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Abstract

The purpose of this study was to determine the correlation between human observer performance 

for localization of small low contrast lesions within uniform water background versus an 

anatomical liver background, under the conditions of varying dose, lesion size, and reconstruction 

algorithm.

Liver lesions (5 mm, 7 mm, and 9 mm, contrast: −21 HU) were digitally inserted into CT 

projection data of ten normal patients in vessel-free liver regions. Noise was inserted into the 

projection data to create three image sets: full dose and simulated half and quarter doses. Images 

were reconstructed with a standard filtered back projection (FBP) and an iterative reconstruction 

(IR) algorithm. Lesion and noise insertion procedures were repeated with water phantom data. 

Two-dimensional regions of interest (66 lesion-present, 34 lesion-absent) were selected, 

randomized, and independently reviewed by three medical physicists to identify the most likely 

location of the lesion and provide a confidence score. Locations and confidence scores were 

assessed using the area under the localization receiver operating characteristic curve (AzLROC). We 

examined the correlation between human performance for the liver and uniform water 

backgrounds as dose, lesion size, and reconstruction algorithm varied.

As lesion size or dose increased, reader localization performance improved. For full dose IR 

images, the AzLROC for 5, 7, and 9 mm lesions were 0.53, 0.91, and 0.97 (liver) and 0.51, 0.96, 

and 0.99 (uniform water), respectively. Similar trends were seen with other parameters. 

Performance values for liver and uniform backgrounds were highly correlated for both 

reconstruction algorithms, with a Spearman correlation of ρ = 0.97, and an average difference in 

AzLROC of 0.05 ± 0.04.

*Selected sections presented during oral presentation at 2017 RSNA Annual Meeting.
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For the task of localizing low contrast liver lesions, human observer performance was highly 

correlated between anatomical and uniform backgrounds, suggesting that lesion localization 

studies emulating a clinical test of liver lesion detection can be performed using a uniform 

background.
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Introduction

Computed tomography (CT) use in the United States has risen drastically in recent years, 

leading to increased concerns regarding potential cancer risks and increased research in 

achieving radiation dose reduction in CT applications (Brenner and Hall 2007, Mettler et al 
2008, IMV 2016). To reduce the patients’ radiation dose, scanning and reconstruction 

parameters in CT exams are often modified (AAPM CT Dose Summit 2010, Hendee et al 
2010); however, these modifications should not reduce the radiologists’ diagnostic 

performance in interpreting the images for evidence of disease, such as the presence or 

growth of liver lesions. To accomplish this goal, it is essential to perform objective and 

quantitative evaluation of the diagnostic performance as a function of dose level, 

reconstruction algorithm, and lesion characteristic for the task of liver lesion detection. 

Human observer studies by radiologists are considered reference standard; however, they are 

extremely time-consuming and cumbersome (Fletcher et al 2015, McCollough et al 2017). 

Techniques such as noise and lesion insertion can be used for generating multiple scanning 

and lesion conditions in an efficient manner, which have allowed for investigation into dose- 

and lesion-image quality relationships (Seltzer et al 1991, Yu et al 2012, Solomon and Samei 

2014, Chen et al 2015, 2016, Xu et al 2015). To further simplify these human observer 

studies, one question is whether a realistic and anatomical background is needed. If the 

human observer performance on a uniform background is highly correlated with that on an 

anatomical liver background, then the quantitative and objective image quality evaluation 

can be performed on a uniform background, which may allow much more convenient and 

efficient observer studies.

While several studies have been performed using both anatomical and uniform backgrounds 

(Baker et al 2012, De Crop et al 2015, Solomon et al 2017), these studies have focused on 

characterizing the noise properties of the images as background or reconstruction algorithm 

change, rather than exploring the effect of background type on the diagnostic task under 

evaluation. Solomon et al performed two-alternative forced choice (2 AFC) perception 

experiments across six dose levels to compare filtered back projection (FBP) and iterative 

reconstruction (IR) (Solomon et al 2017). Sixteen readers (six radiologists, ten medical 

physicists) performed the liver lesion detection task. In addition, the study quantified the 

noise, lesion contrast, lesion sharpness, and contrast-to-noise ratio. Detection accuracy of the 

lesions was found to be 2% higher on average with IR (p = 0.03). The study did not compare 

background types, and the study only focused on lesion detectability, not localization. Our 
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previous work measured diagnostic performance for low contrast object detection and 

localization in a uniform background (Leng et al 2013, Yu et al 2013). In the object 

detection task, cylindrical rods with contrast of −15 HU were imaged within a 36 × 25 cm2 

water phantom under 21 conditions (three sizes, two reconstructions, three dose levels). Four 

medical physicists performed 21 2 AFC trials to quantify the impact of FBP and IR on 2D 

