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Abstract

Cell-free DNA (cfDNA) was first identified in human plasma in 1948 and is thought to be released 

from cells throughout the body into the circulatory system. In cancer, a portion of the cfDNA 

originates from tumour cells, referred to as circulating-tumour DNA (ctDNA), and can contain 

mutations corresponding to the patient’s tumour, for instance specific TP53 alleles. Profiling of 

cfDNA has recently become an area of increasing clinical relevance in oncology, in particular due 

to advances in the sensitivity of molecular biology techniques and development of next generation 

sequencing technologies, as this allows tumour mutations to be identified and tracked non-

invasively. This has opened up new possibilities for monitoring tumour evolution and acquisition 

of resistance, as well as for guiding treatment decisions when tumour biopsy tissue is insufficient 

or unavailable. In this review, we will discuss the biology of cell-free nucleic acids, methods of 

analysis, and the potential clinical uses of these techniques, as well as the on-going clinical 

development of ctDNA assays.
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Biology of cell-free DNA

cfDNA is believed to be released during normal cell functions, such as secretion and export 

in exosomes, as well as during cell death programs, such as apoptosis and necrosis [1,2]. It 

can be found in plasma [3] as well as other body fluids such as urine [4,5] , cerebral spinal 

fluid (CSF) [6] , pleural fluid [7] , and saliva [8,9] , among others. Once outside of the cell, 
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cfDNA is steadily degraded by nucleases [10–12] , possibly with help from macrophages 

[13] , and excreted in urine via the renal system [14–17]. The half-life of cfDNA is very 

short according to studies done in prenatal medicine, between 16 min–2.5 h in plasma [18–

20] , therefore it is often highly damaged and degraded. Despite this, the fast turnover of 

cfDNA can be useful for real-time tracking of genetic and genomic changes.

Multiple studies have demonstrated that the majority of cfDNAs are short molecules around 

167 bp, although longer fragments also exist [21].167 bp corresponds approximately to the 

length of DNA wrapped around a histone, indicating cfDNA is likely associated with 

nucleosomes [22–24]. These fragments are believed to be released from cells in exosomes 

and extracellular vesicles, as well as during apoptosis [1]. Dying cells and tumours 

undergoing cell necrosis release additional longer fragments, up to 10 kb [21]. The majority 

of cfDNA in the blood originates from hematopoietic cells [25]; however tissue-specific 

methylation signatures of the cfDNA fragments has also identified fragments from many 

other organs [24–26].

Circulating tumour DNA

As cfDNA originates from many organs, ctDNA released from tumours within these organs 

can also be found within cfDNA samples. Data from xenograft experiments has shown that 

ctDNA is slightly shorter than cfDNA [27,28], approximately 134–144 bp [29,30]. Although 

the reason behind this shortening is not known, it is possible that this is the size of the DNA 

wrapped around a nucleosome without the linker DNA that connects histones or that 

increased time in circulation resulted in degradation. Interestingly, foetal DNA and cfDNA 

originating from transplanted tissue is also shorter than maternal and recipient cfDNA, 

indicating this property is not specific to ctDNA and can occur in different types of cfDNA 

[31,32].

A large amount of work in the cfDNA field has been focused in maternal-foetal medicine, 

and here it was observed that the amount of foetal DNA found in the mother’s blood 

correlates with the stage of development of the fetus – the further in development, the 

greater the foetal cfDNA content [33,34]. This has also been shown to be true of tumours 

where the size [35,36] and stage [37,38] correlates with the amount of ctDNA. Stage IV or 

advanced tumours have 100–1000 copies of ctDNA per 5 mL of plasma, compared with 

only 10 copies in early stage cancers [38]. Additional increases are also seen in patients with 

metastatic disease. Parkinson et al. attempted to quantify this in patients with relapsed high-

grade serous ovarian carcinoma (HGSOC) and found an increase of 6 copies of ctDNA per 

mL plasma for additional each cm 3 of disease [39].

