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Abstract
Women are twice as likely as men to be diagnosed with ma-
jor depressive disorder (MDD). Recent studies report distinct 
molecular changes in depressed men and women across 
mesocorticolimbic brain regions. However, it is unclear 
which sex-related factors drive distinct MDD-associated pa-
thology. The goal of this study was to use mouse experimen-
tal systems to investigate sex-specific mechanisms underly-
ing the distinct molecular profiles of MDD in men and wom-
en. We used unpredictable chronic mild stress to induce an 
elevated anxiety-/depressive-like state and “four core geno-
types” (FCG) mice to probe for sex-specific mechanisms. As 
predicted, based on previous implications in mood, stress 
impacted the expression of several dopamine-, GABA-, and 
glutamate-related genes. Some of these effects, specifically 
in the prefrontal cortex, were genetic sex-specific, with ef-
fects in XX mice but not in XY mice. Stress also impacted 
gene expression differently across the mesocorticolimbic 
circuit, with increased expression of mood-related genes in 
the prefrontal cortex and nucleus accumbens, but decreased 

expression in basolateral amygdala. Our results suggest that 
females are sensitive to the effects of chronic stress, partly 
due to their genetic sex, independent of gonadal hormones. 
Furthermore, these results point to the prefrontal cortex as 
the node in the mesocorticolimbic circuitry with the stron-
gest female-specific effects. © 2019 S. Karger AG, Basel

Introduction

Every year, 350 million people suffer from major de-
pressive disorder (MDD) globally [1]. MDD is a leading 
cause of disease burden. In 2010, it had an estimated 
economic burden of $210.5 billion, significantly higher 
than the $173.2 billion estimate in 2005 [2]. MDD symp-
toms are characterized by overall emotion dysregula-
tion, low mood, anhedonia, and poor affect, among oth-
ers [3]. Current treatments are only effective at inducing 
remission in a portion of the population [4], and men 
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and women respond differently to pharmacological 
treatment [5]. Cross-cultural epidemiological studies 
that control for reporting biases have found that depres-
sion affects women at twice the rate that it affects men. 
When diagnosed, women report a higher number of 
symptoms, and rate their symptoms more severely than 
men [6–10]. 

Traditional studies looking at the molecular mecha-
nisms of depression have often investigated only a single 
brain region. However, this provides an incomplete pic-
ture, and looking at how pathways are affected across re-
gions may be more informative in the understanding of 
the disease at the network and circuit level [11, 12]. By 
investigating stress-induced transcriptional changes 
across major nodes of a circuit, it may be possible to gain 
a greater insight into how these molecular pathways are 
affected in disease. 

We therefore selected three regions from the mesocor-
ticolimbic circuit implicated in depression neuropathol-
ogy, i.e., the prefrontal cortex (PFC), basolateral amyg-
dala (BLA), and nucleus accumbens (NAc) [13], with the 
intention of comparing gene pathway changes across re-
gions. Prior studies suggest that these regions are affected 
in depression, with possible region-specific effects. For 
example, blood oxygenation level-dependent (BOLD) 
imaging studies report activity differences in these re-
gions, with an increase in BLA activity at baseline, and a 
decrease in NAc and PFC activity during emotion tasks 
(e.g., [14–22]). At the molecular level, our lab and others 
have reported large transcriptional changes in MDD 
across the circuit. Furthermore, we recently reported 
vastly different molecular signatures between men and 
women in the PFC and BLA of postmortem brains from 
MDD subjects [23]. 

Within these regions, we looked at three candidate 
gene pathways that have been previously implicated in 
mood regulation: (1) γ aminobutyric acid (GABA), (2) 
glutamate, and (3) dopamine. We selected GABA, the 
major inhibitory neurotransmitter, as GABA dysfunction 
in MDD has been heavily implicated in both animal and 
human studies across the circuit [24–27]. We previously 
reported a sex-specific reduction in SST, a GABA inter-
neuron marker, in the BLA of women with MDD, but not 
in men [28]. We also selected glutamate, the major excit-
atory neurotransmitter, as dysfunction in this pathway 
has also been implicated in MDD [27]. There appear to 
be sex differences within this pathway at the molecular 
level in the dorsolateral (DL)PFC. For instance, depressed 
women exhibit increased expression of glutamate-related 
genes compared to healthy women, but these genes are 

not affected in depressed men [29]. Furthermore, sur-
mounting evidence suggests sex-dependent effects of ket-
amine, an antidepressant believed to modulate glutamate 
signaling in the brain, thus potentially indicating a differ-
ent underlying pathology in men and women [30, 31]. 
Lastly, we looked at dopamine-related genes due to the 
clear ties to reward and motivation circuitry [32, 33]. An-
hedonia and amotivation are classical depressive symp-
toms in humans that may be linked specifically to dopa-
mine pathway dysfunction within the NAc [34] but can 
also involve other regions such as the PFC [35]. Previous 
labs have linked dopamine neurons specifically to depres-
sive behaviors in animals [36], further warranting an in-
depth investigation. 

