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Abstract

Determination of the effect of protocol modifications on diagnostic performance in CT with 

human observers is extremely time-consuming, limiting the applicability of such methods in 

routine clinical practice. In this work, we sought to determine whether a channelized Hotelling 

observer (CHO) could predict human observer performance for the task of liver lesion localization 

as background, reconstruction algorithm, dose, and lesion size were varied.

Liver lesions (5 mm, 7 mm, and 9 mm) were digitally inserted into the CT projection data of 

patients with normal livers and water phantoms. The projection data were reconstructed with 

filtered back projection (FBP) and iterative reconstruction (IR) algorithms for three dose levels: 

full dose (liver CTDIvol = 10.5 ± 8.5 mGy, water phantom CTDIvol = 9.6 ± 0.1 mGy) and 

simulated half and quarter doses. For each of 36 datasets (3 dose levels x 2 reconstruction 

algorithms × 2 backgrounds × 3 sizes), 66 signal-present and 34 signal-absent 2D images were 

extracted from the reconstructed volumes. Three medical physicists independently reviewed each 

dataset and noted the lesion location and a confidence score for each image. A CHO with Gabor 

channels was calculated to estimate the performance for each of the 36 localization tasks. The 

CHO performances, quantified using localization receiver operating characteristic (LROC) 

analysis, were compared to the human observer performances.

Performance values between human and model observers were highly correlated for equivalent 

parameters (same lesion size, dose, background, and reconstruction), with a Spearman’s 

correlation coefficient of 0.93 (95% CI: 0.82–0.98). CHO performance values for the uniform 

background were strongly correlated (ρ = 0.94, CI: 0.80–1.0) with the human observer 

performance values for the liver background.

*Selected sections presented during digital poster presentation at 2017 RSNA Annual Meeting.
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Performance values between human observers and CHO were highly correlated as dose, 

reconstruction type and object size were varied for the task of localization of patient liver lesions 

in both uniform and liver backgrounds.
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computed tomography (CT); model observer; image quality; iterative reconstruction (IR); liver 
lesions; comparative study

Introduction

The growth in computed tomography (CT) use in the United States in recent years, and 

subsequent increased concerns regarding potential cancer risk of radiation, has led to 

increased efforts to optimize CT acquisition and reconstruction protocols (Brenner and Hall 

2007, Mettler et al 2008, AAPM CT Dose Summit 2010, Hendee et al 2010, IMV 2016). 

Traditionally, these studies are performed with human observers (i.e. radiologists) to ensure 

that protocol changes, such as reduced dose and different reconstruction algorithms, do not 

reduce the radiologists’ diagnostic performance in interpreting the images for evidence of 

disease, such as the presence or growth of liver lesions. However, the time requirements for 

human observer studies, as well as the number of human observers needed for generalizable 

results, preclude their widespread use for protocol optimization.

Model observers, which are mathematical models designed to make decisions on specific 

tasks based on statistical decision theory (Barrett et al 1993, Beutel et al 2000), have the 

potential to improve the efficiency of protocol optimization. The improved efficiency would 

allow for a greater number of variations in CT protocols to be assessed. The channelized 

Hotelling observer (CHO) has been used in previous studies and found to be a good 

representative of human observers in simple, uniform backgrounds (Barrett et al 1993, Leng 

et al 2013, Yu et al 2013, Zhang et al 2014). While Solomon et al and Xu et al have explored 

the effect of background on model observer performance, they did not correlate their 

findings to human observers (Xu et al 2015, Solomon et al 2016). Xu et al performed a 

lesion detection task comparing a CHO model observer’s performance across five doses with 

multiple filtered back projection (FBP) and iterative reconstruction (IR) parameters. Liver 

lesions of fixed size and contrast were digitally inserted into the XCAT phantom prior to 

reconstruction. The improvement of IR compared to FBP techniques was found to be 

dependent on the dose level; at 75% original dose, the performance improvement was 

statistically significant (p < 0.05).

Additionally, studies demonstrating the ability of CHO to predict human observer 

performance have been performed with artificial lesions with simple shapes, such as circles, 

while real lesions may be in irregular shapes (Leng et al 2013, Yu et al 2013, Zhang et al 
2014). Our previous work measured diagnostic performance for low contrast object 

detection and localization in a uniform background (Leng et al 2013, Yu et al 2013). In the 

object detection task, cylindrical rods with contrast of – 15HU were imaged within a 36 × 25 

cm2 water phantom under 21 conditions (three sizes, two reconstructions, three dose levels). 