Not much is currently known about the function of ctDNA, however several studies have 

indicated possible roles in immunomodulation [40–42] or transformation of nearby cells 

through internalization of ctDNA [43]. The latter studies have yet to be confirmed in an in 

vivo setting, however NIH-3T3 cell lines merely coming into contact with KRAS-mutant 

plasma have been transformed in vitro [44]. There remains much more to learn about the 

function of ctDNA and cfDNA, which hopefully will be revealed through additional 

research.
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Methodologies for cfDNA analysis

PCR-based techniques

The first ctDNA matching a patient’s tumour mutation was identified using allele-specific 

PCR in 1994 [45]. Although still used in the field, digital PCR, which involves single-

molecule reactions, is favoured as it provides absolute quantification of the number of 

transcripts in a sample [46,47]. This development has allowed the detection of rare 

mutations even at low abundance and has significantly increased the sensitivity of ctDNA 

analysis [48–50]. Droplet digital PCR (ddPCR) involves the distribution of DNA templates 

into thousands or millions of droplets each containing only one DNA fragment. There are 

many different commercially available ddPCR platforms that use various numbers of 

droplets and slightly different chemistries [51]. These assays mostly rely on fluorescent 

probes and can be multiplexed to detect the presence of a few loci or hotspots at a time. 

ddPCR has the potential to be applied in the clinic to monitor tumour dynamics and in the 

detection of minimal residual disease [52]. Despite the limitations in the number of 

mutations that can be tested for at a time, ddPCR is still a regularly used cfDNA technology 

as it provides quick turnaround time and high levels of sensitivity compared to sequencing 

strategies.

Next-generation sequencing-based techniques

Next-generation sequencing (NGS) techniques provide the opportunity to discover mutations 

without prior knowledge of the tumour mutation landscape. One type of sequencing strategy 

is amplicon based, where primers are designed to amplify hundreds of regions and 

sequenced to very high coverage to achieve a 1% sensitivity for de novo mutation calling or 

0.1% sensitivity for genotyping [53,54]. Many of these panels are designed to be patient or 

cancer specific based on prior knowledge of the mutations within the tumour or using 

literature findings from tumour profiling. One key advantage of an amplicon-based strategy 

is the high efficiency of converting cfDNA molecules into sequencing reads, as a result of 

the high efficiency of amplification by PCR. Although due to challenges in retaining the 

relative ratio between genomic regions throughout the PCR amplification process, this 

method has less sensitivity for detecting copy number alterations.

Another NGS strategy is hybridisation capture-based approaches. Larger regions of the 

genome can be interrogated, however there is a trade-off between the breadth and depth of 

sequencing for the same cost. As a result, the sequencing coverage is generally reduced in 

larger panels leading to lower sensitivity. More sensitive patient specific assays can be 

designed containing only a few genes or loci of interest, however more commonly panels are 

developed to include multiple genes with important prognostic and diagnostic information 

for a specific cancer type. Cancer personalized profiling by deep sequencing (CAPP-Seq) is 

an example of this, and was first used to build a panel for non-small cell lung cancer 

(NSCLC) [55]. Larger panels encompassing hundreds of genes across many cancer types 

also exist and panels derived for tumour profiling can be adapted for cfDNA [56–58]. More 

recently, whole exome sequencing has been done on cfDNA samples, allowing identification 

of additional mutations and resistance mechanisms [59–63]. One of the major improvements 

in hybrid capture sequencing technology over the last few years has been the introduction of 
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uniquemolecular identifiers (UMIs). UMIs are added to sequencing adaptors early in the 

library preparation to tag each template DNA fragment with a unique molecular barcode 

[64]. Once barcoded, any PCR products and reads deriving from that template will retain the 

barcode allowing them to be identified and collapsed into a consensus sequence, minimizing 

artefacts arising from PCR and sequencing errors. Many cfDNA sequencing strategies have 

successfully been adapted to incorporate UMIs [65–67].