The overall goal of this study was to use mouse exper-
imental systems to investigate the potential sex-specific 
mechanisms underlying the distinct molecular profiles of 
depression that we revealed in men and women. We used 
unpredictable chronic mild stress (UCMS) to induce an 
elevated anxiety-/depressive-like state. Furthermore, to 
probe for sex-specific mechanisms, we used “four core 
genotypes” (FCG) mice, in which we could independent-
ly examine the effects of adult circulating hormones, the 
developmental organizational effects of hormones, and 
X/Y genetic sex [37]. We examined if males and females 
exhibited similar or distinct molecular changes in re-
sponse to stress exposure, with a focus on whether the 
same molecular pathways were influenced similarly 
across the relevant brain regions. 

Materials and Methods

Mice
FCG mice were used in all experiments. In humans and ani-

mals, the Sry gene on the Y-chromosome encodes for testes. Thus, 
genetic sex and gonadal sex are linked. However, in FCG mice, the 
Sry gene is on an autosome, making it possible to independently 
investigate developmental organizational effects of hormones (tes-
tes vs. ovaries) and genetic sex (XY vs. XX). In addition, it is pos-
sible to gonadectomize adult FCG mice to separate the effects of 
circulating hormones from organizational hormonal effects. The 
three sex differences can thus be examined independently of one 
another. The four possible genotypes are: XX females (XXF), XX-
Sry males (XXM), XYSry males (XYM), and XY females (XYF). 
Throughout our experiments, mice were group-housed (3–5 mice/
cage) and maintained under standard conditions (12 h: 12 h light-
dark cycle; 22 ± 1  ° C, food and water ad libitum). 

Hormone Manipulation
At approximately 12 weeks of age, all mice underwent GDX 

surgeries to remove the gonads, ensuring the elimination of circu-
lating gonadal hormones. At the time of surgery, mice were given 
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a silastic capsule (Dow Corning Corp., Midland, MI, USA) that 
contained either 5 mm of crystalline testosterone, or a size-matched 
blank capsule. Within each genotype, half of the mice were ran-
domly assigned to be implanted with testosterone-filled capsules 
and half were implanted with blank capsules. A testosterone cap-
sule of this size produces circulating testosterone levels that mim-
ic those of a normal adult male [38]. After surgery, the mice were 
allotted 3 weeks of recovery before starting the experimentation 
process.

Unpredictable Chronic Mild Stress
We used the extensively validated model known as UCMS to 

induce an elevated depressive-/anxiety-like state in the mice [28, 
38, 39]. UCMS elicits a state similar to that of MDD in humans. 
We exposed mice to a random schedule of psychosocial stressors 
over 8 weeks. Example stressors were altered light cycles, mild re-
straint, social stress, wet or no bedding, predator odor, reduced 
space, a forced bath, and a tilted cage. Weight and the state of the 
fur were monitored and recorded weekly to track the progression 
of UCMS syndrome. Nonstressed mice were not exposed to stress-
ors, but their weight and the state of their fur were monitored 
weekly with mild handling. 

Gene Selection and Primer Design
Genes were selected from three major mood-related pathways: 

GABA, glutamate, and dopamine. For GABA, we examined genes 
coding for three receptor subunits (GABA-A receptor subunit α2 
[Gabra2], GABA-A receptor subunit α5 [Gabra5], and GABA-B 
receptor subunit 2 [Gabbr2]), GABA receptor-anchoring protein 
gephyrin (Gphn), GABA transporter (Gat1), GABA type A recep-
tor-associated protein (Gabarap), and GABA type A receptor-as-
sociated protein-like 1 (Gabarapl1). For glutamate, we examined 
genes coding for two glutamate ionotropic α amino-3-hydroxy-
5-methyl-4-isoxazole propionate (AMPA) receptors (glutamate 
receptors 1 [Gria1] and 3 [Gria3]), metabotropic glutamate recep-
tor 1 (Grm1), ionotropic kainate 3 glutamate receptor (Grik3), N-
methyl-D-aspartate (NMDA) receptor subunit 3A (Grin3a), mito-
chondrial glutamate carrier 1 (Slc25a22), and glutamate receptor-
interacting protein 1 (Grip1). For dopamine, we examined genes 
coding for three dopamine receptors (Drd1, Drd2, and Drd5),  
catechol-O-methyltransferase (Comt), monoamine oxidases A 
(Maoa) and B (Maob), cAMP-responsive element-binding pro-
teins 1 (Creb1) and 3 (Creb3), CREB-binding protein (Crebbp), 
and DOPA decarboxylase (Ddc).