Four medical physicists performed 21 two-alternative forced choice (2AFC) trials to 
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quantify the impact of FBP and IR on 2D (128 × 128 pixels) CT images with differing doses 

(Yu et al 2013). In the localization task, three medical physicists identified the presence (or 

absence) and location of a single lesion within 2D (128 × 128 pixels) CT images (Leng et al 
2013). In this study, cylindrical rods once again were used to mimic –15 contrast lesions. 

Four doses and two size rods were used. Both studies found excellent correlation between 

the human observers and a CHO model observer. In the object detection task, the overall 

correlation coefficient was 0.986, and the object detection and localization task achieved a 

Spearman’s rank order correlation of 1.0. Both of these studies were limited by the use of a 

uniform water background, and cylindrical rods to mimic lesions. The object detection and 

localization task was limited also by the use of only a FBP algorithm (Leng et al 2013). In 

this work, we address these limitations by evaluating a CHO using actual patient liver 

lesions in the context of both uniform and anatomic backgrounds, and we address the 

limitations of Solomon et al and Xu et al by comparing the performance of CHO to that of 

human readers.

In Part I of this paper, we investigated human observer performance in the task of 

localization of low contrast, patient-derived liver lesions in uniform and liver parenchyma 

backgrounds. For Part II, we seek to determine whether the performances of CHO model 

observer and human observers are well correlated in both water and liver parenchyma 

backgrounds. We hypothesize that the CHO model observer can predict human observer 

performance for the detection of human liver lesions as background, reconstruction 

algorithm, dose, or lesion size are varied.

Methods and materials

For this study, human and model observers located multiple sizes of liver lesions in either 

liver or a uniform background in CT images reconstructed with different reconstruction 

algorithms at differing doses. The 36 datasets (2 reconstruction algorithms × 2 backgrounds 

× 3 doses × 3 sizes) of 100 36 pixel × 36 pixel regions of interest (ROIs) (66 lesion-present, 

34 lesion-absent) described in Part I of this two-part manuscript was utilized for CHO model 

observer training and testing.

Human observer studies

Three medical physicists (SL, CF and LY) specialized in CT imaging independently 

reviewed the 36 datasets and identified the most likely location of the lesion within each 

ROI. Additionally, each reader was asked to assign a confidence score of a lesion’s presence 

for each ROI, with 1 indicating complete confidence the image did not contain a lesion and 

10 indicating absolute confidence the image contained a lesion at the given location. These 

locations and scores were evaluated through multi-reader, multi-case (MRMC) 

nonparametric localization receiver operating characteristic (LROC) analysis to determine 

the area under the LROC curve (AzLROC) for each set of conditions (Wunderlich and Noo 

2012). For each of the 36 datasets, the average reader performances served as the reference 

standard to which our model observer performance was compared. More details of the 

human observer study are provide in Part I (Dilger et al 2019).
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Model observer studies

Parameters—A CHO with Gabor filters was used in this study as the model observer due 

to its demonstrated good correlation with human performance results in a uniform 

background (Myers and Barrett 1987, Leng et al 2013, Yu et al 2013). The general form of 

the Gabor filter can be expressed as (Eckstein et al 2003):

U(x, y) = exp −4(ln2) x − x0
2 + y − y0

2 /ωs
2

⋅ cos 2π f c x − x0 cosθ + y − yo sinθ + β
(1)

where fc denotes the center frequency of the channel, is the channel width, the point (x0, y0) 

is the center of the channel, θ denotes the channel orientation, and β is a phase factor. While 

we implemented the same passbands and orientations as in Leng et al (2013) and 

Wunderlich and Noo (2008) (ωs = 56.48, 28.24, 14.12, and 7.06 pixels, fc = 3/128, 3/64, 

3/32, and 3/16 cycles/pixel,θ = 0, 2π /5, 4π /5, 6π /5  and 8π /5 ), we limited our filters to a 

single phase (β = 0), leading to a CHO with 20 channels.