Apart from point mutations and indels, epigenetic changes and chromosomal aberrations 

cannot be easily detected using capture-based methods. As these could also be drivers of 

cancer, methods designed specifically to detect these changes have been developed or 

adapted for cfDNA. For instance, bisulphite or other methylation sequencing methods can be 

used on cfDNA [24,26,68].ctDNA studies involving methylation analysis have included 

methylation specific PCRs [69] , arrays [70] , and bisulphite sequencing [71–73]. For copy 

number, the two main methods that have been employed are ddPCR [74–78] and whole 

genome sequencing at very low coverage (~0.1X), known as shallow whole genome 

sequencing (sWGS) [79] or Plasma-Seq [80,81]. By comparing the coverage across the 

genome to normal samples, chromosomal alterations originating from ctDNA can be 

detected and quantified [82], including focal amplifications and gene rearrangements. 

Computational modelling approaches have been developed using sWGS data to estimate the 

proportion of ctDNA within the cfDNA sample [81,83], a concept similar to tumour purity 

in biopsy samples. However, in this case knowing the fraction of molecules derived from the 

tumour can be used to identify patients with high disease burden [81] and to screen samples 

for techniques that do not require very high sensitivity and can provide additional 

information, such as exome sequencing [60]. A summary of the features and applications of 

PCR-based and NGS approaches for cfDNA can be found in Table 1.

Method sensitivity

By comparing the number of mutant alleles to wildtype alleles for multiple loci the average 

mutant allele fraction (MAF) within the sample can be derived, a metric which correlates 

with tumour burden [84]. The MAF will vary between alleles are they are represented at 

different proportions due to tumour heterogeneity. Those at higher allele fractions are likely 

stem mutations, while lower allele fractions are likely private mutations [84,85], although 

factors such as copy number can also influence the allele fraction. Despite these differences 

in allelic frequency, the average MAF of a sample still correlates with disease volume. 

Parkinson et al. managed to quantify this for HGSOC and found the MAF increases by 

0.08% for each additional cm 3 of disease [39].

The sensitivity of the technologies varies greatly, and a useful way of expressing that 

sensitivity is using the range of MAF they are able to detect. sWGS requires between 5– 

10% MAF to be detected [81], very high amounts for cfDNA, and cannot generally be used 

for detecting early or residual disease. However, this is dependent on cancer type: early 

HGSOC, which often presents with a high number of copy number variants (CNVs), has 

been assessed using sWGS with CNVs detected in 6/16 patients (37.5%) [86]. Other cancer 

types, which do not have large CNVs, may not be detected using this strategy.
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Larger panels and exome sequencing have a similar limit of detection of 5% MAF [62], 

while smaller multiplexed panels can detect mutations down to 1% MAF [56,87,88]. This 

can be further improved by using cancer or patient specific panels, which can detect 0.01–

0.5% MAFs. The CAPP-Seq assay for NSCLC, for instance, has a MAF limit of 0.02% and 

was able to find mutations in 100% of stage II or greater cancers, and in 50% of stage I [55].

PCR based assays have very high sensitivity; qPCR and ddPCR are able to detect 0.001–

0.01% MAF [89], and in some samples only one copy in 5 mLs of plasma [90]. When 

compared with known mutation status based on tumour assays, KRAS ctDNA assays 

developed for clinically relevant mutations within colorectal cancer achieved 87.2% 

sensitivity and 99.2% specificity [91] and another similar assay developed against known 

mutations in early-stage breast cancer reached 93.3% sensitivity [92].

Using known mutations identified within a patient’s tumour sample can also improve the 

sensitivity of NGS assays [18,93] and reduce the background error rate [53]. As evidence for 

the mutation already exists, it is easier to be confident calling mutations in the corresponding 

cfDNA. As discussed above, using UMIs when making sequencing libraries increases 

sensitivity and can allow detection of MAFs down to 0.1% [54,65,66]. Another method to 

improve ctDNA detection is through size selection. As previously discussed, ctDNA is 

shorter than normal cfDNA. Physical size selection of the shorter molecules has been shown 

to enrich the sample for tumour derived fragments and improve detection rates after 

sequencing [29,94,95]. These strategies are just beginning to be explored, but they have to 

potential to significantly increase the sensitivity of these types of assays and making them a 

possibility for use in the clinic.