Quantitative PCR
Upon sacrifice, brains were flash-frozen on dry ice and stored 

at –80  ° C. Rostrocaudal sections (160-µm-thick) were obtained us-
ing a cryostat, and tissue punches were used to isolate the PFC 
(bregma 2.34–0.50 mm; includes prelimbic and cingulate corti-
ces), NAc (bregma 0.74–0.38 mm), and BLA (bregma –0.94 to 
–1.82 mm) [40]. The locations of tissue punches are shown in on-
line supplementary Figure 1 (for all online suppl. material, see 
www.karger.com/doi/10.1159/000499105). RNA was isolated and 
extracted using RNeasy Plus Micro kits (Qiagen, Valencia, CA, 
USA) with Qiashredder columns (Qiagen). RNA concentration 
was determined using a Qubit fluorometer (Invitrogen), and RNA 
integrity was measured with a bioanalyzer (Agilent). RNA from 
mice (n = 3) was pooled into a single sample to reduce variability 
across replicates. We used 3 replicates per group, giving a total of 

144 samples (3 replicates × 4 genotypes × 2 hormone treatments × 
3 brain regions × 2 stress conditions). RNA (15 μL/sample) was 
converted into cDNA using the iScript cDNA synthesis kit (Bio-
Rad, Hercules, CA, USA), and quantities of cDNA were normal-
ized across samples. Quantitative (q)PCR was run on a CFX 96 
real-time PCR (BioRad) using SsoAdvanced Universal SYBR 
Green Supermix (BioRad). We ran each gene and sample combi-
nation in triplicate and derived the mean of the replicates. Results 
were then calculated as the geometric mean of the relative intensi-
ties compared to 2 housekeeping genes, cyclophilin and GAPDH. 
Importantly, these housekeeping genes do not differ by sex or 
stress. We then transformed this value to the arbitrary signal using 
the formula: 2-ΔΔCT × 10,000. Primer sequences are included in 
online supplementary Table 1. 

Data Analysis
Data were analyzed in SPSS. We first examined whether ex-

pression values for each gene were normally distributed, using the 
Kolmogorov-Smirnov test for normality. If a gene’s expression was 
not normally distributed, we transformed the data using a rank-
based inverse normal transformation [41]. We then performed a 
4-way ANOVA (stress × genetic sex × gonadal sex × hormone). If 
an interaction of stress and a sex-related factor was identified, we 
performed a 2-way ANOVA (stress × sex-related factor), followed 
by Tukey’s post hoc test. We report interaction statistics (e.g., in-
teraction of stress and genetic sex) from the 4-way ANOVA and 
post hoc statistics from the 2-way ANOVA. p < 0.05 was consid-
ered statistically significant and data are expressed as mean ± stan-
dard error of the mean (SEM). To test for potential type I errors 
for main effects, we controlled the false discovery rate (set at 5%) 
using the Benjamini-Hochberg method [42]; the number of genes 
in each category was used as the total number of tests (7 for GABA-
related genes, 7 for glutamate-related genes, and 10 for dopamine-
related genes).

Heatmaps
We also report total patterns of gene expression changes using 

heatmap visualizations (of the effects of stress for each sex-related 

(For figure see next page.)

Fig. 1. Effects of chronic stress exposure on expression of dopa-
mine-related genes. a In the PFC, stress induced an increase in 
expression of Drd5 (p < 0.01), Comt (p < 10–5), Maoa (p < 0.006), 
Creb1 (p < 0.002), and Ddc (p < 0.04) (n = 12/group). b In the PFC, 
there were significant interactions between stress and genetic sex 
on expression of Creb3 (p < 0.02), Crebbp (p < 0.04), Drd1 (p < 
0.03), and Maob (p < 0.05); stress increased expression of these 
genes in XX mice but not XY mice (n = 6/group). c In the PFC, 
there was a significant interaction of stress and testosterone expo-
sure on expression of Maob (p < 0.025) (n = 6/group). d In the NAc, 
stress increased expression of Drd1 (p < 0.02), Drd2 (p < 0.0025), 
Comt (p < 10–5), Maoa (p < 10–6), Maob (p < 10–6), Creb1 (p < 10–6), 
Creb3 (p < 10–4), Crebbp (p < 10–7), and Ddc (p < 10–5) (n = 12/
group). e In the NAc, there was a significant interaction of stress 
and hormone exposure on expression of Drd5 (p < 0.03). Main ef-
fects of stress: * p < 0.05; ** p < 0.01; **** p < 10–4; ***** p < 10–5. 
Post hoc 2-group tests performed after significant interaction:  
§ p < 0.01; §§ p < 0.0001.
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group). Heatmaps representing our expression data were created 
using the free browser program Matrix2png [43]. Data tables for 
each brain region were constructed by using the ratio of stress-to-
nonstress of the means for all experimental groups (ovaries, testes, 
XX, XY, blank capsule, and testosterone capsule). Data are repre-
sented as positive and negative values based on the relative expres-
sion of the nonstress and stress groups. 