Model observer training—Unlike in previous studies (Leng et al 2013, Yu et al 2013), 

the images within these datasets contained a non-zero background component. Therefore, a 

background dependent term (a DC component of 110 HU) was subtracted from every ROI 

prior to training or testing the model observer (Gifford et al 2005). An average signal-

present image was generated by shifting the lesion in all 66 signal-present ROIs to the 

central pixel. This average signalpresent ROI was then shifted across the 36 × 36 image 

space to train each location. For each lesion location (x0, y0), the Gabor filters were 

computed, and the mean signal image (gs) and the 330 signal-absent images for training (gb) 

were channelized:

gsc = UTgs (2)

gbc = UTgb (3)

wheregsc andgbc are the channel output of mean signal-present and signal-absent images, 

respectively. The CHO template for a lesion centered at (x0, y0) was computed by

ωCHO = Sc
−1 gsc − gbc , (4)

where Sc is the intraclass channel scatter matrix of the channel output covariance matrix for 

the 330 signal-absent images (Kbc),
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Sc = Kbc = UTKbU . (5)

Traditionally, the intraclass channel scatter matrix is the average of the covariance matrices 

for signal-present and signal-absent images (Leng et al 2013, Yu et al 2013). However, the 

covariance matrices are very similar between the signal-present and signal-absent images as 

the presence of signal had negligible effect on the covariance matrix calculation. Therefore, 

the intraclass channel scatter matrix can be calculated using the signal-absent image alone.

Model observer testing—Upon completion of training, CHO templates,ωCHO, were 

available for lesions centered at every pixel location within the 36 × 36 ROIs. To localize the 

lesion within the ROIs, each CHO template was applied to each of the 100 ROIs (gc) by 

means of the inner product to generate a response value,λ, for each location within the ROI:

λ x0, y0 = ωCHO
T x0, y0 ⋅ gc . (6)

The pixel location (x0, y0) corresponding to the maximum λwas selected as the probable 

lesion location and its corresponding λvalue was used as the decision variable for this ROI.

For training and testing of the CHO, we performed two different methods and compared the 

performances in terms of AzLROC. The first method is resubstitution, where the same signal-

present images are used for training the CHO and estimating the performance. The second 

method was a separate training versus testing co hort where 26 randomly selected signal-

present images were used for model training and the remaining 40 were used for testing. A 

Bland-Altman plot and linear fit were conducted to compare the performance metrics of the 

testing cases to determine if resubstitution was an adequate training and testing method.

Internal noise—In order to simulate the intra-observer variability present in human 

observers, internal noise was added to the decision variableλ. Gaussian noise with a mean of 

zero and a standard deviation proportional to the standard deviation of the decision variables 

from the signal-absent images σλb
 was added to the decision variables using the following 

equation:

λ f inal = λ + α × σλb
× ξ (7)

where α is a weighing factor andξ is a random number from a Gaussian distribution N (0,1). 

The weighting factor was determined by adjusting α so the AzLROC of the model observer 

matched the average AzLROC of the human observers for a dataset with moderate 

performance (AzLROC = 0.85 for the 7 mm lesion in liver background, reconstructed with IR 

at half-dose). The α values varied from 0 to 5 at 0.25 increments. The α value that generated 

the most similar AzLROC for the model and human observer in this calibration dataset was 
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selected and used for all 36 datasets. Thus, the internal noise added to the decision variables 

is dependent on the signal-absent images at a given dose and reconstruction setting and is 

intrinsically lesion dependent due to the influence of the CHO template, wcho, calculation in 

equation (4) and its use in the computation of the decision variable,λ, in equation (6).

LROC analysis for model observer—To convert the 100 decision variables,λfinal, of 

each dataset to a summary performance metric, LROC analysis was performed. The LROC 

curve was determined by plotting the true positive localization fraction (TPLF) by the false 

positive fraction (FPF) as the threshold varied. True positive cases occurred when the 

decision variable of the signal-present image was higher than the threshold and the location 

was within the distance of one radius from the true lesion location. For the 5, 7, and 9 mm 

diameter lesions, this resulted in localization radii of 3, 5, and 6 pixels, respectively (pixel 

size ~0.75 mm). The AzLRoc was calculated using a nonparametric procedure that has been 

utilized in previous studies (Popescu 2007, Wunderlich and Noo 2012, Leng et al 2013). To 

better estimate the model observer performance of each of the 36 datasets, the process of 

adding internal noise and LROC analysis was repeated 200 times, and the average and 

variance in AzLROC was recorded.

Evaluation of model versus human observer performances

Comparison of performances between human and model observers occurred through visual 

and quantitative assessment. The AzLROC values for the human and model observers were 

plotted for the different dose levels and lesion sizes, and compared between background type 

and reconstruction algorithm. A Bland-Altman plot to visualize the differences between the 

human and model observers across all datasets was also created.

