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Abstract

Motivation: Despite its great success in various physical modeling, differential geometry (DG) 

has rarely been devised as a versatile tool for analyzing large, diverse, and complex molecular and 

biomolecular datasets because of the limited understanding of its potential power in 

dimensionality reduction and its ability to encode essential chemical and biological information in 

differentiable manifolds.

Results: We put forward a differential geometry-based geometric learning (DG-GL) hypothesis 

that the intrinsic physics of three-dimensional (3D) molecular structures lies on a family of low-

dimensional manifolds embedded in a high-dimensional data space. We encode crucial chemical, 

physical, and biological information into 2D element interactive manifolds, extracted from a high-

dimensional structural data space via a multiscale discrete-to-continuum mapping using 

differentiable density estimators. Differential geometry apparatuses are utilized to construct 

element interactive curvatures in analytical forms for certain analytically differentiable density 

estimators. These low-dimensional differential geometry representations are paired with a robust 

machine learning algorithm to showcase their descriptive and predictive powers for large, diverse, 

and complex molecular and biomolecular datasets. Extensive numerical experiments are carried 

out to demonstrate that the proposed DG-GL strategy outperforms other advanced methods in the 

predictions of drug discovery-related protein-ligand binding affinity, drug toxicity, and molecular 

solvation free energy.

Keywords

biomolecular data; drug discovery; geometric data analysis; machine learning

Correspondence Guo-Wei Wei, Department of Mathematics, Michigan State University, East Lansing 48824, MI. 
wei@math.msu.edu. 

Availability and implementation: http://weilab.math.msu.edu/DG-GL/

HHS Public Access
Author manuscript
Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 June 28.

Published in final edited form as:
Int J Numer Method Biomed Eng. 2019 March ; 35(3): e3179. doi:10.1002/cnm.3179.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://weilab.math.msu.edu/DG-GL/


1 ∣ INTRODUCTION

Geometric data analysis (GDA) of biomolecules concerns molecular structural 

representation, molecular surface definition, surface meshing and volumetric meshing, 

molecular visualization, morphological analysis, surface annotation, pertinent feature 

extraction, etc at a variety of scales and dimensions.1-11 Among them, surface modeling is a 

low-dimensional representation of biomolecules, an important concept in GDA.12 Curvature 

analysis, such as the smoothness and curvedness of a given biomolecular surface, is an 

important issue in molecular biophysics. For example, lipid spontaneous curvature and BAR 

domain mediated membrane curvature sensing are all known biophysical effects. Curvature, 

as a measure on how much a surface is deviated from being flat,13 is a major player in 

molecular stereospecificity,14 the characterization of protein-protein and protein-nucleic acid 

interaction hot spots and drug binding pockets15-17 and the analysis of molecular solvation.
18

Curvature analysis is an important aspect of differential geometry (DG), which is a 

fundamental topic in mathematics and its study dates back to the 18th century. Modern 

differential geometry encompasses a long list of branches or research topics and draws on 

differential calculus, integral calculus, algebra, and differential equation to study problems 

in geometry or differentiable manifolds. The study of differential geometry is fueled by its 

great success in a wide variety of applications, from the curvature of space-time in Einstein’s 

general theory of relativity, differential forms in electromagnetism,19 to Laplace-Beltrami 

operator in cell membrane structures.20,21 How biomolecules assume complex structures and 

intricate shapes and why biomolecular complexes admit convoluted interfaces between 

different parts can also be described by differential geometry.22

In molecular biophysics, differential geometry of surfaces offers a natural tool to separate 

the solute from the solvent, so that the solute molecule can be described in microscopic 

detail while the solvent is treated as a macroscopic continuum, rendering a dramatic 

reduction in the number of degrees of freedom. A differential geometry-based multiscale 

paradigm was proposed for large biological systems, such as proteins, ion channels, 

molecular motors, and viruses, which, in conjunction with their aqueous environment, pose a 

challenge to both theoretical description and prediction because of a large number of degrees 

of freedom.22 In 2005, the curvature-controlled geometric flow equations were introduced 

for molecular surface construction and solvation analysis.23 In 2006, based on the Laplace-

Beltrami flow, the first variational solvent-solute interface, the minimal molecular surface 

(MMS), was proposed for molecular surface representation.24,25 Differential geometry–

based solvation models have been developed for solvation modeling.26-34 A family of 

differential geometry-based multiscale models has been used to couple implicit solvent 

models with molecular dynamics, elasticity, and fluid flow.22,30-32,35 Efficient geometric 

modeling strategies associated with differential geometry based multiscale models have been 

developed in both Lagrangian-Eulerian15,16 and Eulerian representations.17,36

Although the differential geometry-based multiscale paradigm provides a dramatic reduction 

in dimensionality, quantitative analysis, and useful predictions of solvation-free energies29,37 

and ion channel transport,30-32,35,38 it works in the realm of physical models. Therefore, it 
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has a relatively confined applicability and its performance depends on many factors, such as 

the implementation of the Poisson-Boltzmann equation or the Poisson-Nernst-Planck, which 

in turn depends on the microscopic parametrization of atomic charges. Consequently, these 

models have a limited representative power for complex biomolecular structures and 

interactions in large data sets.

In addition to its use in biophysical modeling, differential geometry has been devised for 

qualitative characterization of biomolecules.15,16 In particular, minimum and maximum 

curvatures offer good indications of the concave and convex regions of biomolecular 

surfaces. This characterization was combined with surface electrostatic potential computed 

from the Poisson model to predict potential protein-ligand binding sites.17,36 Most recently, 

the use of molecular curvature for quantitative analysis and the prediction of solvation free 

energies of small molecules have been explored.39 However, the predictive power of this 

approach is limited due to the use of whole molecular curvatures. Essentially, chemical and 

biological information in the complex biomolecule is mostly neglected in this low-

dimensional representation.

Efficient representation of diverse small-molecules and complex macromolecules is of great 

significance to chemistry, biology, and material sciences. In particular, this representation is 

crucial for understanding protein folding, the interactions of protein-protein, protein-ligand, 

and protein-nucleic acid, drug virtual screening, molecular solvation, partition coefficient, 

boiling point, etc. Physically, these properties are generally known to be determined by a 

wide variety of non-covalent interactions, such as hydrogen bond, electrostatics, charge-

dipole, induced dipole, dipole-dipole, attractive dispersion, π – π stacking, cation-π, 

hydrophobicity, and/or van der Waals interaction. However, it is impossible to accurately 

calculate these properties for diverse and complex molecules in massive datasets using 

rigorous quantum mechanics, molecular mechanics, statistical mechanics, and 

electrodynamics.

While differential geometry has the potential to provide an efficient representation of diverse 

molecules and complex biomolecules in large datasets, its current representative power is 

mainly hindered by the neglect of crucial chemical and biological information in the low-

dimensional representations of high dimensional molecular and biomolecular structures and 

interactions. One way to retain chemical and biological information in a differential 

geometry representation is to systematically break down a molecule or molecular complex 

into a family of fragments and then computing fragmentary differential geometry. 

Obviously, there is a wide variety of ways to create fragments from a molecule, rendering 

descriptions with controllable dimensionality, and chemical and biological information. An 

element-level coarse-grained representation has been shown to be an appropriate choice in 

our earlier work.40-43 An important reason to pursue element-level descriptions is that the 

resulting representation needs to be scalable, namely, being independent of the number of 

atoms in a given molecule so as to put molecules of different sizes in the dataset on an equal 

footing. Additionally, fragments with specific element combinations can be used to describe 

certain types of non-covalent interactions, such as hydrogen bond, and hydrophobicity that 

occur among certain types of elements. Most datasets provide either the atomic coordinates 

or three-dimensional (3D) profiles of molecules and biomolecules. Mathematically, it is 
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convenient to construct Riemannian manifolds on appropriately selected subsets of element 

types to facilitate the use of differential geometry apparatuses. This manifold abstraction of 

complex molecular structures can be achieved via a discrete-to-continuum mapping in a 

multiscale manner.44-46

The objective of the present work is to introduce differential geometry-based geometric 

learning (DG-GL) as an accurate, efficient, and robust representation of molecular and 

biomolecular structures and their interactions. Our DG-GL assumption is that the intrinsic 

physics lies on a family of low-dimensional manifolds embedded in a high-dimensional data 

space. The essential idea of our geometric learning is to encode crucial chemical, biological, 

and physical information in the high-dimension data space into differentiable low-

dimensional manifolds and then use differential geometry tools, such as Gauss map, 

Weingarten map, and fundamental forms, to construct latent mathematical representations of 

the original dataset from the extracted manifolds. From the point of view machine learning, 

the generation of the low-dimensional DG representation is very similar to the encoding 

process in an autoencoder. Using a multiscale discrete-to-continuum mapping, we introduce 

a family of Riemannian manifolds, called element interactive manifolds, to facilitate 

differential geometry analysis and compute element interactive curvatures. The low-

dimensional differential geometry representation of high-dimensional molecular structures is 

paired with a state-of-the-art machine learning algorithms to predict drug-discovery–related 

molecular properties of interest, such as the free energies of solvation, protein-ligand 

binding affinities, and drug toxicity. All results presented in this work are obtained solely 

from the DG representation. Note that the present DG-GL strategy requires only atomic 

coordinates and element types as its essential input data. It does not need molecular force 

fields in general. However, simple atomic charge information can be incorporated when it is 

needed. We demonstrate that the proposed DG-GL strategy outperforms other cutting edge 

approaches in the field.

