vaccine adjusted to the 
patients’ mutation. 

Carcinoembryonic antigen is another vaccination tar-
get of interest tested in PDAC. Although showing prom-
ising results in early phase clinical trials [75, 76], a ran-
domized phase III trial with a carcinoembryonic antigen-
targeted vaccine in PDAC second-line therapy failed to 
show a survival benefit compared to palliative chemo-
therapy or best supportive care [77]. The high need for a 
tumor response and the complex microenvironment in 
advanced PDAC may be more suitable for combinational 
approaches. Considering that, we are looking forward to 
the data of further upcoming randomized trials, in com-
bination with checkpoint inhibitors (e.g., NCT02472977, 
NCT02350673).

Another focus is set on the antigastrin-17 diphtheria 
toxin-coupled vaccine G17DT that acts against the growth 
factor gastrin-17. A first phase II study in 30 advanced 
PDAC patients confirmed a dose dependent significant 
survival benefit for antibody responders (217 days) versus 
nonresponders (121 days) [78]. The treatment of 154 che-
motherapy-naïve patients with advanced PDAC with 
G17DT led to a nearly doubled median OS time (151 days) 
compared to the placebo group (82 days). Again, the sur-
vival benefit was significantly dependent on the anti-
G17DT response [79]. Negative results were reported by 
Shapiro et al. [80] in advanced PDAC treatment for the 
combination of gemcitabine plus G17DT (median OS 5.8 
months) compared to gemcitabine plus placebo (median 
OS 6.6 months). The final results of a phase III trial in ad-
vanced PDAC patients treated with sequentially adminis-
tered G17DT or placebo are pending (NCT02118077).

Increased telomerase expression in PDAC [81] is ac-
companied by the induction of human telomerase reverse 
transcriptase [82] and relevant for tumorigenesis. There-
fore the human telomerase reverse transcriptase peptide-
based vaccine GV1001 was developed. Despite promising 
phase I/II trial results, GV1001 failed to show a significant 
survival benefit for advanced PDAC patients in a phase 
III trial [83].

MUC-1 is a glycoprotein that has a function in cell sig-
naling with oncogenic implications on cell polarity, mo-
tility and angiogenesis [84, 85]. Overexpression is found 
in several tumors like PDAC [86] and BTC [87] and is 
linked to a highly immunogenic target [88] with implica-
tions on drug resistance [89]. In a phase I trial 6 PDAC 

and 3 BTC patients in a palliative setting were treated 
with a 100-mer MUC-1 peptide, resulting in mainly tu-
mor progression after 7 weeks [90]. Similar disappointing 
results for peptide-based MUC-1 vaccines were obtained 
by Ramanathan et al. [91].

Furthermore, in BTC alternative epitopes and ap-
proaches can be found. Aruga et al. treated 9 (4 intrahe-
patic, 3 extrahepatic BTC and 1 gallbladder cancer) ad-
vanced chemotherapy refractory BTC patients with a 
three-peptide vaccine (cell division cycle-associated 1, 
cadherin 3 and kinesin family member 20A). All patients 
had a peptide-specific T cell immune response, and stable 
disease was observed in 5 of 9 patients after 8 weeks of 
therapy. The median progression-free survival was 3.4 
months and the median OS 9.7 months [92]. In another 
similar therapeutic situation 9 patients were treated with 
a four-peptide derived vaccine from cancer-testis anti-
gens. Clinical responses were observed in 6 of 9 patients 
with a median OS of 380 days. The injection site reaction 
and cytotoxic T cell induction seemed to be prognostic 
factors for survival [93].

Whole-Cell-Based Vaccines
Whole-cell vaccines are normally derived from the 

primary tumor and express various epitopes of CD8+ and 
CD4+ T cells. This advanced approach ensures to hit all 
potentially relevant antigens and allows multiple TAA 
targeting in parallel. However, only a small number of 
patients undergo surgery for PDAC, and the total number 
of tumor cells is often low; therefore, allogeneic cell lines 
are alternatively used [94–97]. The use of allogeneic tu-
mor cells can further bypass the need of individualizing 
each therapy. The mixture of several cell lines from vari-
ous tumors can improve the overlap of the antigens ex-
pressed and the patient’s tumor. Moreover, preclinical 
models taught us that insufficient tumor defeat is mainly 
caused by the inability of the immune system to appro-
priately respond to TAAs [98]. Here, cytokines can assist 
by enabling an immunological boost, and GM-CSF was 
found to be a highly potent inducer [99], that can also be 
used therapeutically [99, 100]. 

GVAX pancreas is a lethally irradiated allogeneic 
whole-cell tumor vaccine that is genetically modified to 
secrete GM-CSF and in parallel deliver TAAs [99]. In the 
ECLIPSE phase IIb trial, advanced PDAC patients who 
had failed previous therapy were enrolled and treated 
with either GVAX pancreas plus mesothelin-expressing 
live-attenuated Listeria monocytogenes (CRS-207) as an 
immunogenic boost, or CRS-207 alone or physician’s 
choice of single-agent chemotherapy. Upfront the pa-
tients received low-dose cyclophosphamide for inhibi-
tion of regulatory T cells in the GVAX combination arm, 
an effect confirmed in BTC [101]. With a median OS of 
3.8 months GVAX plus CRS-207 was neither superior to 
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the chemotherapy arm (4.6 months) nor the CRS-207 
arm (5.4 months) [102]. 