For quantitative comparison, the Spearman’s rank order correlation between the AzLROC for 

the average human and model observer performances was calculated. To determine the 

confidence interval for the correlation, bootstrap analysis with 1000 bootstraps was 

performed. Additionally, the root mean square error (RMSE) was computed between the 

human and model observers:

RMSE = 1
nΣ Y1 − Y2

2 (8)

where Y1 is the average human observer performance of a particular dataset and Y2 is the 

average model observer performance for the same dataset. The linear relationship between 

the model and human observers was also assessed for a slope of 1 and an intercept of 0, 

which indicates good one-to-one agreement between the observers.

Results

Comparison of training and testing schemas

The results of the two training schemas for the CHO—resubstitution and independent 

training and testing cohorts—are shown in figure 1. The average difference was 0.009 with a 
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95% confidence interval (95% CI) of [−0.002, 0.0198]; this average difference was not 

statistically different from 0 (p = 0.11). The greatest difference in AzLROC was 0.098 and 

occurred for the 7 mm lesion in liver background at quarter dose with IR.

The linear fit between the two schemas also indicated good agreement. The slope and 

intercept for the liver background were 1.024 (95% CI: 0.94, 1.10) and 0.033 (95% CI: 

−0.10, 0.03), respectively. Similarly, the slope and intercept for the uniform background 

were 0.99 (95% CI: 0.95, 1.04) and 0.003 (95% CI: −0.03, 0.04). Overall Spearman’s 

correlation coefficient was 0.91 (95% CI: 0.80, 0.98), and RMSE was 0.045 (95% CI: 0.036, 

0.065). Based on the lack of statistical difference in the Bland-Altman plot and the indicators 

of good agreement from the linear fit analysis, resubstitution was determined to be a valid 

substitute for independent training and testing cohorts and was used for the remainder of the 

study.

Calibration of internal noise

Figure 2 shows the comparison of the average performance of human observers and the 

model observer for the calibration dataset (7 mm lesions in liver background images 

reconstructed at half dose with IR) at internal noise levels from 0–5. A model observer with 

an internal noise level of α = 1.75 was found to achieve the most similar performance as the 

human observer. This internal noise level was used in the model observer calculations for all 

36 datasets, including both uniform and liver background.

Comparison of observer performances

All LROC performance results are summarized in figure 3, illustrating the comparison in 

performance values between human and model observers. As expected, the larger lesions 

were easier to localize than the smaller lesions (higher AzLROC values), and the performance 

values increased as the dose level increased. There was evidence of a non-linear difference 

in performance between dose levels, with a larger difference occurring between the quarter 

and half dose images than between the half and full dose images. In general, the 

performances visually agreed well between human and model observers.

The Bland-Altman plot in figure 4(a) further compares the performance differences between 

human and model observers. The average difference between LROC performances was –

0.0017 ± 0.05, with a range of (–0.10, 0.08). The greatest differences in performance, Δ = –

0.10, occurred for the 7 mm lesions in uniform background at quarter dose with either 

reconstruction algorithm. All differences fell within the limit of confidence (mean difference 

± 1.96 * (standard deviation)), and the average difference was not statistically significantly 

different from zero with a 95% CI for the mean difference containing 0: (–0.02, 0.02), p = 

0.85).

The human and model observer performances had a Spearman’s correlation coefficient of 

0.93 (95% CI: 0.82, 0.98) and a RMSE of 0.076 (95% CI: 0.063, 0.089). For the linear 

relationship between the model and human observers (figure 4(b)), the slope was 0.97 (95% 

CI: 0.90, 1.04) and the intercept was 0.023 (95% CI: –0.03, 0.08) and indicated strong one-

to-one agreement between observer types.
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This one-to-one agreement was also present when looking within each background type. 

Within the liver background, the linear relationship was

 Humanliver  = 0.95 *  Modelliver  + 0.052 (9)

(95% CI for slope: 0.82, 1.07; 95% CI for intercept: –0.04, 0.14). For the uniform 

background, the linear relationship was

 Humanuni f orm  = 0.99 *  Modeluni f rm  − 0.0043 (10)

(95% CI for slope: 0.90, 1.08; 95% CI for intercept: –0.072, 0.063). Spearman’s correlation 

was 0.89 (95% CI: 0.68, 0.98) for liver background and 0.95 (0.80, 1.00) for uniform 

background. The RMSEs for the two backgrounds were similar to the overall RMSE: 0.085 

(95% CI: 0.069, 0.099) for liver and 0.066 (95% CI: 0.047, 0.091) for uniform background.