2 ∣ METHODS AND ALGORITHMS

This section describes methods and algorithms for geometric learning. We start by a review 

of a multiscale discrete-to-continuum mapping algorithm, which extracts low-dimensional 

element interactive manifolds from high-dimensional molecular datasets. Differential 

geometry apparatuses are applied to element interactive manifolds to construct appropriate 

mathematical representations suitable for machine learning, rendering a DG-GL strategy.

2.1 ∣ Element interactive manifolds

2.1.1 ∣ Multiscale discrete-to-continuum mapping—Let 𝒳 = {r1, r2, …, rN} be a 

finite set for N atomic coordinates in a molecule and qj be the partial charge on the jth atom. 

Denote r j ∈ ℝ3 the position of the jth atom, and ∥r – rj∥ the Euclidean distance between the 

jth atom and a point r ∈ ℝ3. The unnormalized molecular number density and molecular 

charge density are given by a discrete-to-continuum mapping44,47,48

Nguyen and Wei Page 4

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ρ(r, {ηk}, {wk}) = ∑
j = 1

N
w jΦ(‖r − r j‖; η j), (1)

where wj = 1 for molecular number density and wj = qj for molecular charge density. Here, 

ηj are characteristic distances and Φ is a C2 correlation kernel or a density estimator that 

satisfies the following admissibility conditions

Φ(‖r − r j‖; η j‖) = 1, as ‖r − r j‖ 0, (2)

Φ(‖r − r j‖; η j‖) = 0, as ‖r − r j‖ ∞ . (3)

Monotonically decaying radial basis functions are all admissible. Commonly used 

correlation kernels include generalized exponential functions

Φ(‖r − r j‖; η j‖) = e
−(‖r − r j‖ ∕ η j)

κ
, κ > 0; (4)

and generalized Lorentz functions

Φ(‖r − r j‖; η j) = 1
1 + (‖r − r j‖ ∕ η j)

ν , ν > 0 . (5)

Many other functions, such as C2 delta sequences of the positive type discussed in an earlier 

work49 can be employed as well.

Note that ρ(r, {ηj}, {wj}) depends on scale parameters {ηj} and possible charges {qj}. A 

multiscale representation can be obtained by choosing more than one set of scale 

parameters. It has been shown that molecular number density (1) serves as an excellent 

representation of molecular surfaces.45 However, differential geometry properties computed 

from ρ(r, {ηj}, {wj}) have a very limited predictive power.39

2.1.2 ∣ Element interactive densities—Our goal is to develop a DG representation of 

molecular structures and interactions in large molecular or biomolecular datasets. More 

specifically, we are interested in the description of non-covalent intramolecular molecular 

interactions in a molecule and intermolecular interactions in molecular complexes, such as 

protein-protein, protein-ligand, and protein-nucleic acid complexes. With large datasets in 

mind, we seek an efficient manifold reduction of high-dimensional structures. To this end, 

we extract common features in most molecules or molecular complexes. In order to make 
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our approach scalable, the structure of our descriptors must be uniform regardless of the 

sizes of molecules or their complexes.

We consider a systematical and element-level description of molecular interactions. For 

example, in the protein-ligand interactions, we classify all interactions as those between 

commonly occurring element types in proteins and commonly occurring element types in 

ligands. Specifically, commonly occurring element types in proteins include H, C, N, O, and 

S and commonly occurring element types in ligands are H, C, N, O, S, P, F, Cl, Br, and I. 

Therefore, we have a total of 50 protein-ligand element specific groups: HH, HC, HO, …, 

HI, CH, …, SI. These 50 element-level descriptions are devised as an approximation to non-

covalent interactions in large protein-ligand binding datasets. In fact, because of the absence 

of H in most Protein Data Bank (PDB) datasets, we exclude hydrogen in protein element 

types. For this reason, we only consider a total of 40 element specific group descriptions of 

protein-ligand interactions in practice. Similarly, we have a total of 25 element specific 

group descriptions of protein-protein interactions while practically consider only 16 

collective descriptions. This approach can be trivially extended to other interactive systems 

in chemistry, biology, and material science.

We denote the set of commonly occurring chemical element types in the dataset as 

𝒞 = {H, C, N, O, S, P, F, Cl, …}. As such, 𝒞3 = N denotes the third chemical element in the 

collection, ie, a nitrogen element. The selection of 𝒞 is based on the statistics of the dataset. 

Certain rarely occurring chemical element types will be ignored in the present description.

For a molecule or molecular complex with N commonly occurring atoms, its jth atom is 

labeled both by its element type αj, its position rj, and partial charge qj. The collection of 

these N atoms is set 𝒳 = {(r j, α j, q j) ∣ r j ∈ ℝ3; α j ∈ 𝒞; j = 1, 2, …, N}.

We assume that all the pairwise non-covalent interactions between element types 𝒞k and 𝒞k′
in a molecule or a molecular complex can be represented by correlation kernel Φ

{Φ(‖ri − r j‖; ηkk′) |αi = 𝒞k, α j = 𝒞k′; i, j = 1, 2, …, N; ‖ri − r j‖ > ri + r j + σ}, (6)

where ∥ri – rj∥ is the Euclidean distance between the ith and jth atoms, ri and rj are the 

atomic radii of ith and jth atoms, respectively, and σ is the mean value of the standard 

deviations of ri and rj in the dataset. The distance constraint (∥ri – rj∥ > ri + rj + σ) excludes 

covalent interactions in our description. Whereas ηkk′ is a characteristic distance between 

the atoms, which depends only on their element types.

Let B(ri, ri) be a ball with a center ri and a radius ri. The atomic-radius-parametrized van der 

Waals domain of all atoms of kth element type Dk ≔ ∪ri, αi = 𝒞k
B(ri, rk), with rk is the 

atomic radius of the kth element type. We are interested in the element interactive number 

density and element interactive charge density because of all atoms of the k′th element type 

at Dk are given by
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ρkk′(r, ηkk′) = ∑
j

w jΦ(‖r − r j‖; ηkk′), r ∈ Dk, α j = 𝒞k′; ‖ri − r j‖ > ri + r j + σ, ∀αi ∈ 𝒞k;

k ≠ k′,

(7)

where wj = 1 for element interactive number density and wj = qj for element interactive 

charge density.

Moreover, when k = k′, each atom can contribute to both the atomic-radius–parametrized 

van der Waals domain Dk and the summary of the element interactive density. To reserve this 

problem, we define the element interactive number density and element interactive charge 

density because of all atoms of kth element type at Dk
i  as

ρkk(r, ηkk) = ∑
j

w jΦ(‖r − r j‖; ηkk), r ∈ Dk
i , αi = 𝒞k; α j = 𝒞k; ‖ri − r j‖ > 2r j + σ, (8)

where Dk
i = B(ri, ri), αi = 𝒞k is the atomic-radius–parametrized van der Waals domain of the 

ith atom of the kth element type. Obviously, ρkk(r, ηkk) is to be evaluated at all Dk
i .

Element interactive density and element charge density are collective quantities for a given 

pair of element types. It is a C∞ function defined on the domain enclosed by the boundary 

of Dk of the kth element type.