Factors affecting mutant allele fraction

Although high levels of ctDNA is correlated with high disease burden, pre-analytical, 

analytical and physiological factors can affect the amount ctDNA fraction within a cfDNA 

sample. cfDNA undergoes quick turnover in the blood [13,19,20] , reducing overall yields. 

Additionally, release of DNA from blood cells increases the normal cfDNA content diluting 

ctDNA within the sample. Specialized blood collection tubes, such as Streck and PAXgene 

cfDNA tubes, have been developed to protect cfDNA from degradation extending the time 

samples can be stored and limiting DNA release [96–98]. These are an easy and inexpensive 

way to ensure cfDNA remains intact and ctDNA within the sample is undiluted. Location 

and vascularization of the tumour can also affect ctDNA release into the bloodstream. This 

is most commonly observed in patients with primary brain tumours, where low amounts of 

ctDNA within the blood is thought to be due to the blood brain barrier [38,99]. To overcome 

this limitation, cfDNA samples can be obtained from CSF, which yields better results than 

plasma [100]. This strategy can also be used in patients with brain metastasis and central 

nervous system restricted disease [101]. This strategy also applies to other tumour types, 

cfDNA can be extracted from other liquid sample sources in close proximity to the tumour, 

for instance through collecting urine [15,102] or saliva [103] to increase the tumour-derived 

fraction.
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Clinical need

cfDNA analysis will not replace tumour biopsies, however they can provide additional 

insight into and important clinically relevant information about the mutational landscape of 

tumours and metastases. In cases where it is not possible to biopsy or repeated biopsies are 

required cfDNA analyses are of enormous benefit, as they can provide information not 

otherwise obtainable. Furthermore, there are additional benefits to using cfDNA when 

biopsies have been taken, for instance for tumour heterogeneity, metastasis, and longitudinal 

studies.

Tumour heterogeneity and metastatic sites

Tumours are often heterogeneous and can have regional differences in mutation profiles 

[104–107] leading to actionable or prognostic mutations being missed during biopsy. cfDNA 

can capture these mutations to provide clinically relevant information missed due to 

heterogeneity [56,84,85,100,108,109], and identify mutations missed during sequencing of 

tumour biopsies [110,111]. This is also true of multiple tumours [112] or metastatic sites 

[113] ; variants missed due to spatial separation from the biopsy site can be detected using 

cfDNA [59,87,114].

Identifying tissue of cancer origin

Studies of DNA methylation can be used to identify the tissue of origin, a process that is 

especially important in cancers of unknown primary [115], and cfDNA methylation and 

nucleosome positioning studies can be used the same way [24–26,116]. For instance, a 

pregnant woman undergoing non-invasive prenatal testing was found to have copy number 

changes not associated with the fetus , methylation deconvolution indicated an increased 

contribution from B-lymphocytes and she was subsequently given a diagnosis of follicular 

lymphoma [117]. Using cfDNA can provide insight into the tumour tissue type, without 

requiring a biopsy.

Measuring disease burden

The presence of ctDNA itself is indicative of disease and the amount of ctDNA can also be 

an indicator of the amount of disease. As previously discussed, the amount of ctDNA is 

correlated with tumour stage, and many groups have observed that higher levels of ctDNA 

has been associated with worse survival outcomes in patients [69,118–122]. Thus, the 

amount of ctDNA can be used as a measure disease burden, along with imaging studies. In a 

colorectal cancer study, patients with detectable ctDNA after treatment had reduced (48%) 

2-year recurrence free survival compared to those without (100%) [69]. Similarly, in prostate 

cancer patients who had AR copy number gains detected by cfDNA analysis prior to 

abiraterone treatment had worse outcomes and exhibited primary resistance [77]. Lower 

ctDNA levels correlate with treatment response [18,53,55,114,120] and this response can be 

detected earlier than with clinical detection methods [114,123,124]. This provides additional 

information about how a patient will respond to treatment. Overall, ctDNA has been shown 

to be a better predictor of prognosis than other tumour markers [39,114] and that ctDNA 

concentration increase correlates with poorer clinical and radiological outcomes 

[39,114,125,126].
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Patient stratification

Total levels of ctDNA provide insight into disease burden and prognosis, but more specific 

molecular studies can provide the underlying genetic profile. Using molecular profiling tests 

prior to treatment provides the possibility of stratifying patients based on prognosis for the 

administration of adjuvant therapy [77,124] or for selection of specific targeted therapies.