When the performances were separated by reconstruction algorithm, good agreement was 

maintained between the human and model observers. For FBP, the linear relationship was

HumanFBP=0 . 98* ModelFBP+0 . 0019 (11)

with 95% CI of the slope and intercept being (0.88, 1.09) and (–0.08, 0.08), respectively. For 

the datasets that used IR, the slope was 0.96 (95% CI: 0.85, 1.06) and intercept of 0.04 (95% 

CI: –0.04, 0.12).

Comparison between model performance in uniform background and human 
performance in liver background—The final analysis explored whether the model 

observer trained with uniform background could be used to predict human observer 

performance with anatomical liver backgrounds. Figure 5(a) shows the Bland-Altman plot 

comparing the performances under these conditions. Compared to the previous Bland-

Altman plot (figure 4(a)), greater variability was seen, with a larger standard deviation in 

differences (mean difference: 0.0011 ± 0.08). The greatest differences in performances 

occurred in two datasets; in the first, the model in uniform background underestimated 

human in liver performance of the 5 mm lesion at full dose with FBP by 0.13. The second 

dataset, 9 mm lesion at quarter dose with IR, resulted in the model in uniform background 

overestimated the performance of human readers in liver by 0.14. The RMSE was 0.11 (95% 

CI: 0.077, 0.13).

The model observer performance in a uniform background was highly correlated to the 

human observers’ average performance in a liver background, with a Spearman’s correlation 

coefficient of0.95 (95% CI: 0.80, 1.00). The linear agreement between the two did not show 

a one-to-one agreement (figure 5(b)). The slope between the two models was 0.83 and the 

95% confidence interval did not contain 1 (95% CI: 0.72, 0.94). Similarly, the intercept was 

0.13 and the 95% confidence interval did not contain 0 (95% CI: 0.04, 0.21). However, this 
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high level of correlation (0.95) indicates the linear relationship is a reliable conversion from 

model observer performance in a uniform background to human observer performance in 

liver parenchyma.

Discussion

In this study, we tested the capabilities of a CHO to imitate human observers in liver lesion 

localization. Three lesions sizes, three doses, and two reconstruction algorithms were 

explored for two different backgrounds between the two types of readers. We found 

excellent correlation and agreement between the model and human observers when 

comparing similar conditions–same background, reconstruction algorithm, dose, and lesion 

size. Finally, while not a one-to-one agreement, good correlation was found when 

determining whether the model observer in the uniform background could predict the human 

observers’ performances in the anatomical liver background.

This study also validated the use of resubstitution to generate the template images used for 

localization in the CHO. The resubstitution-derived performances were well correlated to the 

results of the independent training and testing schema, and, for both backgrounds, the 

confidence intervals for the slope and intercept describing the linear relationship between the 

two observers’ performances contained 1 and 0, respectively. The reduction of the number of 

Gabor channels likely contributed to the low amount of bias presented here. By reducing the 

number of channels to 20 (compared with previous work of 40 channels (Leng et al 2013)), 

we have reduced the number of images needed to train the model observer and maintain an 

accurate estimate of performance (Ma et al 2016).

While we found good correlation (ρ = 0.93) and similar AzLROC performances between FBP 

and IR techniques in the model observers, this trend differed from Solomon et al’s recent 

work exploring the impact of the background on lesion detectability. Solomon showed 

statistically significant differences in detectability,d′, between FBP and IR reconstructions (p 
= 0.02) (Solomon et al 2016). While the tasks differ (localization versus detectability), we 

do not observe an increase in performance with IR compared to FBP. For their work, thin-

slice (0.6 mm) reconstructions at the highest level of SAFIRE (strength of 5) were used, 

whereas we used a clinical abdominal protocol (5 mm slices with medium IR strength of 3). 

It is likely the increased slice thickness and lower strength of SAFIRE reduced the 

performance differences seen in our comparison of reconstruction algorithms. These 

protocol differences also likely reduced the visual differences between the two backgrounds 

and could explain why we found fewer performance differences between a uniform and 

anatomical liver texture relative to Solomon’s findings.