Note that a family of element interactive manifolds is defined by varying a constant c

ρkk′(r, ηkk′) = cρmax, 0 ≤ c ≤ 1 and ρmax = max{ρkk′(r, ηkk′)} . (9)

Figure 1 illustrates a few element interactive manifolds.

2.2 ∣ Element interactive curvatures

2.2.1 ∣ Differential geometry of differentiable manifolds—One aspect of 

differential geometry concerns the calculus defined on differentiable manifolds. Consider a 

C2 immersion f :U ℝn + 1, where U ⊂ ℝn is an open set and U is compact.20,22,25 Here, 

f(u) = (f1(u),f2(u), …, fn+1(u)) is a hypersurface element (or a position vector), and u = (u1, 

u2, …, un) ∈ U. Tangent vectors (or directional vectors) of f are Xi = ∂f
∂ui

, i = 1, 2…n. The 

Jacobi matrix of the mapping f is given by Df = (X1, X2, …, Xn). The first fundamental form 

is a symmetric, positive definite metric tensor of f, given by I(Xi, Xj) : = (gij) = (Df)T · (Df). 
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Its matrix elements can also be expressed as gij = ⟨Xi, Xj⟩, where ⟨,⟩ is the Euclidean inner 

product in ℝn, i, j = 1, 2, …, n.

Let N(u) be the unit normal vector given by the Gauss map N : U → Rn+1,

N(u1, u2, …, un) ≔ X1 × X2… × Xn ∕ ‖X1 × X2… × Xn‖ ∈ ⊥u f, (10)

where “×” denotes the cross product. Here, ⊥u f is the normal space of f at point X = f(u), 

where the position vector X differs much from tangent vectors Xi. The normal vector N is 

perpendicular to the tangent hyperplane Tuf at X. Note that Tuf ⊕ ⊥u f = Tf(u)ℝ
n, the 

tangent space at X. By means of the normal vector N and tangent vector Xi, the second 

fundamental form is given by

II(Xi, X j) = (hi j)i, j = 1, 2, …n = − ∂N
∂ui

, X j
i j

. (11)

The mean curvature can be calculated from H = 1
nhi jg

ji, where we use the Einstein 

summation convention, and (gij) = (gij)−1. The Gaussian curvature is given by K =
Det(hi j)
Det(gi j)

.

2.2.2 ∣ Element interactive curvatures—On the basis of the above theory, the 

Gaussian curvature (K) and the mean curvature (H) of element-interactive density ρ(r) can 

be easily evaluated17,21:

K = 1
g2 [2ρxρyρxzρyz + 2ρxρzρxyρyz + 2ρyρzρxyρxz

− 2ρxρzρxzρyy − 2ρyρzρxxρyz − 2ρxρyρxyρzz

+ ρz
2ρxxρyy + ρx

2ρyyρzz + ρy
2ρxxρzz

− ρx
2ρyz

2 − ρy
2ρxz

2 − ρz
2ρxy

2 ],

(12)

and

H = 1

2g
3
2

[2ρxρyρxy + 2ρxρzρxz + 2ρyρzρyz − (ρy
2 + ρz

2)ρxx − (ρx
2 + ρz

2)ρyy − (ρx
2 + ρy

2)ρzz],

(13)
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where g = ρx
2 + ρy

2 + ρz
2. With determined Gaussian and mean curvatures, the minimum 

curvature, κmin, and maximum curvature, κmax, can be evaluated by

κmin = H − H2 − K, κmax = H + H2 − K . (14)

Note that if we choose ρ to be ρkk′(r, ηkk′) given in Equation 7, the associated element 

interactive curvatures (EIC) are continuous functions, ie, Kkk′(r, ηkk′), Hkk′(r, ηkk′), 

κkk′,min(r, ηkk′), κkk′,max(r, ηkk′), ∀r, ∈ Dk. These interactive curvature functions offer 

new descriptions of non-covalent interactions in molecules and molecular complexes. In 

practical applications, we are particularly interested in evaluating EICs at the atomic centers 

and define the element interactive Gaussian curvature (EIGC) by

Kkk′
EI (ηkk′) = ∑

i
Kkk′(ri, ηkk′), ri ∈ Dk; k ≠ k′ (15)

and

Kkk
EI(ηkk) = ∑

i
Kkk(ri, ηkk), ri ∈ Dk

i , Dk
i ⊂ Dk . (16)

Similarly, we can define Hkk′
EI (ηkk′), κkk′, min

EI (ηkk′), and κkk′, max
EI (ηkk′). In practical applications, 

these element interactive curvatures may involve a narrow band of manifolds.

Computationally, for interactive density, densities based on correlation kernels defined in 

Equations 4 and 5, their derivatives can be calculated analytically, and thus their EICs can be 

evaluated analytically according to Equations 12, 13, and 14. The resulting analytical 

expressions are free of numerical error and directly suitable for molecular and biomolecular 

modeling.

2.3 ∣ DG-GL strategy

Paired with machine learning, the proposed DG-GL of molecules is potentially powerful. In 

the training part of supervised learning (classification or regression), let 𝒳i be the dataset 

from the ith molecule or molecular complex in the training dataset. We denote F(𝒳i; η) a 

function that encodes the geometric information into suitable DG representation with a set of 

parameters η. We cast the training into the following minimization problem,

min
η, θ

∑
i ∈ I

L(yi, F(𝒳i; η); θ), (17)

where L is a scalar loss function to be minimized and yi is the label of the ith sample in the 

training set I. Here, θ are the set of machine learning hyperparameters to be optimized and 
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depend on machine learning algorithms chosen. Obviously, a wide variety of machine 

learning algorithms, including linear regression, support vector machine, random forest, 

gradient boosting trees, artificial neural networks, and convolutional neural networks, can be 

employed in conjugation with the present DG representation. However, as our goal is to 

examine the representative power of the proposed geometric data analysis, we only focus on 

the gradient boosting trees (GBTs) in the present work, instead of optimizing machine 

learning algorithm selections. Surely, when a dataset is sufficiently large, the present DG 

representation would deliver better results when it is coupled with a deep neural network 

with appropriate gradient descent and backpropagation algorithms to update all parameters. 

Figure 1 depicts the proposed DG-GL strategy in conjugation with GBTs.

We use the GBT module in scikit-learn v0.19.1 package with the following parameters: 

n_estimators = 10 000, max_depth = 7, min_samples_split = 3, learning_rate = 0.01, loss = 

ls, subsample = 0.3, and max_features = sqrt. These parameter values are selected from the 

extensive tests on PDBbind datasets and are uniformly used in all our validation tasks in this 

work. In addition, our test indicates that random forest can yield similar results. Both 

ensemble methods are quite robust against overfitting.50

3 ∣ RESULTS

To examine the validity, demonstrate the utility, and illustrate the performance of the 

proposed DG-GL strategy for analyzing molecular and biomolecular datasets, we consider 

three representative problems. The first problem concerns quantitative toxicity prediction of 

small drug-like molecules. Quantitative toxicity analysis of new industrial products and new 

drugs has become a standard procedure required by the Environmental Protection Agency 

and the Food and Drug Administration. Computational analysis and prediction offer an 

efficient, relatively accurate, and low-cost approach for the toxicity virtual screening. There 

is always a demand for the next generation methods in toxicity analysis. The second 

problem is about the solvation free energy prediction. Solvation is an elementary process in 

nature. Solvation analysis is particularly important for biological systems because water is 

abundant in living cells. The understanding of solvation is a prerequisite for the study of 

more complex chemical and biological processes in living organisms. The development of 

new strategies for the solvation free energy prediction is a major focus of molecular 

biophysics. In this work, we utilize toxicity and solvation to examine the accuracy and 

predictive power of the proposed DG-GL strategy for small molecular datasets. Finally, we 

consider protein-ligand bind affinity datasets to validate the proposed DG-GL strategy for 

analyzing biomolecules and their interactions with small molecules. Protein-ligand bind 

analysis is important for drug design and discovery. The protocol of the proposed DG-GL 

strategy for solving these problems is illustrated Figure 1.

3.1 ∣ Model parametrization

For the sake of convenience, we use notation EICα, β, τ
C  to indicate the element interactive 

curvatures (EICs) generated by using curvature type C with kernel type α and corresponding 

kernel parameters β and τ. As such, C = K, C = H, C = kmin, and C = kmax represent 

Gaussian curvature, mean curvature, minimum curvature and maximum curvature, 
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respectively. Here, α = E and α = L refer to generalized exponential and generalized Lorentz 

kernels, respectively. Additionally, β is the kernel order such that β = κ if α = E, and β = ν if 

α = L. Finally, τ is used such that ηkk′ = τ(r‒k + r‒k′), where r‒k and r‒k′ are the van der Waals 

radii of element type k and element type k′, respectively. Kernel parameters β and τ as 

selected based on the cross validation with a random split of the training data.