Tracking specific mutations

Specific mutations can also be tracked during treatment to signal recurrence or relapse of the 

tumour before clinical evidence of disease, as is possible with total ctDNA burden [120]. On 

average, ctDNA can be detected between 7.9 and 11.0 months prior to clinical relapse in 

primary cancers [127–129], with similar results being found for metastases [114]. These 

types of assays require very sensitive approaches such as ddPCR, rely on previous 

knowledge of the tumour mutation profile, and are developed in a patient specific manner. 

This poses a challenge for clinical development as individual assays need to be created and 

optimized for each patient, however they have been shown in research to be very powerful 

methods for detecting even minimal residual disease. In a large study of early-stage 

colorectal cancer, ctDNA levels measured at follow up after tumour resection was predictive 

of recurrence-free survival after 3 years. In the ctDNA positive group 0% were recurrence-

free, while in the ctDNA negative group 90% were recurrence-free, this number was 

improved to 100% after serial samples were taken into account [130].ctDNA positivity is 

indicative of minimal residual disease, the level of which can be tracked and quantified 

through these types of assays. A similar study was completed on patients with breast cancer, 

where personalized assays were able to predict recurrence and measure minimal residual 

disease [127]. This can also be done using patient specific rearrangements such as gene 

fusions [128,131,132], as rearrangements have low background noise compared to somatic 

mutations.

Detecting tumour evolution and acquisition of resistance

Tracking recurrence of individual mutations or rearrangements present in the original 

tumour provides useful information for recurrence of tumour cells containing that mutation, 

but does not provide additional information about recurrence with new mutations or 

emergence of other clones. By measuring several mutations, the changes in their ratios can 

provide some insight into the tumour’s evolution and continued heterogeneity during 

treatment [84,133–135]. This can also be extended to identifying the appearance of 

resistance mechanisms. Serial studies of colorectal cancer found positive selection of KRAS 

mutations during anti-EGFR therapy and decline in their representation after withdrawal 

[108,136]. Similar results have been recorded in NSCLC patients treated with EGFR 

inhibitors, where resistance mutations were identified in ctDNA prior to clinical progression 

[50,137,138]. Another study completed this year identified resistance mutations not 

previously observed in the tumour as driving resistance to treatment [139], indicating 

convergent evolution was taking place and could be identified using ctDNA. Additional 

studies are currently on-going involving exome sequencing to discover novel resistance 

mechanisms in ctDNA developed during treatment [59,84], however as these mutations need 
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to be present at > 5% MAF to be detected, this is not a technique that can be used for low 

frequency variants or for minimal residual disease.

Clinical development

Non-invasive prenatal testing

There’s a huge potential for cfDNA in the clinic and already many cfDNA assays have made 

an impact. The initial assays were developed for identifying foetal cfDNA sequences in 

maternal blood plasma. This included finding foetal Y chromosome cfDNA in maternal 

blood, indicating a male fetus, and other tests for sex determination [33]. Non-invasive sex 

determination is particularly important for carriers of X-linked conditions, and cfDNA 

testing has resulted in a decrease in the number of invasive tests, such as amniocentesis, to 

confirm foetal sex [140]. Detection of chromosomes can also be done to discover 

aneuploidy, and has successfully been used to detect Down Syndrome (trisomy 21) [74], a 

test that was made available in the clinic in 2011 [141–143] and is now in widespread 

clinical use [144,145]. These techniques were refined to look at specific gene sequences and 

cfDNA tests have been developed monogenic disorders as well [146].cfDNA studies in 

maternal-foetal medicine have paved the way for the development of more highly specific 

clinical cancer assays.