Gene Networks
Gene networks were generated for XX nonstress, XX stress, XY 

nonstress, and XY stress conditions using the PFC gene expression 
data (n = 12/group). Two genes are considered coexpressed if their 
expression patterns are correlated across samples, which may re-
flect a shared function or shared upstream regulatory pathway [44, 
45]. The correlation strength was measured using the Pearson cor-
relation coefficient raised by power 3 (i.e., |r|3). Networks were 
generated using coexpression values in which |r|3 > 0.3; some genes 
are excluded from networks if none of the coexpression values hits 
this threshold. The node size is proportional to the degree for that 
gene, which is calculated as the number of edges linked to that 
gene. Edges between nodes are proportional to the correlation 
(|r|3) between the two nodes. Within Cytoscape (3.5.0), edge-
weighted spring embedded layout function using |r|3 determined 
the network layout. Within each network, we calculated the den-
sity and global-clustering coefficient as global network parameters. 
The density of a network indicates how many edges are present in 
a network compared to the maximum possible number of edges, 
with a maximum value of 1. The global-clustering coefficient mea-
sures the extent to which nodes in a network tend to cluster to-
gether, with a maximum value of 1. To test whether global network 
parameters (density and clustering coefficient) differed between 
the nonstress and stress conditions, we generated a null distribu-
tion of clustering coefficients and density separately, through per-
mutation, and then created confidence intervals (CIs). To compare 
2 groups, we then determined if the CIs overlapped. If they did not 
overlap, we rejected the null hypothesis that the two groups would 
have the same clustering coefficient or density. 

Results

The Effects of Stress on Dopamine-Related Genes
In the PFC, we found that stress affected expression of 

several dopamine-related genes. There was a main effect 
of stress on expression of several genes (Fig. 1a). Specifi-
cally, stress exposure caused an increase in expression of 
Drd5 (p < 0.01), Comt (p < 10–5), Maoa (p < 0.006), Creb1 
(p < 0.002), and Ddc (p < 0.04). There were also several 
genes with interactions of stress and a sex-related factor. 
There was a significant interaction of genetic sex and 
stress on expression of Creb3 (p < 0.02), Crebbp (p < 
0.04), Drd1 (p < 0.03), and Maob (p < 0.05); stress in-
creased expression in XX mice but not in XY mice 
(Fig. 1b). There was also a significant interaction of hor-
mone exposure and stress on expression of Maob (p < 
0.025; Fig. 1c), with stress increasing expression of Maob 

in blank-treated mice but not in testosterone-treated 
mice (online suppl. Table 2: summary of statistical re-
sults).

In the BLA, we found that stress had less of an effect 
on dopamine-related genes than in the PFC. There were 
no main effects of stress and no effect of an interaction of 
stress and any sex-related factor on expression of dopa-
mine-related genes in the BLA (online suppl. Table 2: 
summary of statistical results).

We found robust main effects of stress on expression 
of dopamine-related genes in the NAc (Fig. 1d). Specifi-
cally, we found that stress caused an increase in expres-
sion of Drd1 (p < 0.02), Drd2 (p < 0.0025), Comt (p < 
10–5), Maoa (p < 10–6), Maob (p < 10–6), Creb1 (p < 10–6), 
Creb3 (p < 10–4), Crebbp (p < 10–7), and Ddc (p < 10–5). 
There was a significant interaction of stress and hormone 
exposure on expression of Drd5 (p < 0.03; Fig. 1e); stress 
increased expression in blank-treated mice but not in tes-
tosterone-treated mice (online suppl. Table 2: summary 
of statistical results).

The Effects of Stress on GABA-Related Genes
In the PFC, we found that stress affected expression of 

many GABA-related genes. First, we found main effects 
of stress on GABA-related genes (Fig.  2a). Specifically, 
stress exposure increased expression of Gabra2 (p < 
0.003), Gabarapl1 (p < 0.02), and Gabarap (p < 10–8); the 
only gene to be significantly decreased by stress was Ga-
bra5 (p < 0.002). We also observed a significant interac-
tion of stress and genetic sex on expression of Gabbr2  
(p < 0.02; Fig. 2b), where stress increased expression in 
XX mice but not in XY mice (online suppl. Table 2: sum-
mary of statistical results).