We propose a DG representation in which multiple kernels are parametrized at different 

scale (η) values. In this work, we consider at most two kernels. As a straightforward notation 

extension, two kernels can be parametrized by EICα1, β1, τ1; α2, β2, τ2

C1C2 . Each of these kernels 

gives rise to one set of features.

3.2 ∣ Datasets

Three drug-discovery–related problems involving small molecules and macro molecules and 

their complexes are considered in the present work to demonstrate the performance, validate 

the strategy, and analyze the limitation of the proposed DG-GL strategy for molecular and 

biomelocular datasets. Details for these problems are described below.

3.2.1 ∣ Toxicity—One of our interests is to examine the performance of our EIC on 

quantitative drug toxicity prediction. We consider an IGC50 set which measures the 

concentration that inhibits the 50% of the growth of Tetrahymena pyriformis organism after 

40 hours. This dataset was collected by Schultz and coworkers.51,52 Its 2D SDF format 

molecular structures and toxicity end points (in log(mol/L) unit) are available on the 

Toxicity Estimation Software Tool (TEST) website. The 3D MOL2 molecular structures 

were created with the Schrödinger software in our earlier work.53 The IGC50 set consists of 

1792 molecules that are split into a training set (1434 molecules) and a test set (358 

molecules). The end point values lie between 0.334 log(mol/L) and 6.36 log(mol/L). This is 

a regression problem.

3.2.2 ∣ Solvation—We are also interested in exploring the proposed EIC method for 

solvation free energy prediction. A specific solvation dataset used in this work was collected 

by Wang et al54 for the purpose of testing their method named weighted solvent accessible 

surface area (WSAS). To validate our differential geometry approach, we consider the 

Model III in their work. In this model, a total of 387 neutral molecules in the 2D SDF format 

is divided into a training set (293 molecules) and a test set (94 molecules).54 The 3D MOL2 

molecular structures were created with the Schrödinger software in our earlier work.55 This 

is a regression problem.

3.2.3 ∣ Protein-ligand binding—Finally, we are interested in using our EIC method to 

predict the binding affinities of protein-ligand complexes. A standard benchmark for such a 

prediction is the PDBbind database.56,57 Three popular PDBbind datasets, namely, 

PDDBind v2007, PDBbind v2013, and PDBbind v2016, are employed to test the 

performance of our method. Each PDBbind dataset has a hierarchical structure consisting of 

following subsets: a general set, a refined set, and a core set. The latter set is a subset of the 

previous one. Unlike other datasets used in this work, the PDBbind database provides 3D 
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coordinates of ligands and their receptors obtained from experimental measurement via 

Protein Data Bank. In each benchmark, it is standard to use the refined set, excluding the 

core set, as a training set to build a predictive model for the binding affinities of the 

complexes in the test set (ie, the core set). It is noted that the core set in the PDBbind v2013 

is identical to that in PDBbind v2015. As a result, we use the PDBbind v2015 refined set 

(excluding the core set) as the training set for the PDBbind v2013 benchmark. More 

information about these datasets is offered at the PDBbind website. Table 1 lists the statistics 

of these three datasets used in the present study.

3.3 ∣ Performance and discussion

3.3.1 ∣ Toxicity prediction—Toxicity is the degree to which a chemical can damage an 

organism. These injurious events are called toxicity end points. Depending on the impacts on 

given targets, toxicity can be either quantitatively or qualitatively assessed. While the 

quantitative tasks report the minimal amount of chemical substances that can cause the fatal 

effects, the qualitative tasks classify chemicals into toxic and nontoxic categories. To verify 

the adverse response caused by chemicals on an organism, toxicity tests are traditionally 

conducted in vivo or in vitro. However, such approaches usually reveal their shortcomings 

such as labor-intensive and costly expense when dealing with a large number of chemical 

substances, not to mention the potential ethical issues. As a result, there is a need to develop 

efficiency computer-aided methods, or in silico methods that are able to deliver an 

acceptable accuracy. There is a longstanding approach named quantitative structure activity 

relationship (QSAR). By assuming there is a correlation between structures and activities, 

QSAR methods can predict the activities of new molecules without going through any real 

experiments in a wet laboratory.

Many QSAR models have been reported in the literature in the past. Most of them are 

machine-learning–based methods including a variety of traditional algorithms, namely, 

regression and linear discriminant analysis,58 nearest neighbors,59,60 support vector 

machine,58,61,62 and random forest.63 In this toxicity prediction, we are interested in 

benchmarking our EIC method against other approaches presented in TEST64 on the IGC50 

set.

As discussed in Section 2.1.2, we use 10 commonly occurring atom types, H, C, N, O, S, P, 

F, Cl, Br, and I, for the element-interactive curvature calculations, which results in 100 

different pairwise combinations. Besides the use of element interactive curvatures, the 

statistical information, namely, minimum, maximum, average, and standard deviation, of the 

pairwise interactive curvatures as well as their absolute values is taken into account, which 

leads to 800 additional features. In fact, the atomic charge density is also used in the present 

work for generating EICs of small molecules, which gives rise to a total number of 1800 

features for modeling the toxicity dataset.

To attain the best performance using EICs, the kernel parameters, ie, (κ, τ) for exponential 

functions or (ν, τ) for Lorentz functions, have to be optimized. To this end, we vary κ or ν 
from 0.5 to 10 with an increment of 0.5, while τ values are chosen from 0.3 to 1.7 with an 

increment of 0.2. It is a common sense to use the cross-validation on the training data to 

obtain the optimal parameter set. For the toxicity dataset, we carry out a four-fold cross-

Nguyen and Wei Page 12

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



validation on the training set since we want each fold shares the similar size to the test set. 

Figures A1 and A3 report the optimal parameters of all different types of curvatures for 

exponential and Lorentz kernels, respectively. As shown in our previous work,48,65,66 

multiscale approaches can further boost the performance of one-scale models. Therefore, we 

add another kernel to the best single scale model selected from Figures A1 and A3 to check 

if there is any improvement. As expected, multiscale models deliver better cross-validation 

performances on the training data than their single-scale counterparts as shown in Figures 

A2 and A4. Specifically, while single-scale model using the mean curvature achieves the 

best R-squared correlation coefficient R2 = 0.743 on the training set with parameters 

EICE, 1.5, 0.3
H . The two-scale model EICE, 1.5, 0.3; E, 3.5, 0.3

HH  produces an R2 score as high as 

0.772. In other words, the two-scale model learns the training data information more 

efficiency than its counterpart.

After the training process, we are interested in seeing if a similar performance can be 

accomplished as one uses those models on the test set. The performance results of various 

types of curvatures on the IGC50 test are reported in Table 2. Besides the R-squared 

correlation coefficient, we include the other common evaluation metrics, namely, root-mean-

squared error (RMSE) and mean-absolute error (MAE) for a general overview. To obtain 

predictions, we run gradient-boosting regressions up to 50 times for each model, then the 

final prediction is given by the average of these 50 predicted values. There are also 

consensus approaches presented in Table 2. The consensus models, named consensusC, 

produce the average predicted values formed by the corresponding two-scale models 

EICE, β1, τ1; E, β2, τ2
C  and EICL, β1, τ1; L, β2, τ2

C . It is seen that consensus models consensusC 

typically offer a better performance than the rest of their counterparts.