Xu et al used an anatomy-simulating XCAT phantom (Xu et al 2015) in comparing FBP and 

IR. Similarly to our work, they did not find statistical differences in performance between 

FBP and IR at many dose levels, including full and half dose (p ⩾ 0.05). At 75% of full dose 

did they find a statistical difference between FBP and IR (SAFIRE strength 5). In both Xu et 
al and Solomon et al, only model observer data were presented and there was no comparison 

to human observers (Xu et al 2015, Solomon et al 2016), whereas in this study we compared 

human reader and model observer performances in lesion localization.
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A limitation of this study was the focus on hypodense liver lesions within liver parenchyma 

free of major vessels. These vessels were purposely avoided, both to remove human reader 

memory bias as the readers looked at different variations of the same images, as well as to 

create a random, nonuniform background for the model observers. The CHO has been 

designed for use on random, nonuniform backgrounds (Yao and Barrett 1992), however, 

vessels are nonrandom. Vessels are hyperdense relative to the parenchyma in contrast-

enhanced images and are unlikely to be selected by the human observers when asked to 

localize a hypodense lesion, therefore, we felt their exclusion would have minimal effect on 

human observer performances. However, additional work in increasingly complex 

backgrounds is needed to determine whether our findings extend beyond isolated liver 

parenchyma. Finally, as discussed in Part I, this study is limited in scope to window level 

and window width of 40/400, the standard setting for abdominal CT imaging at many 

institutes.

Conclusion

In the task of hypodense lesion localization, model and human observer performance results 

are highly correlated, suggesting that future optimization studies could be carried out using 

highly-efficient model observers. Though not a one-to-one relationship, the strong 

correlation suggests the model in uniform water background could serve as a surrogate for 

human performance in anatomical liver background.
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Abbreviations

CHO Channelized Hotelling observer

CT Computed tomography

FBP Filtered back projection

IR Iterative reconstruction

LROC Localization receiver operating characteristic

SAFIRE Sinogram affirmed iterative reconstruction

AzLROC Area under the LROC curve

ρ Spearman correlation coefficient

CTDIvol Volume CT dose index

mGy milliGrays

DICOM Digital imaging and communications in medicine
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ROI Region of interest

MRMC Multi-reader, multi-case

α Weighting factor for internal noise

TPLF True positive localization fraction

FPF False positive fraction

ROC Receiver operating characteristic

RMSE Root mean square error

CI Confidence interval

HO Human observers

MO Model observer
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Figure 1. 
Comparison of the training and testing schemas, resubstitution and independent training and 

testing cohorts. (a) Bland-Altman plot of differences in performances between the two 

methods. The confidence interval of the mean contains 0 (no difference). (b) The linear 

relationship between resubstitution (x-axis) and independent training and testing cohorts (y-

axis). Linear fits for both liver and uniform water backgrounds have slopes near 1, y-

intercepts near 0, and R2 values near 1, indicating good agreement between schemas.
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Figure 2. 
The calibration of internal noise was performed using the calibration dataset of 7 mm lesion 

in liver at half dose reconstructed with IR. The effect on LROC performance when different 

values of internal noise (α) were added to the model observer was compared with the mean 

human LROC performance (AzLROC = 0.85). The final internal noise was determined to be 

1.75.
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Figure 3. 
Average localization performances between model (stars) and human (connected circles) 

observers, separated by reconstruction algorithm and background and stratified by dose (x-

axis). Error bars represent 95% confidence intervals.
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Figure 4. 
(a) Bland-Altman plot of LROC performance differences between human and model 

observers in the 36 localization tasks, separated by size and background. The solid line 

represents the mean difference in performance and the dashed lines illustrate the 95% 

confidence interval of the mean difference. The dotted lines represent the limits of 

agreement (±1.96 * standard deviation) around the mean difference; all data points lie within 

this range. (b) Linear fit between the model performance data and the average human 

observer performance data. Good agreement was seen between the observers, as indicated 

by a slope near 1 and a y-intercept near 0.
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Figure 5. 
(a) Bland-Altman plot of LROC performance differences between human observers in liver 

background and model observers in uniform background, separated by size. The solid line 

represents the mean difference in performance and the dashed lines illustrate the 95% 

confidence interval of the mean difference. The dotted lines represent the limits of 

agreement (±1.96 * standard deviation) around the mean difference; all data points lie within 

this range. (b) Linear fit between the model performance data and the average human 

observer performance data. Slope and intercept do not achieve 1 and 0, respectively, and 

therefore do not demonstrate good one-to-one agreement.
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