We then looked at the BLA in the same mice to see how 
stress impacted expression of GABA-related genes. How-
ever, there were no main effects of stress or interactions 
of stress and any sex-related factor on these GABA-relat-
ed genes in the BLA (online supplementary Table 2: sum-
mary of statistical results). 

Within the NAc, we found that stress generally in-
creased expression of GABA-related genes, with similar 
effects across sex-specific groups (Fig.  2c). There were 
main effects of stress increasing expression of Gabra2  
(p < 10–5), Gphn (p < 10–7), Gabarap (p < 0.004), Gabarapl1  
(p < 10–4), Gabbr2 (p < 10–8), and Gat1 (p < 10–6). Gabra5 
was the only gene in the NAc with reduced expression 
upon stress exposure (p < 0.01). There was no significant 
interaction of a sex-related factor and stress on expression 
of GABA-related genes in the NAc (online suppl. Table 2: 
summary of statistical results).
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The Effects of Stress on Glutamate-Related Genes
In the PFC, glutamate-related genes were generally 

upregulated by stress, with several of these effects being 
sex-specific. There were main effects of stress on expres-
sion of Gria1 (p < 10–5), Slc25a22 (p < 0.02), and Grip1 (p <  
0.003) (Fig. 3a); stress increased expression of Gria1 and 
Grip1 and decreased expression of Slc25a22. We observed 

a significant interaction of stress and genetic sex on ex-
pression of Gria3 (p < 0.03) and Grin3a (p < 0.005); spe-
cifically, stress increased expression in XX mice but not 
in XY mice (Fig. 3b). We also observed a significant in-
teraction of stress and hormone treatment on expression 
of Gria3 (p < 0.04), where stress increased expression in 
blank-treated mice but with no effects in testosterone-
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Fig. 2. Effects of chronic stress exposure on 
expression of GABA-related genes. a In the 
PFC, stress induced an increase in expres-
sion of Gabra2 (p < 0.003), Gabarapl1 (p < 
0.02), and Gabarap (p < 10–8), and a de-
crease in expression of Gabra5 (p < 0.002) 
(n = 12/group). b In the PFC, there was a 
significant interaction of stress and genetic 
sex on expression of Gabbr2 (p < 0.02), with 
stress increasing expression only in XX 
mice (n = 6/group). c In the NAc, stress in-
creased expression of Gabra2 (p < 10–5), 
Gphn (p < 10–7), Gabarap (p < 0.004), Ga-
barapl1 (p < 10–4), Gabbr2 (p < 10–8), and 
Gat1 (p < 10–6). In the NAc, stress also de-
creased expression of Gabra5 (p < 0.01)  
(n = 12/group). Main effects of stress: * p < 
0.05; ** p < 0.01; **** p < 10–4; ***** p < 
10–5. Post hoc 2-group tests performed af-
ter significant interaction: § p < 0.01.
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treated mice (Fig.  3c) (online supplementary Table 2: 
summary of statistical results).

In the BLA, we did not identify any main effects of 
stress or interaction of stress and any sex-related factor 
on expression of glutamate-related genes in the BLA (on-
line suppl. Table 2: summary of statistical results).

In the NAc, stress increased expression of glutamate-
related genes regardless of sex (Fig. 3d). Specifically, there 
were main effects of stress increasing expression of Gria1 

(p < 10–7), Gria3 (p < 10–4), Grm1 (p < 10–7), Grik3 (p < 
10–7), Grin3a (p < 10–7), and Slc25a22 (p < 10–4). There 
were no interactions of stress and any sex-related factor 
on expression of glutamate-related genes in the NAc (on-
line suppl. Table 2: summary of statistical results).

Heatmap Representation of Gene Expression Changes
To summarize the gene expression data and extract 