Within another single-center phase II study, 60 cura-
tively resected patients were treated with GVAX and sub-
sequent 5-FU-based chemoradiation. The therapy was 
well tolerated, the median OS was 24.8 months, and the 
disease-free survival correlated with the induction of a 
mesothelin-specific T cell response in the patients [103]. 
The aforementioned telomerase vaccine GV1001 failed to 
show a survival benefit in combination with gemcitabine 
(median OS 5.9 months) to gemcitabine (median OS 7.3 
months) only in chemotherapy-naïve, advanced PDAC 
patients in a phase III trial [83]. However, as far as GVAX 
could not fulfill the expectation of a one-fits-all vaccine, 
alternative strategies are needed to boost the efficacy. 
Therefore combinations of GVAX with checkpoint in-
hibitors like nivolumab (NCT02243371, NCT03190265), 
pembrolizumab (NCT02648282) or ipilimumab (NCT- 
03190265) are currently under investigation.

Another tested vaccine is algenpantucel-L consisting 
of allogeneic irradiated pancreatic cancer cells with ex-
pression of α-1,3-galactosyl transferase, an enzyme cata-
lyzing the synthesis of α-galactosyl epitopes. The vaccine 
thereby aims to boost the activity against α-galactosyl-
labeled tumor cells. Promising preclinical results [104, 
105] paved the way for clinical trials. The IMPRESS phase 
III study included 722 resected PDAC patients who re-
ceived adjuvant standard of care chemotherapy with or 
without radiation with algenpantucel-L. The study failed 
by showing a median OS of 27.3 months for the addition 
of algenpantucel-L compared to 30.4 months with stan-
dard of care alone [106].

Dendritic Cell Vaccines 
DCs act as highly effective antigen-presenting cells 

that facilitate cytolytic and regulatory T cell reaction 
[107]. DCs can be manipulated in several ways in order 
to achieve an antitumor response [108].

Within a phase I trial DCs were pulsed with a mixture 
of three types of Wilms tumor 1 peptides (MHC I and/or 
II) and combined with gemcitabine as palliative treatment 
in advanced PDAC patients. In this trial the combination 
of both MHC class I- and II-restricted epitopes was linked 
to a delayed-type hypersensitivity (3/10 patients) that re-
sulted in a significant survival benefit (median OS 717 
days) compared to negative control [109]. In a previous 
phase I study, safety for the WT1 vaccine in combination 
with gemcitabine could also be confirmed for intrahepat-
ic (4 patients) and extrahepatic (4 patients) BTC, although 
an objective clinical efficacy was missing with a disease 
control rate of 50% after 2 months of therapy [110].

As previously mentioned MUC-1 is a highly immuno-
genic target in PDAC but also BTC. Lepisto et al. [111] 
conducted an adjuvant phase I/II clinical trial of a MUC-

1 peptide-loaded DC vaccine in 10 resected PDAC and 2 
BTC patients. After 4 years, 33% (4/12) of the patients 
were still alive without evidence of a relapse [111]. Feasi-
bility of the approach is confirmed in another 10 cancer 
patients treated with autologous DCs transfected with 
cDNA of MUC-1 by Pecher et al. [112].

A retrospective analysis of 65 advanced BTC patients 
that were treated with WT1 and/or MUC1 pulsed DCs 
verified the safety of the vaccination and showed a clinical 
response in patients who underwent additional chemo-
therapy (median OS with chemotherapy 8.2 months, 
without chemotherapy 5.3 months) [113].

Discussion

The recent immunotherapy progress in solid oncology 
created a hype and new hopes in various cancer entities. 
However, we had to learn that this could not be general-
ized, and tumor response is entity specific. Definitive pos-
itive results are published for MSI-high tumors and for 
tumors with a high mutational burden. Regarding this in 
MSI-high tumors checkpoint inhibitor therapy is FDA 
approved irrespective of the entity. The evolving field of 
checkpoint inhibition shows no clear benefit at the mo-
ment in phase I–II trials; anyhow, there are some re-
sponders. For now, the interpretation of the published 
data is hampered by low patient numbers, partially miss-
ing controls, varying therapy lines/previous therapies and 
inconsistent therapy regimen. Only few studies have used 
the state-of-the-art first-line therapies for advanced 
PDAC, e.g. with gemcitabine/nab-paclitaxel combined 
with nivolumab. The optimal time point for the use of a 
checkpoint inhibitor remains elusive. Anyhow combina-
tional strategies of a checkpoint inhibitor with a chemo-
therapy backbone seem to be more promising in PDAC 
and extrahepatic BTC. Probably this is caused by the spe-
cial biology with a high stroma component, intrinsic re-
sistance mechanisms and an immunosuppressive and hy-
poxic microenvironment. PDACs are among the most 
immune cold cancers with a low mutational burden. Both 
are contradictory to the aforementioned criteria for re-
sponse to checkpoint inhibitors. Moreover, there are no 
established biomarkers that predict therapy response in 
case of checkpoint inhibition in PDAC and extrahepatic 
BTC, but in some studies a high PD-L1 expression was 
associated with poor outcome [114].

Regarding all those tumor microenvironment-driven 
factors it is difficult to believe that immune checkpoint in-
hibitor monotherapy will be successful at least in PDAC. 
To overcome these hurdles alternative strategies are war-
ranted that activate the immune response. A possible ap-
proach could be vaccination strategies. However, after first 
promising results GVAX as the most intensively studied 
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vaccine failed in a phase III trial. This shows the need for 
a better stratification of the patients and the use of alterna-
tive combinational strategies as an example with immune 
checkpoint inhibitors or other immune modulators.
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