PCR for guiding treatment

The most famous example of a clinically validated cfDNA test is the allele-specific PCR for 

the detection of EGFR mutations in NSCLC [147]. Plasma has been shown to be effective 

and comparable to tissue biopsies in NSCLC [148–150] and as the tumours can be difficult 

to biopsy [151], clinical approval has been driven faster than for other types of cancer. Two 

forms of the test exist and are approved for selection of gefitinib [152], erlotinib [153] or 

osimertinib [153,154]: Therascreen EGFR was approved by the European Medicines 

Agency in 2015 [155] and Cobas EGFR was approved by the US Food and Drug 

Administration (FDA) in 2016 [153].PCR-based tests are highly sensitive and specific, are 

easier to gain approval for than NGS assays, and additional ctDNA assays for other genes 

and cancer types are likely to follow soon.

Sequencing panels for guiding treatment

Although the majority of clinical development has been in PCR-based assays, some clinical 

sequencing panels have been developed. A 34 gene panel developed by Inviata for NSCLC 

found mutations in 79% of 174 patients, following this 28 patients (17%) went on to receive 

personalized treatment [156]. Another broader 54-gene panel detected ctDNA in 58% of 

patients with multiple types of cancer, with 68% of those having an actionable mutation by 

an FDA-approved drug [57]. Similar proof of concept studies have been done showing the 

feasibility of matching metastatic patients to targeted therapies for clinical trials, however 

they have not been approved as of yet [157]. Numerous companies have begun to capitalize 

on the prospect of ctDNA screening, including Guardant Health, who have developed a 73-

gene ctDNA assay called Guardant 360 [67,158]. Assays such as these have begun to be 

used to guide enrolment in clinical trials [159], in particular for cases where a positive 

finding results in enrolment.
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Screening for early detection of disease

cfDNA analysis has the potential to be used as a screening tool prior to clinical onset of 

disease [103,160,161]. Screening of viruses associated with cancers, such as Epstein–Barr 

Virus (EBV) – a virus associated with nasopharyngeal carcinoma, has been shown to be an 

effective way to use cfDNA to screen for early stage and asymptomatic cancers in the clinic, 

as viral cfDNA levels are much higher than ctDNA. One study involved screening of > 
20,000 asymptomatic people for EBV DNA in their plasma and lead to the diagnosis of 

nasopharyngeal carcinoma in 34 individuals [162]. Identification of these patients led to 

early diagnosis and improved 3-year progression-free survival [162]. Screening for ctDNA is 

also being trialled, recently a screening panel of 58 genes has been developed for early 

detection of cancer [161], although it has only been used in patients with known stage I or II 

disease to date, this study demonstrates the potential of screening ctDNA. Techniques such 

as this have the potential to improve patient outcomes and continued development will soon 

improve non-invasive cancer screening.

Future developments

Sequencing developments

Promising improvements are being made in sequencing technology and bioinformatics 

methods that will benefit and improve cfDNA analysis. Longer cfDNA fragments are not 

easily detected during current sequencing methods [163], however long read sequencers, 

such as Nanopore, have improved ability to identify structural variants [164]. Additionally, 

using alternative library preparation methods, such as single-stranded library preparation, 

has been shown to increase the diversity of sequenced fragments to include the shorter 

molecules often missed during standard double stranded preparations [24,165,166]. These 

methods could also allow further study of cfDNA fragmentation, which could provide 

complementary information to MAF for determining the amount of ctDNA in a sample 

[88,167] or to understand the fragmentation and clearance from blood through urine 

[20,168]. Additional studies into the longer and shorter fragments could provide additional 

insight about the biology of cfDNA and ctDNA.