the patterns of stress effects, we generated a heatmap in-

PF
C

N
Ac

600

400

200

0

Gria1

Ar
bi

tra
ry

 si
gn

al

■ Nonstress
■ Stress*****

a

150

100

50

0

Slc25a22

*
15

10

5

0

Grip1
**

# **

1,000

800

600

400

200

0

Gria1

Ar
bi

tra
ry

 si
gn

al

d

b

150

100

50

0

Gria3

****
80

60

40

20

0

Grm1

Stress x hormone: p < 0.04
B T

■ Nonstress
■ Stress

250

150

200

100

50

0

Gria3

Ar
bi

tra
ry

 si
gn

al

cStress x genetic: p < 0.05
XX XY

■ Nonstress
■ Stress50

30

10

40

20

0

Grin3a
§§

§

50

30

10

40

20

0

Grik3

p < 10–7p < 10–7

p < 10–7
100

60

20

80

40

0

Grin3a

p < 10–7

#

Stress x genetic: p < 0.03
XX XY

■ Nonstress
■ Stress

250

150

200

100

50

0

Gria3

Ar
bi

tra
ry

 si
gn

al

§

****
80

40

60

20

0

Slc25a22

Fig. 3. Effects of chronic stress exposure on expression of gluta-
mate-related genes. a In the PFC, stress increased expression of 
Gria1 (p < 10–5) and Grip1 (p < 0.003) and decreased expression of 
Slc25a22 (p < 0.02) (n = 12/group). b In the PFC, there was a sig-
nificant interaction of stress and genetic sex on expression of Gria3 
(p < 0.03) and Grin3a (p < 0.005), with stress increasing expression 
only in XX mice (n = 6/group). c In the PFC, there was a significant 
interaction of stress and testosterone (T) exposure on expression 

of Gria3 (p < 0.04), with stress increasing expression in blank (B)-
treated mice but not in T-treated mice (n = 6/group). d In the NAc, 
stress increased expression of Gria1 (p < 10–7), Gria3 (p < 10–4), 
Grm1 (p < 10–7), Grik3 (p < 10–7), Grin3a (p < 10–7), and Slc25a22 
(p < 10–4) (n = 12/group). Main effects of stress: # p < 0.1; * p < 0.05; 
** p < 0.01; **** p < 10–4; ***** p < 10–5. Post hoc 2-group tests 
performed after significant interaction: § p < 0.05; §§ p < 0.01.
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dicating these effects within each sex-related factor 
(Fig. 4). We also plotted results for each brain region, in 
order to extract general patterns that are consistent 
across brain regions or may be region-specific. The most 
striking feature of the heatmap is that stress influenced 
gene expression differentially across brain regions. Over-
all, stress increased expression of the investigated gluta-
mate-/GABA-/dopamine-related genes in the PFC and 
NAc but decreased their expression in the BLA. There 
are, however, some exceptions to this pattern. For in-
stance, Gabra5 exhibited the opposite stress effect in each 
brain region, with stress decreasing expression in the 
PFC and NAc but increasing expression in the BLA. The 
other notable feature of the heatmap is that the effects of 
stress were often more pronounced in the female (XX, 
gonadal female, and/or blank-treated) than in the male 
(XY, gonadal male, and/or testosterone-treated) pheno-
types. The strongest female-specific effects were in the 
PFC, followed by the BLA. Interestingly, however, stress 
impacted female and male phenotypes similarly in the 
NAc. There were also some genes for which stress af-
fected male and female phenotypes in opposite direc-
tions within the same brain region; this pattern was pres-

ent for Drd2 in the PFC, Drd5 in the BLA, and Grip1 in 
the NAc. 

Stress Disrupted the Gene Coexpression Networks
We next generated weighted gene coexpression net-

works to investigate the effect of stress on coordinated 
gene expression patterns. Gene coexpression networks 
can be useful when considering a disease state in which 
multiple genes are affected; in other words, several small 
changes in gene expression might converge to produce 
the disease state [12]. Given that there were several inter-
actions of genetic sex and stress in the PFC (stress affect-
ed gene expression in XX mice but not in XY mice), we 
examined how stress influenced gene coexpression in the 
PFC for XX and XY mice. Nonstressed XX mice exhibited 
a highly coordinated gene expression network (Fig. 5a), 
indicated by the high clustering coefficient (0.978) and 
high global density (0.921). Interestingly, these network 
measures were significantly reduced in stressed XX mice 
(clustering coefficient = 0.677; density = 0.380; p < 0.05 
for both measures; Fig. 5b), together indicating a much 
less coordinated gene network in stressed XX mice. In XY 
mice, the effect of stress on network statistics was not sig-
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sion, while blue indicates that chronic stress decreased gene ex-
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nificant (Fig. 5c, d). Specifically, stress elicited a nonsig-
nificant reduction in the clustering coefficient for XY 
mice, from 0.833 to 0.726 (p > 0.05), and in density, from 
0.593 to 0.424 (p > 0.05).  