(128 × 128 pixels) CT images with differing doses (Yu et al 2013). In the localization task, 

three medical physicists identified the presence (or absence) and location of single lesions 

within 2D (128 × 128 pixels) CT images (Leng et al 2013). In this study, cylindrical rods 

once again were used to mimic −15 contrast lesions. Four doses and two size rods were 

used. Both these studies were limited by the use of a uniform water background, and 

cylindrical rods to mimic lesions.

In Part I of this study, we determined the relationship between human observer performance 

for two background conditions, namely in a uniform background compared to liver 

parenchyma. We specifically investigated the task of detection and localization of low 

contrast, patient-derived liver lesions in these two backgrounds as lesion size, radiation dose 

level, and reconstruction algorithm were varied. In Part II, we determined the ability of a 

mathematical model observer to predict the human observer performance demonstrated in 

Part I.

Methods and materials

Data collection and preparation

This study assessed and compared three readers’ performance in locating liver lesions of 

varying sizes as the dose, background, and reconstruction algorithm differed. The primary 

aim was to compare lesion detection and localization performance as the background 

complexity changed from a uniform water background to anatomical liver parenchyma. A 

secondary analysis looked at the influence of reconstruction algorithm, dose, and lesion size 

on localization performance.

To include real liver parenchyma as a background, contrast-enhanced abdominal CT images 

from ten patients with healthy livers were retrospectively collected with institutional review 

board approval. A single hypodense liver lesion was segmented from a separate patient data 

set containing liver lesions, forward projected, and inserted into varying locations of the ten 

healthy patients using a projection-based lesion insertion method (Chen et al 2015, 2016). A 

lesion contrast of −21 HU relative to the surrounding liver parenchyma was maintained 

throughout the insertion process. The locations of the inserted lesions were carefully 

selected to avoid anatomical landmarks such as liver vessels and organ boundaries. This was 

done to minimize the recall of the location of specific lesions due to their spatial relationship 

with such identifying features. To determine the effect of lesion size on reader performance, 

the same lesion was scaled to 5 mm, 7 mm, or 9 mm in maximum dimension prior to 

insertion. A validated, in-house noise insertion tool (Yu et al 2012) was used to create 

images that simulate acquisitions at half and quarter of the original (full) dose (full dose 

CTDIvol = 10.5 ± 8.5 mGy). All patient data were acquired using our routine abdominal CT 

exam parameters (CARE kV and CARE Dose, rotation time = 0.5 s, pitch = 0.8, additional 

settings in table 1) as part of a clinically-indicated contrast-enhanced CT scan (SOMATOM 
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Definition AS +, Siemens Healthcare, Forchheim, Germany). Reconstructions were 

performed with both FBP and IR (SAFIRE, Siemens Healthcare, Forchheim, Germany) 

using B40f and I40f (strength = 3) reconstruction kernels, respectively.

The same process of lesion insertion, noise insertion, and reconstruction was performed 

using a 35 cm × 26 cm torso-shaped phantom filled with water. A fixed CT number was 

added to the reconstructed images to yield a background of 110 HU, which was equivalent 

to the average background CT number of the liver in the contrast-enhanced CT scans that 

were used in our study. Average CTDIvol of the full dose water phantom images was 9.6 

± 0.1 mGy. Additional acquisition and reconstruction parameters for both background 

scenarios can be seen in table 1.

From the reconstructed images, 36 pixel × 36 pixel boxes were used to isolate square regions 

of interest (ROIs) containing either one lesion or a section of lesion-absent tissue. The boxes 

were placed such that the lesion location (if present) was randomly distributed within the 

ROIs with uniform probability of each location being selected so long as lesion truncation 

would not occur (i.e. the edges of the ROIs were not valid locations for lesion insertion as 

significant lesion truncation would be present). In total, 36 datasets (2 reconstructions × 2 

backgrounds × 3 doses × 3 sizes) of 100 ROIs (66 lesion-present, 34 lesion-absent ROIs) 

were collected. Sample ROIs can be seen in figure 1.

Background characterization

Using the lesion-absent, full dose images, a background characterization study was 

performed to test for differences between the anatomical liver and the uniform water 

backgrounds. Since the liver images were cropped to eliminate anatomical landmarks, tests 

were needed to assess whether the liver background texture was distinct from the uniform 

background.