Golbraikh et al67 argued that for a model to have predictive power, it must satisfy the 

following criteria

q2 > 0.5, R2 > 0.6,
R2 − R0

2

R2 < 0.1, and 0.85 ≤ k ≤ 1.15, (18)

where q2 is the R-square correlation coefficient obtained by conducting the leave-one-out 

cross-validation (LOO CV) on the training set. R2 is the squared Pearson correlation 

coefficient between experimental and predicted values of the test set. R0
2, the R-square 

correlation coefficient between real and predicted values of the test set, is calculated by 

considering the linear regression without the intercept, and k is the coefficient of that fitting 

line. It is easy to check that all our models reported in Table 2 satisfy the last three 

evaluation criteria in (18). We do not carry on the LOO CV on the training data; therefore, 

the q2 value is not available for this work. However, the four-fold CV is conducted, and the 

R2 values are always higher than 0.7 as shown in Figures A1-A3, and A4. LOO CV results 

would be typically better than those of the four-fold CV. Notice that, to get fair CV 

performances comparison between different sets of kernel parameters, a random split on the 

training data is predefined. The CV procedure for the other datasets are carried out with the 
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same fashion. It is a universal knowledge that the k-fold CV can help to detect the 

overfitting. If there is a significant difference in the performance between the CV task and 

the test set prediction, the model is in a high risk to overfit. We use this protocol to examine 

the overfitting issue in our model. According to Figure A2, the R2 values in four-fold CV 

performances of four models EICE, κ1, τ1; E, κ2, τ2
CC , C ∈ {kmin, kmax, H, K} are found to be 

0.768, 0.780, 0745, and 0.772, respectively. Which are quite close to the performances of the 

corresponding models on the test data reported in Table 2. Specifically, R2 values on the test 

set of four models EICE, κ1, τ1; E, κ2, τ2
CC , C ∈ {kmin, kmax, H, K} are, respectively, 0.767, 0.780, 

0.769, and 0.773. This fact can partially confirm that our models on this toxicity dataset does 

not overfit.

To illustrate the predictive power of the proposed EIC models, we present state-of-the-art 

results taken from the TEST software64 in Table 2. Since the approaches reported in the 

study of Martin64 do not apply to the entire test data, the coverage values of the TEST 

software are less than one. Table 2 confirms the state-of-the-art performances of various EIC 

models. All of our consensus models (ConsensusC), C ∈ {kmin, kmax, K, H}, deliver a better 

prediction than the TEST consensus does, and the choice of the curvature type seems to not 

affect the performances of our consensus models very much. Especially, the R2 values of 

Consensuskmin, Consensuskmax, ConsensusK, and ConsensusH are found to be 0.781, 0.780, 

0.781, and 0.779, respectively. In addition, the MAE in log(mol/L) of the corresponding 

models are, respectively, as low as 0.324, 0.329, 0.332, and 0.320. These results are better 

than ones achieved by the TEST consensus64 with its R2 and MAE values being 0.764 and 

0.332, respectively. It is noted that in our earlier work using a combination of both 

topological and physical features, the best prediction has R2 and MAE were 0.802 and 

0.305.53 Since the mean curvature model offers a balance between accuracy and variance 

among the different kernel selections, we will consider it as our primary model for the rest 

of our datasets.

3.3.2 ∣ Solvation free energy prediction—Solvation free energy is some of the most 

important information in solvation analysis which can help to perceive other complex 

chemical and biological processes.68-70 Therefore, it is essential to construct an accuracy 

scheme to predict solvation free energies. In the past few decades, many theoretical methods 

have been reported in the literature for the solvation free energy prediction. Essentially, there 

are two types of physical models depending on the solvent molecules treatment, namely, 

explicit and implicit ones. The typical explicit models refer to molecular mechanics71 and 

hybrid quantum mechanics/molecular mechanics72 methods. In contrast, implicit models 

include many approaches, namely, the generalized Born model with various variants such as 

GBSA73 and SM.x,74 polarizable continuum model, and numerous derived forms of the 

Poisson-Boltzmann (PB) model.26,28,37,75-78

In this work, we are interested in examining our DG-GL strategy for solvation free energy 

predictions. To demonstrate the performance of the proposed model on relatively large 

datasets, we employ the solvation energy data set, Model III, collected by Wang et al.54 

Model III has a total of 387 molecules (excluding ions) is split into a training data consisting 
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of 293 molecules and test data with 94 molecules. To obtain a fair comparison, we use the 

same dataset splitting in our experiment except for omitting four molecules in the training 

set having the compound ID of 363, 364, 385, and 388 because of their obscure chemical 

names in the PubChem database. This omission results in a smaller training set of 289 

molecules, which disfavors our method. Since we deal with small molecules again, we 

employ the same feature generation procedure as that described in the toxicity prediction.

Since training data in the solvation free energy set differs from one in the toxicity task, one 

cannot expect to attain the optimal performance on the current set by reusing the kernel 

parameters found in the toxicity end points prediction. To this end, we again carry out the 

parameter search by doing a three-fold CV on the solvation training set. We use the mean 

absolute error as the main metric for such cross-validation, and only the mean curvature 

model is used in this task. Because of the observation of the toxicity set, we expect other 

curvature models will yield a similar performance. Figure B1 depicts the performances of 

various kernel parameters from the three-fold CV on the training set. On the basis of its 

heat-map plot, we conclude that EICE, 3.5, 0.3
H  and EICL, 3, 1.3

H  are the best single-kernel 

models. By using those kernel information, we naturally construct two-kernel models and 

their performances on the training set are illustrated in Figure B2, which reveals that 

EICE, 3.5, 0.3; E, 2.5, 1.3
HH  and EICL, 3, 1.3; L, 6.5, 0.3

HH  are expected to be the best models for the test 

set prediction. After tuning kernels′ parameters, we use these models for solvation free 

energy prediction on the test set.

To benchmark the proposed approach, we compare our results with the state-of-the-art 

methods, namely WASA54 and FFT.55 The evaluations are reported in Table 3. Besides the 

MAE metric, we assess our models using additional ones such as RMSE and R2; however, 

these metrics are missing from the literature. The results in Table 3 indicate that our models, 

EICE, 3.5, 0.3; E, 2.5, 1.3
HH  and ConsensusH, perform slightly better than the established ones in 

term of MAE. Specifically, our best model EICE, 3.5, 0.3; E, 2.5, 1.3
HH  achieves MAE = 0.558 kcal/

mol, while the WSAS and FFT attain MAE = 0.66 kcal/mol and MAE = 0.57 kcal/mol, 

respectively. Unlike the toxicity prediction, the consensus model in this experiment is not the 

best one. However, if one does the blind prediction, the consensus is still the most reliable 

model. Also, the overfitting concern can be partially resolved by comparing the CV and test 

set performances of the proposed models. Specially, the MAE from three-fold CV of 

EICE, 3.5, 0.3; E, 2.5, 1.3
HH  and EICL, 3, 1.3; L, 6.5, 0.3

HH  models found in Figure B2 are 0.840 and 0.880, 

respectively. They are comparable to 0.558 and 0.592, the actual performances of the 

corresponding models on the test set reported in Table 3.

3.3.3 ∣ Protein-ligand binding affinity prediction—In order to demonstrate the 

application of our proposed element-interactive curvature models on the various of 

biomolecular structures, we are interested in applying our EIC-score for the binding free 

energy prediction of a protein-ligand complex. There are numerous scoring functions (SFs) 

for the binding affinity estimation published in the literature. We can classify those SFs into 

four categories79: (1) force-field–based or physical-based scoring functions; (2) empirical or 
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linear regression-based scoring functions; (3) potential of the mean force (PMF) or 

knowledge-based scoring functions; and (4) machine-learning–based scoring functions. To 

validate the predictive power of the EIC-score, we employ three commonly used 

benchmarks, namely PDBbind v2007, PDBbind v2013, and PDBbind v2016 available 

online at http://PDBbind.org.cn/

To effectively capture the interactions between protein and ligand in a complex, we consider 

the scale factor τ and power parameters β = κorν in [0.5, 6] with an increment of 0.5. 

Moreover, we take the ideal low-pass filter (ILF) into account by considering high β values. 

To this end, we assign β ∈ {10, 15, 20}. The binding site of the complex is defined by a cut-

off distance dc = 20Å. The element interactive curvature is described by four commonly 

atom types, {C, N, O, S},in protein and 10 commonly atom types, {H, C, N, O, F, P, S, Cl, 

Br, I}, in ligands. For a set of the atomic pairwise curvatures, one can extract 10 descriptive 

statistical values, namely sum, the sum of absolute values, minimum, the minimum of 

absolute values, maximum, the maximum of absolute values, mean, the mean of absolute 

values, standard deviation, and the standard deviation of absolute values, which results in a 

total of 400 features. Note that electrostatic curvatures are not employed in this study.

Each benchmark involves its own training set; as a result, we design the different kernel 

parameters for the corresponding benchmark. We follow the same parameter search 

procedure as discussed in the aforementioned datasets on toxicity and solvation predictions. 