Advances in biological knowledge

Although it is known that ctDNA is shorter than cfDNA, the exact mechanism of how this 

occurs has yet to be elucidated. Studies into these size differences, as well as how cfDNA is 

protected in body fluids would provide important information about these mechanisms as 

well as tumour specific processes resulting in the release of ctDNA. There are numerous 

factors influencing the amount of cfDNA in circulation and the proportion of ctDNA other 

than the size of the tumour. The amount of exercise done prior to blood draw can increase 

the amount of lymphocyte derived cfDNA greatly [169,170], which dilutes the ctDNA 

within a sample making detection of mutations more difficult. However, why and how this 

happens remains unknown. Additional factors, such as blood supply to the tumour 

presumably could also have an effect on the amount of ctDNA in the blood, and again these 

factors have not been studied in detail.
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Research by Snyder et al. indicates an association between cfDNA and nucleosomes, 

however functional studies have not yet been done to confirm how long this association lasts 

and if recovered cfDNA is still bound [24]. Several groups have also suggested studies 

should be done into the other proteins associated with cfDNA [171,172], however little 

research has been done into this area as of yet outside of studies of exosomes.

Exosomes and cell-free RNA

Exosomes are membrane bound vesicles containing proteins, DNA, and RNA that is 

packaged and excreted from cells for transport or signalling between cells [14,173]. After 

being excreted, exosomes can enter bodily fluids, such as blood, and can subsequently be 

isolated and purified. Exosomes can be a rich source of information often lost from other 

cell-free samples as the membrane protects the contents within from degradation. They may 

contribute to cancer progression and treatment failure, and can contain ctDNA [173–175]. 

Numerous studies of the content of exosomes have been published [176,177], including 

combined cfDNA and cell-free RNA (cfRNA or exRNA) studies [178]. Exosomes are a 

promising way to study cfRNA [178,179]. Sequencing of the exosomal RNA from plasma in 

normal healthy individuals [180,181] and cancer patients [182,183], has identified that the 

majority of RNA within exosomes is microRNA (miRNA), with some fragments of coding 

sequence (mRNA) present as well.

RNA can also be detected at a lower level in a cell-free state in plasma without the time 

consuming and difficult procedures of isolating exosomes. cfRNA extracted this way also 

mainly contains miRNAs [184], however, important diagnostic and prognostic mRNA 

fragments can also be identified [185–187].Sequencing of cfRNA has been done by several 

groups [188–190], although the most promising avenue currently being explored for cancer 

is in the identification of tumour specific RNA transcripts and fusion genes, which are 

especially difficult to detect through DNA methods. That said, by further sequencing and 

characterizing of the exosomal and cfRNA profiles, it is possible that they could provide 

more information about cancer both for diagnostics and for fundamental studies of cancer 

biology and progression.

Clinical progress

Progress in the development in clinical tests and validation has been rapid, and is likely to 

continue in that fashion as they are approved in additional cancer types and as more drugs 

are developed requiring molecular stratification. The only approved tests currently use 

plasma as a starting source for cfDNA, however there is potential for this to expand to other 

sources of cfDNA and to cfRNA.

Most studies are currently focused on identification of mutations and cancer evolution; 

although many other potential areas of research and clinical use exist that have yet to be 

explored in depth, such as in understanding response to immunotherapy [120,125,191]. 

Further studies into these more complex areas will be able to provide additional information, 

not only about cancer, but also about cfDNA itself, and will help us to fully understand the 

potential and limitations of cfDNA analysis.

Stewart and Tsui Page 10

Cancer Genet. Author manuscript; available in PMC 2019 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

cfDNA analysis is a non-invasive method for obtaining important and clinically relevant 

molecular information about cancer that is rapidly gaining momentum in the research and 

clinical world. Technological developments in molecular biology and NGS approaches 

continue to advance the sensitivity of cfDNA analysis techniques, increasing the potential 

for its use not just in prognostic and diagnostic settings where disease burden is high, but 

also for minimal residual disease, emergence of resistance, and early screening. Clinically 

validated cfDNA assays are beginning to make an appearance in oncology, and will likely 

become widespread for monitoring response to treatment and molecular stratification. As 

research into additional sources of cfDNA and cell-free analytes continues, a wider variety 

of options for detection will become available and an increased understanding of the biology 

of cfDNA and ctDNA can be gained.
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