Discussion

Recent studies which examined the molecular pathol-
ogy of MDD report distinct molecular changes in men 
and women across several mesocorticolimbic brain re-
gions [23, 46]. However, it is unclear which sex-related 
factors might drive this distinct MDD-associated pathol-
ogy in the brain. Here, we examined the effects of chron-
ic stress on expression of sets of mood-related genes 
across the mesocorticolimbic circuit. Furthermore, we 
used the FCG mouse strain to determine whether the ef-
fects of stress were influenced by any sex-related factors. 
The overall goal was to identify sex-related factors that 
might drive the sex-specific MDD molecular pathology 
observed in humans. As predicted, based on previous ev-
idence for these genes being implicated in mood, we 
found that stress impacted expression of several dopa-
mine-, GABA-, and glutamate-related genes. Further-
more, we found that some of these effects, mostly in the 
PFC, were genetic sex-specific, with stress affecting gene 
expression in XX mice but not in XY mice. We also found 
that stress impacted gene expression differently across 
the mesocorticolimbic circuit; stress generally increased 
expression of mood-related genes in the PFC and NAc 
but decreased expression in the BLA. 

Dopamine-Related Dysfunction in Mood Disorders
The brain’s mesolimbic dopamine system plays an in-

tegral role in stress-induced physiological changes and 
depressive-like behaviors in animals and in human MDD 

[47–53]. Dopamine neurons of the midbrain send projec-
tions to the amygdala, PFC, and NAc, and stress-induced 
changes in dopamine neurons in the ventral tegmental 
area (VTA) are linked to anhedonia and anxiety-like be-
havior in rodents [36, 49, 50, 54, 55]. In addition, anhedo-
nia, a hallmark of MDD, is attributed, in part, to dysfunc-
tional dopamine neurotransmission [56–61]. An overall 
reduction of dopamine neurotransmission within the me-
socorticolimbic circuit has been described in patients with 
MDD and in multiple chronic stress paradigms in ro-
dents. For example, rats undergoing 8–12 weeks of chron-
ic mild stress, a paradigm similar to the one we used, led 
to depressive-like behaviors which could be reversed via 
phasic optogenetic activation of VTA dopamine neurons 
and specific to dopamine neurotransmission in the NAc 
[36]. In mice, chronic social defeat stress has been shown 
to lead to hyperexcitability of VTA dopamine neurons, 
and to depressive-like behaviors which could also be nor-
malized by optogenetic activation of these neurons and 
the restoration of ionic currents [50]. Moreover, sex-de-
pendent effects of stress on these circuits may be linked to 
sex differences in depressive-like behaviors [51]. In an ef-
fort to investigate whether there were sex-dependent ef-
fects on dopamine signaling pathways, we examined ex-
pression of dopamine-related genes in the PFC, BLA, and 
NAc. In the PFC and NAc, chronic stress led to an increase 
of Ddc, Maoa, and Comt, each of which are involved in 
dopamine metabolism. DDC catalyzes the conversion of 
DOPA to dopamine presynaptically, while MAOA and 
COMT metabolize dopamine postsynaptically, which, in 
the context of our findings, suggests an enhanced dopa-
mine release into these brain regions. This would be con-
sistent with an upregulation of Drd1 and Drd2 in the NAc. 
Sex-dependent effects were found for these dopamine- 
related genes in the PFC, with increased Creb3, Crebbp, 
Drd1, and Maob expression in XX mice but not in XY 
mice. Activation of CREB-dependent transcriptional 
pathways is important for the neural plasticity associated 
with stress, drug abuse, and learning [62–82]. Intriguing-
ly, CREB3 is an endoplasmic reticulum-bound transcrip-
tion factor activated via cAMP-dependent signaling and 
was recently found to modulate expression and activity of 
the glucocorticoid receptor (GR) [83]. CREB3 can act as a 
coactivator of GR and a direct transcriptional activator of 
the gene [83]. Given the known role of GR in stress-relat-
ed pathologies and the female specificity of the effect of 
stress on Creb3 expression in the PFC, investigating 
whether CREB3 is a key driver of stress sensitivity at the 
cellular level may reveal novel roles for this protein related 
to sex differences in anxiety and depression.

Fig. 5. Genetic sex-specific disruptions of gene networks in the 
PFC. Weighted gene coexpression networks for all examined do-
pamine-, GABA-, and glutamate-related genes. Networks were 
generated for XX nonstress (a), XX stress (b), XY nonstress (c), 
and XY stress (d) groups. Networks are split based on genetic sex 
and stress exposure. Lines connecting genes indicate coexpression 
of the 2 genes, with the weight of the line proportional to the level 
of coexpression. Only coexpression edges with |r3 > 0.3| are shown; 
some examined genes are absent from certain networks if none of 
their coexpression values hit this threshold. The size of each node 
indicates the degree (sum of the edge weights of all connections) 
for that gene. Dopamine-related genes are shown in red, GABA-
related genes in green, and glutamate-related genes in blue.
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GABA-Related Dysfunction in Mood Disorders
Our results for the impact of chronic stress on GABA-