Specifically, we carry out the five-fold CV on each training set with kernel parameters 

varying in their interested domains. Figures C1 and C3 plot the CV performance of single-

kernel model on the training sets for PDBbind v2007 and PDBbind v2013 benchmarks. For 

one scale model, we found the exponential-kernel model and Lorentz-kernel model that 

produce the best Pearson correlation coefficient (Rp) for the PDBbind v2007 benchmark 

training set are, respectively, EICE, 2, 1
H  (Rp = 0.702) and EICL, 3.5, 0.5

H  (Rp = 0.720). While the 

optimal single-kernel models associated with exponential and Lorentz kernels for the 

PDBbind v2013 benchmark training set are EICE, 1.5, 5
H  (Rp = 0.754) and EICL, 5.5, 5

H  (Rp = 

0.758). It is expected that a two-kernel model can boost the prediction accuracy; therefore, 

we again explore the utility of two-scale EIC-scores for binding affinity prediction. In the 

two-kernel models, the first kernel′s parameters are fixed based on the previous finding. 

Then we search the parameters of the second kernel in the predefined space. Figures C2 and 

C4 depict the five-fold CV performances of two-scale models on the PDBbind v2007 refined 

set and the PDBbind v2015 refined set, respectively. These experiments again confirm that 

multiscale models improve one-scale models′ predictive power. Especially, the best choice 

of parameters and the mean values of Rp form five-fold CV on the PDBbind v2007 refined 

set for exponential-kernel and Lorentz-kernel models are, respectively, found to be 

EICE, 2, 1; E, 3, 3
HH  (Rp = 0.722) and EICL, 3.5, 0.5; L, 3.5, 2

HH  (Rp = 0.729). In addition, according to 

results in Figure C4, the best models for the PDBbind v2015 refined set for exponential-

kernel and Lorentz-kernel models are, respectively, found to be EICE, 1.5, 5; E, 3.5, 3
HH  (Rp = 

0.771) and EICL, 4.5, 2.5; L, 5.5, 5
HH  (Rp = 0.772).
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Having validated EIC models, we are interested in applying them for the test set predictions 

to see if they comply with their CV accuracies on the training sets. Table 4 lists the 

accuracies in term of Rp and RMSE for the test set of 195 complexes in the PDBbind v2007 

benchmark. As expected the multiscale models outperform the single-scale counterparts. 

The best performance is achieved by the consensus of two-scale models (ConsensusH). Its 

Rp and RMSE values are reported as 0.817 and 1.987 kcal/mol, respectively. In addition, we 

compare the predictive power of our EIC-Score with different scoring functions taken from 

previous studies56,80-83 by plotting all of them in Figure 2. Clearly, our model outperforms 

all the other scoring functions in this benchmark. In the PDBbind v2013 benchmark, we 

employ the kernel parameters optimized for the training data of this benchmark. Table 5 

reports the performance of our various EIC models on the test set of the PDBbind v2013 

benchmark consisting of 195 complexes. Again, the two-kernel models outperform the one-

kernel model, and the consensus approach delivers the best performance. Model ConsensusH 

achieves Rp = 0.774 and RMSE = 2.027 kcal/mol. In this benchmark, we also compare our 

EIC-Score with various scoring functions in which results for 20 models are adopted from Li 

et al.57 and RF::VinaElem is reported in another study by Li et al.84 Impressively, our EIC-

Score model again stands out from the state-of-the-art scoring functions. All of the Rp values 

of different models are plotted in Figure 3, which confirms the utility of our model on the 

diversified protein-ligand binding datasets. In the last benchmark of the protein-ligand 

binding prediction task, we study the accuracy of our EIC-score on the PDBbind v2016 

benchmark. Since the PDBbind v2016 is a newer version of PDBbind v2015 with a 

supplement of a few recent complexes, we reuse the kernel parameters, which are already 

optimized for the PDBbind v2015 training set. Table 6 lists the Rp and RMSE values of 

various EIC models. Surprisingly, the single-scale model EICE, 1.5, 5
H  is the best scoring 

function with Rp = 0.828 and RMSE = 1.750 kcal/mol. However, the consensus model 

ConsensusH is very close behind with Rp = 0.825 and RMSE = 1.767 kcal/mol. Since the 

PDBbind v2016 benchmark is relatively recent, only a small number of models has been 

tested on this benchmark. Figure 4 plots the performances of our EIC-score along with other 

scoring functions reported in the literature. Especially, while KDEEP, RF-Score, X-Score, 

and CyScore are adopted from Jiménez et al,85 Pafnucy model is taken from Stepniewska-

Dziubinska et al.86 In this benchmark, our model is still the best performer which rigorously 

affirms the promising applications of our EIC-score in the drug virtual screening and 

discovery.

4 ∣ CONCLUSION

Life depends on biological functions, which, in turn, are determined by biomolecular 

structures and their interactions, ie, molecular mechanism. The understanding of 

biomolecular structure-function relationships is the central theme in biology. However, an 

average biomolecule in human body consists of about 6000 atoms, giving rise to a problem 

of ℝ18000, which makes the first principle approach intractable. Additionally, the direct use 

of 3D macromolecular structures in convolutional neural networks is extremely expensive. 

For example, a brute-force 3D representation of biomolecules at a low resolution of 0.5Å 

can lead to a machine learning feature dimension of 1003n with n being the number of 

element types. Moreover, diverse biomolecular sizes also hinder the application of machine 
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learning. These challenges call for scalable low-dimensional representations of biomolecular 

structures.

Differential geometry concerns the geometric structures on differentiable manifolds and has 

been widely applied to the general theory of relativity, differential forms in 

electromagnetism, and Laplace-Beltrami flows in molecular and cellular biophysics. 

Differential geometry offers a set of high-level abstractions in terms of low-dimensional 

differentiable manifolds that allow us to study biomolecular structure-function relationships 

locally via mathematical tools, such as vector fields, tensor fields, Riemannian metrics, and 

differential forms. We introduce element interactive manifolds (EIMs) to encode 

intermolecular and intramolecular non-covalent interactions in a scalable manner so that 

various biomolecular structures can be compared on an equal footing. However, differential 

geometry is rarely used in molecular and biomolecular data analysis. Our earlier work 

indicates that although molecular manifolds and associated geometric properties are able to 

provide a low-dimensional description of molecules and biomolecules, they have very 

limited predictive power for large molecular datasets.39 In particular, the potential role of 

differential geometry for drug design and discovery is essentially unknown. This work 

introduces differential geometry-based geometric learning (DG-GL) as an accurate, efficient, 

and robust strategy for analyzing large, diverse, and complex molecular and biomolecular 

datasets. On the basis of the hypothesis that the most important physical and biological 

properties of molecular datasets still lie on an ensemble of low dimensional manifolds 

embedded in a high-dimensional data space, the key for success is how to effectively encode 

essential chemical physical and biological information into low-dimensional manifolds. To 

this end, we propose element interactive manifolds, extracted from the high-dimensional 

data space via a multiscale discrete-to-continuum mapping, to enable the embedding of 

crucial chemical and biological information. Differential geometry representations of 

complex molecular structures and interactions in terms of geodesic distances, curvatures, 

curvature tensors, etc are constructed from element interactive manifolds. The resulting 

geometric data analysis is integrated with machine learning to predict various chemical and 

physical properties from large, diverse, and complex molecular and biomolecular datasets. 

Extensive numerical experiments indicate that the proposed DG-GL strategy is able to 

outperform other state-of-the-art methods in drug toxicity, molecular solvation, and protein-

ligand binding affinity predictions.
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APPENDIX A:: TOXICITY PREDICTION

A.1 ∣ Parameter search using the training set cross-validation

We, here, use four-fold cross-validation on the training dataset to select the best parameters. 

Figure A1 illustrates the four-fold cross-validation (CV) performance of EICE, κ, τ
C  on the 

IGC50 training set against the different choices of κ and τ.

Figure A2 visualizes the 4-fold CV performances of EICE, κ1, τ1; E, κ2, τ2
CC  on the IGC50 training 

set against the different choices of κ2 and τ2. Parameters for the first kernel κ1 and τ1 are 

chosen from those reported in Figure A1.

Figure A3 illustrates the 4-fold cross-validation (CV) performance of EICL, κ, τ
C  on the IGC50 

training set against the different choices of κ and τ.

Figure A4 presents the 4-fold CV performances of EICL, κ1, τ1; L, κ2, τ2
CC  on the IGC50 training 

set against the different choices of κ2 and τ2. Parameters for the first kernel κ1 and τ1 are 

chosen from those reported in Figure A3
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FIGURE A1. 
Median values of R-squared correlations (R2) from four-fold cross validation performances 

of EICE, κ, τ
X  on the IGC50 training set are plotted against different values of τ and κ. 

Exponential kernels are utilized for curvature features generation. The best performance for 

different kinds of curvatures is found as follows: A, minimum curvature: (τ = 0.7, κ = 10) 

with R2 = 0.749; B, maximum curvature: (τ = 0.3, κ = 1) with R2 = 0.744; C, Gaussian 

curvature: (τ = 0.7, κ = 10) with R2 = 0.724; and D, mean curvature (τ = 0.3, κ = 1.5) with 

R2 = 0.743
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FIGURE A2. 
Median values of R-squared correlations (R2) from four-fold cross validation performances 

of EICE, κ1, τ1; E, κ2, τ2
CC  on the IGC50 training set are plotted against different values of τ2 and 

κ2. Two exponential kernels are utilized for features generation. While the parameters of the 

first kernel (τ1, κ1) are fixed and chosen from those reported in Figure A1, the parameters of 

the second kernel (τ2, κ2) are varied in the interested domains. The best performance for 

different kinds of curvatures is found as follows: A, minimum curvature: (τ = 0.7, κ = 10), 

(τ2 = 0.3, κ2 = 3.5) with R2 = 0.768; B, maximum curvature: (τ = 0.3, κ = 1.0), (τ2 = 0.3, κ2 

= 3.5) with R2 = 0.780; C, Gaussian curvature: (τ = 0.7, κ = 10), (τ2 = 0.3, κ2 = 3.5) with R2 

= 0.745; and D, mean curvature (τ = 0.3, κ = 1.5), (τ2 = 0.3, κ2 = 3.5) with R2 = 0.772
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FIGURE A3. 
Median values of R-squared correlations (R2) from four-fold cross validation performances 

of EICL, κ, τ
C  on the IGC50 training set are plotted against different values of τ and κ. Lorentz 

kernels are utilized for curvature features generation. The best performance for different 

kinds of curvatures is found as follows: A, minimum curvature: (τ = 0.3, κ = 5.0) with R2 = 

0.749; B, maximum curvature: (τ = 0.5, κ = 4.0) with R2 = 0.747; C, Gaussian curvature: (τ 
= 0.3, κ = 3.5) with R2 = 0.724; and D, mean curvature (τ = 0.5, κ = 5.5) with R2 = 0.745

Nguyen and Wei Page 22

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE A4. 
Median values of R-squared correlations (R2) from four-fold cross validation performances 

of EICL, κ1, τ1; L, κ2, τ2
CC  on the IGC50 training set are plotted against different values of τ2 and 

κ2. Two exponential kernels are utilized for features generation. While the parameters of the 

first kernel (τ1, κ1) are fixed and chosen from those reported in Figure A3, the parameters of 

the second kernel (τ2, κ2) are varied in the interested domains. The best performance for 

different kinds of curvatures is found as follows: A, minimum curvature: (τ = 0.3, κ = 5.0), 

(τ2 = 1.3, κ2 = 2.0) with R2 = 0.761; B, maximum curvature: (τ = 0.5, κ = 4.0), (τ2 = 1.1, κ2 

= 4.0) with R2 = 0.764; C, Gaussian curvature: (τ = 0.3, κ = 3.5), (τ2 = 1.3, κ2 = 3.0) with 

R2 = 0.747; and D, mean curvature (τ = 0.5, κ = 5.5), (τ2 = 1.3, κ2 = 3.0) with R2 = 0.764

APPENDIX B:: SOLVATION ENERGY PREDICTION

B.1 ∣ Parameter search using the training set cross-validation

We, here, use three-fold cross-validation on the training dataset to select the best parameters. 

Figure B1 illustrates the three-fold CV performance of EICα, κ, τ
H  on the solvation training set 

against the different choices of κ and τ.
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Figure B2 presents the three-fold CV performances of EICα, κ1, τ1; α, κ2, τ2
HH  on the solvation 

training set against the different choices of κ2 and τ2. Parameters for the first kernel κ1 and 

τ1 are chosen from the report in Figure B1.
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FIGURE B1. 

Mean absolute error (MAE) from three-fold cross-validation of EICα, κ, τ
H  on the solvation 

training set are plotted against different values of τ and κ. The element interactive mean 

curvatures are utilized for all calculations. The best parameters and median values of MAE 

for each model are found to be (A) exponential-kernel model: (τ = 0.3, κ = 3.5, MAE = 

0.840) and (B) Lorentz-kernel model: (τ = 1.3, κ = 3.0, MAE = 0.880)
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FIGURE B2. 

Mean absolute errors (MAEs) from three-fold cross-validation of EICα, κ1, τ1; α, κ2, τ2
HH  on the 

solvation training set are plotted against different values of τ2 and κ2. The element 

interactive mean curvatures are utilized for all calculations. While the parameters of the first 

kernel (τ1,κ1) are fixed, the parameters of the second kernel (τ2, κ2) are varied in the 

interested domains. The best parameters and median values of MAE for each model are 

found to be (A) exponential-kernel model: (τ1 = 0.3, κ1 = 3.5, τ2 = 1.3, κ2 = 2.5, MAE = 

0.723) and (B) Lorentz-kernel model: (τ1 = 1.3, κ1 = 3.0, τ2 = 0.3, κ2 = 6.5, MAE = 0.866)

APPENDIX C:: PROTEIN-LIGAND BINDING AFFINITY PREDICTION

C.1 ∣ Parameter search using the training set cross-validation

Figure C1 illustrates the five-fold CV performance of EICα, κ, τ
H  on the training set of the 

PDBbind v2007 benchmark against the different choices of κ and τ.

Figure C2 presents the five-fold CV performances of EICα, κ1, τ1; α, κ2, τ2
HH  on the training set of 

the PDBbind v2007 benchmark against the different choices of κ2 and τ2. Parameters for the 

first kernel κ1 and τ1 are chosen from the report in Figure C1.

Figure C3 depicts the five-fold CV performance of EICα, κ, τ
H  on the training set of the 

PDBbind v2013 benchmark against the different choices of κ and τ.

Figure C4 reveals the five-fold CV performance of EICα, κ1, τ1; α, κ2, τ2
HH  on the training set of 

the PDBbind v2015 benchmark against the different choices of κ2 and τ2. Parameters for the 

first kernel κ1 and τ1 are chosen from those reported in Figure C3.
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FIGURE C1. 

Pearson correlation coefficients (Rp) from five-fold cross-validation of EICα, κ, τ
H  on the 

PDBbind v2007 refined set (excluding the core set) are plotted against different values of τ 
and κ. The element interactive mean curvatures are utilized for all calculations. The best 

parameters and median values of Rp for EICα, κ, τ
H  are respectively found to be (A) 

exponential-kernel model: (τ = 1.0, κ = 2.0, Rp = 0.702) and (B) Lorentz-kernel model: (τ = 

0.5, κ = 3.5, Rp = 0.720)
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FIGURE C2. 

Pearson correlation coefficients (Rp) from five-fold cross-validation of EICα, κ1, τ1; α, κ2, τ2
HH  on 

the PDBbind v2007 refined set (excluding the core set) are plotted against different values of 

τ2 and κ2. The element interactive mean curvatures are utilized for all calculations. While 

the parameters of the first kernel (τ1, κ1) are fixed, the parameters of the second kernel (τ2, 

κ2) are varied in the interested domains. The best parameters and median values of Rp for 

EICα, κ1, τ1; α, κ2, τ2
HH  are respectively found to be (A) exponential-kernel model: (τ1 = 1.0, κ1 = 

2.0, τ2 = 3.0, κ2 = 3.0Rp = 0.722) and (B) Lorentz-Kernel model: (τ1 = 0.5, κ1 = 3.5, τ2 = 

2.0, κ2 = 3.5Rp = 0.729)
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FIGURE C3. 