related gene expression are largely consistent with what 
has previously been reported in humans. We found that 
Gabarapl1 expression was increased by chronic stress in 
the PFC and NAc, consistent with results in human MDD 
in which expression is increased in Brodmann area 9 
(BA9), BA10, BA20, and BA46 [84, 85]. Consistent with 
what we observed for the effects of stress on Gabra2 ex-
pression in the PFC and NAc, subjects with MDD have 
increased Gabra2 expression in the cerebellum [86]. 
While single-nucleotide polymorphisms (SNPs) in the 
Gabbr2 gene are associated with MDD, human postmor-
tem studies have not found altered expression of this gene 
in the brain (e.g., [85, 87]). Since we found increased ex-
pression of Gabbr2 in the PFC of XX mice but not XY 
mice, it is tempting to speculate that human postmortem 
studies might find an effect on Gabbr2 expression if anal-
yses were stratified by sex. The Gabra5 gene has SNPs 
with an association for suicide, but human postmortem 
brain studies report mixed results for changes in expres-
sion in subjects committing suicide and/or with MDD 
(increased expression in BA20 and BA46 [85], but no 
change in the amygdala [88]). Interestingly, we previous-
ly found that treating mice with a positive allosteric mod-
ulator for the α5 subunit of the GABA receptor (the sub-
unit coded for by the Gabra5 gene) decreased measures 
of anxiety-/depressive-like behaviors in female mice but 
not in male mice [89]. Here, we find that chronic stress 
decreased Gabra5 expression in the PFC and NAc of both 
males and females. Together, this suggests that chronic 
stress impacts Gabra5 in both sexes, but that boosting 
GABA signaling at receptors containing the α5 subunit is 
only effective in females. 

Glutamate-Related Dysfunction in Mood Disorders
Here, we found effects of chronic stress on expression 

of many glutamate-related genes, with notable female-
specific effects in the PFC. This female specificity for the 
effect of chronic stress is especially interesting, given the 
recent finding of female-specific increases in expression 
of several glutamate-related genes in the DLPFC of sub-
jects with MDD. For instance, Gray et al. [29] reported a 
female-specific increase in DLPFC GRIA3 expression, 
and we found that chronic stress increased PFC Gria3 
expression in XX and blank-treated mice, but not in XY 
or testosterone-treated mice. This suggests that the sex-
specific human findings are driven by genetic and circu-
lating-hormone differences. Alternatively, XY genetic 
sex and/or circulating testosterone might be protective 

factors in males. There are also SNPs in the GRIA3 gene 
which are associated with suicidal ideation [90, 91]. Gray 
et al. [29] also reported a female-specific increase in 
GRM1 in the DLPFC of subjects with MDD. However, 
we found that chronic stress increased expression of 
Grm1 in the PFC of both males and females, suggesting 
potential species differences. Our results for Gria1 are 
consistent with reports in the literature. For instance, 
GRIA1 expression is increased in BA9 [84, 87] and BA21 
[85] in MDD subjects. We also saw increased Gria1 ex-
pression in the PFC and NAc of chronically stressed 
mice.

Brain Region Specificity 
A striking observation in our study is that chronic 

stress produces patterns of gene expression changes in 
the BLA opposite to those in the PFC and NAc; this is 
especially apparent when examining the heatmap in Fig-
ure 4. In the BLA, chronic stress almost universally led 
to decreased gene expression across these pathways, 
while in the PFC and NAc, it mostly caused increased 
gene expression. Interestingly, we previously reported a 
similar phenomenon in human MDD, where subsets of 
genes changed in opposite directions in the PFC and 
BLA [23]. BOLD imaging studies also suggest opposing 
activation patterns in these regions in MDD, with an in-
crease in BLA activity at baseline, and a decrease in NAc 
and PFC activity during emotion-related tasks (e.g., 
[14–22]). These opposing changes between brain re-
gions likely reflect stress-induced alterations of neuro-
transmission.

Conclusion

We report the effects of chronic stress on expression of 
several dopamine-, GABA-, and glutamate-related genes. 
Importantly, many of the effects of stress on gene expres-
sion are consistent with what has been reported in human 
MDD, suggesting that the UCMS paradigm recreates the 
relevant features of human MDD. Notably, we found that 
chronic stress affected gene expression similarly in males 
and females within the BLA and NAc, but that this was 
female-specific in the PFC; this suggests that future stud-
ies on sex-specificity of MDD could focus on the PFC. 
Finally, one of the most striking results of this study is that 
chronic stress produces differential effects across meso-
corticolimbic brain regions, with the changes in the BLA 
being opposite in direction to those in the PFC and NAc. 
Together, our findings suggest that stress-induced altera-
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tions in molecular signaling pathways of neurotransmis-
sion within these mood-related circuits are sex-depen-
dent and region-specific. 
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