Pearson correlation coefficients (Rp) from five-fold cross-validation of EICα, κ, τ
H  on the 

PDBbind v2015 refined set (excluding the core set) are plotted against different values of τ 
and κ. The element interactive mean curvatures are utilized for all calculations. The best 

parameters and median values of Rp for EICα, κ, τ
H  are respectively found to be (A) 

exponential Kernel model: (τ = 5.0, κ = 1.5, Rp = 0.754) and (B) Lorentz-kernel model: (τ = 

5.0, κ = 5.5, Rp = 0.758)
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FIGURE C4. 

Pearson correlation coefficients (Rp) from five-fold cross-validation of EICα, κ1, τ1; α, κ2, τ2
HH  on 

the PDBbind v2015 refined set (excluding the core set) are plotted against different values of 

τ2 and κ2. The element interactive mean curvatures are utilized for all calculations. While 

the parameters of the first kernel (τ1, κ1) are fixed, the parameters of the second kernel (τ2, 

κ2) are varied in the interested domains. The best parameters and median values of Rp for 

EICα, κ1, τ1; α, κ2, τ2
HH  are respectively found to be (A) exponential Kernel model: (τ1 = 5.0, κ1 = 

1.5, τ2 = 3.0, κ2 = 3.5, Rp = 0.771) and (B) Lorentz-Kernel model: (τ1 = 5.0, κ1 = 5.5, τ2 = 

2.5, κ2 = 4.5, Rp = 0.772)
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FIGURE 1. 
Illustration of the DG-GL strategy using 1OS0 (first column). In the second column, element 

specific groups are, from top to bottom, OC, NO, and CH, respectively. Their corresponding 

element interactive manifolds are plotted in the third column, generated by setting the 

isovalue c = 0.01. The differential geometry features (fourth column) are used in gradient 

boosting trees (last column) for training and prediction
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FIGURE 2. 
Performance comparison different scoring functions on the PDBbind v2007 core set. The 

Pearson correlation coefficients of other methods are taken from previous studies.56,80-83 

The proposed DG-GL strategy-based scoring function, EIC-score, achieves Rp = 0.817 and 

RMSE = 1.987 kcal/mol
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FIGURE 3. 
Performance comparison different scoring functions on the PDBbind v2013 core set. The 

performances of RF::VinaElem is adopted from Li et al.84 Results of 20 other scoring 

functions were reported in another study by Li et al.57 The proposed geometric learning 

strategy based scoring function, EIC-Score, achieves Rp = 0.774 and RMSE = 2.027 

kcal/mol
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FIGURE 4. 
Performance comparison of different scoring functions on the PDBbind v2016 core set. 

While the performances of KDEEP, RF-Score, X-Score, and cyScore are adopted from 

Jiménez et al,85 Pearson correlation coefficient of Pafnucy is reported in Stepniewska-

Dziubinska et al.86 The proposed DG-GL-strategy–based scoring function, EIC-Score, 

achieves Rp = 0.825 and RMSE = 1.767 kcal/mol
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TABLE 1

Summary of PDBbind datasets used in the present work

Total # of complexes Train set complexes Test set complexes

PDBbind v2007 benchmark 1300 1105 195

PDBbind v2013 benchmark 3711 3516 195

PDBbind v2016 benchmark 4057 3767 290
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TABLE 2

Comparison of prediction results for the Tetrahymena pyriformis IGC50 test set

Method R2
R2 − R0

2

R2
k RMSE MAE Coverage

Hierarchical64 0.719 0.023 0.978 0.539 0.358 0.933

FDA64 0.747 0.056 0.988 0.489 0.337 0.978

Group contribution64 0.682 0.065 0.994 0.575 0.411 0.955

Nearest neighbor64 0.600 0.170 0.976 0.638 0.451 0.986

TEST consensus64 0.764 0.065 0.983 0.475 0.332 0.983

Results with EICs

EICE, 10, 0.7
kmin 0.742 0.001 1.004 0.499 0.358 1.000

EICE, 10, 0.7; E, 3.5, 0.3
kminkmin 0.767 0.003 1.002 0.477 0.338 1.000

EICL, 5, 0.3
kmin 0.759 0.002 1.000 0.484 0.339 1.000

EICL, 5, 0.3; L, 2, 1.3
kminkmin 0.767 0.002 1.002 0.476 0.329 1.000

Consensuskmin 0.781 0.004 1.003 0.463 0.324 1.000

EICE, 1, 0.3
kmax 0.749 0.001 0.999 0.492 0.344 1.00

EICE, 1, 0.3; E, 3.5, 0.3
kmaxkmax 0.781 0.003 0.997 0.462 0.330 1.000

EICL, 4, 0.5
kmax 0.748 0.001 0.998 0.494 0.352 1.000

EICL, 4, 0.5; L, 4, 1.1
kmaxkmax 0.780 0.004 0.999 0.464 0.329 1.000

Consensuskmax 0.780 0.004 0.999 0.464 0.329 1.000

EICE, 2.5, 0.3
K

0.725 0.001 1.001 0.516 0.366 1.000

EICE, 2.5, 0.3; E, 1.5, 1.5
KK

0.758 0.003 1.000 0.485 0.347 1.000

EICL, 2, 1.5
K

0.731 0.003 1.002 0.511 0.369 1.000

EICL, 2, 1.5; L, 3, 0.3
KK

0.769 0.005 1.001 0.476 0.342 1.000

ConsensusK 0.781 0.007 1.002 0.465 0.332 1.000

EICE, 1.5, 0.3
H

0.745 0.001 1.000 0.497 0.349 1.000

EICE, 1.5, 0.3; E, 3.5, 0.3
HH

0.764 0.001 0.998 0.478 0.332 1.000

EICL, 5.5, 0.5
H

0.749 0.001 1.000 0.497 0.349 1.000

EICL, 5.5, 0.5; L, 3.0, 1.3
HH

0.773 0.003 1.000 0.471 0.325 1.000
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Method R2
R2 − R0

2

R2
k RMSE MAE Coverage

ConsensusH 0.779 0.003 1.000 0.464 0.320 1.000

Abbreviations: EIC, element interactive curvatures; FDA, Food and Drug Administration; MAE, mean absolute error; RMSE, root-mean-squared 
error; TEST, Toxicity Estimation Software Tool.
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TABLE 3

Comparison of prediction results for the solvation dataset collected by Wang et al54

Method MAE (kcal/mol) RMSE (kcal/mol) R2

WSAS64 0.66 - -

FFT55 0.57 - -

Results with EICs

EICE, 3.5, 0.3
H

0.575 0.921 0.904

EICE, 3.5, 0.3; E, 2.5, 1.3
HH

0.558 0.857 0.920

EICL, 3, 1.3
H

0.592 0.931 0.906

EICL, 3, 1.3; L, 6.5, 0.3
HH

0.608 0.919 0.907

ConsensusH 0.567 0.862 0.920

Abbreviations: EIC, element interactive curvatures; MAE, mean absolute error; RMSE, root-mean-squared error.
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TABLE 4

Predictive performance of various models on the PDBbind v2007 benchmark

Method Rp RMSE (kcal/mol)

EICE, 2, 1
H

0.802 2.069

EICE, 2, 1; E, 3, 3
HH

0.812 1.999

EICL, 3.5, 0.5
H

0.778 2.131

EICL, 3.5, 0.5; L, 3.5, 2
HH

0.802 2.024

ConsensusH 0.817 1.987

Abbreviations: EIC, element interactive curvatures; RMSE, root-mean-squared error.
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TABLE 5

Predictive performance of various models on the PDBbind v2013 benchmark

Method Rp RMSE (kcal/mol)

EICE, 1.5, 5
H

0.755 2.060

EICE, 1.5, 5; E, 3.5, 3
HH

0.766 2.045

EICL, 5.5, 5
H

0.754 2.073

EICL, 4.5, 2.5; L, 5.5, 5
HH

0.770 2.032

ConsensusH 0.774 2.027

Abbreviations: EIC, element interactive curvature; RMSE, root-mean-squared error.
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TABLE 6

Predictive performance of various models on the PDBbind v2016 benchmark

Method Rp RMSE (kcal/mol)

EICE, 1.5, 5
H

0.828 1.750

EICE, 1.5, 5; E, 3.5, 3
HH

0.825 1.762

EICL, 5.5, 5
H

0.809 1.816

EICL, 4.5, 2.5; L, 5.5, 5
HH

0.815 1.797

ConsensusH 0.825 1.767

Abbreviations: EIC, element interactive curvature; RMSE, root-mean-squared error.
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