Analyzing the FBP and IR images independently, four texture features—contrast, 

correlation, energy, and homogeneity—were extracted from four grey-level co-occurrence 

matrices (GLCMs) (Haralick et al 1973). In addition to these 16 texture features (4 texture 

features ´ 4 GLCMs), three intensity features—average and standard deviation of grey level 

and entropy—from the original images were also extracted. These 19 features underwent 

feature selection, a process to reduce the feature space, and classification to assign the 

images as liver or uniform background via the least absolute shrinkage and selection 

operator (Lasso) method (Tibshirani 1996). In Lasso, the weighting parameter λ determines 

the number of features allowed within the model; as λ increases, the number of features in 

the model decreases. The 19 features and 360 cases were within the rule of thumb that the 

number of features should be limited to 1 feature per ten cases to prevent over-fitting (Jarvis 

2011). Rather, feature selection was performed to identify which of the 19 features were the 

best predictors of the background. Lasso was performed using 10-folds cross validation to 

minimize performance estimate bias. By training the model on 90% of the images, and 

testing the fitted model on the remaining 10%, a more accurate estimate of performance can 

be achieved. A total of 100 models were fit to classify the data, with λ, the criteria for 

feature inclusion, becoming increasingly more stringent.
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Human observer studies

Three board-certified medical physicists (LY, CF, and SL) specializing in CT imaging 

independently reviewed all 36 image sets using a customized program in MATLAB 

(MATLAB Release 2015b, The MathWorks, Inc., Natick, Massachusetts, United States) 

with a graphical user interface (GUI) illustrated in figure 2, which displayed one image at a 

time to the reader in a random order. All images were displayed with a fixed window level/

width of 40/400, the standard setting for abdomen CT at our institute, on a monitor that was 

appropriately calibrated for clinical diagnosis following the ACR Technical Standard for 

Electronic Practice (Norweck et al 2013). All studies were performed in a darkened room 

with consistent ambient lighting (<10 lux). Viewing sessions were limited to two hours to 

prevent reader fatigue, and readers were encouraged to sit directly in front of the workstation 

and maintain a fixed viewing distance of approximately 50−60 cm from the monitor.

Readers were instructed to select the most likely location of the center of the lesion (asterisk 

in figure 2(d)) and provide a confidence score of how likely their selection was a true lesion 

(figure 2(e)). The confidence score ranged from 1: confident the image shown was a signal-

absent image, to 10: confident the location selected is the true location of the signal in a 

signal-present image. At the end of each dataset review, the readers’ marked location 

coordinates and confidence scores for each 100-image set were automatically saved by the 

program. At the conclusion of the study, each reader had reviewed 3600 images: three dose 

levels, three lesion sizes, two backgrounds, and 2 reconstruction algorithms, each containing 

100 images.

Evaluation of performance

The locations and confidence scores were assessed using localization receiver operating 

characteristic (LROC) analysis to examine the effects of reconstruction method, dose level, 

background, and lesion size on lesion detection and localization. Multi-reader, multi-case 

(MRMC) analysis was performed and nonparametric area under the LROC curve was 

estimated as described by Wunderlich and Noo (Wunderlich and Noo 2012). In LROC 

analysis, the true positive localized fraction (TPLF) is plotted against the false positive 

fraction (FPF). Unlike typical ROC curves, the conclusion of the LROC curve at (1.0, 1.0) is 

not a requirement as the number of correctly localized lesions may be less than the total 

number of lesion-present images at the lowest threshold, allowing the TPLF to have a 

maximum score of less than 1.0. A reader’s localization was deemed to be a true positive if 

it fell within the distance of the object radius from the true lesion location located at the 

lesion’s centroid; for example, the 9 mm lesion had a valid localization window within a 4.5 

mm radius from the center of the lesion such that a reader’s localization within the boundary 

of the lesion would be a true positive localization.

LROC performance comparisons across backgrounds and reconstruction algorithms were 

assessed through Spearman’s rank correlation coefficient and root mean square error 

(RMSE, equation (1), where Y1 and Y2 are the LROC performances of (a) liver and uniform 

backgrounds, or (b) FBP and IR algorithms) and compared with respect to lesion size and 

dose level. Bootstrapping with 100 samples was performed to compute estimates of the 

confidence interval (CI) for these performance measures.
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RMSE = 1
nΣ Y1 − Y2

2 . (1)

Results

Background characterization

Sixteen GLCM features and three grey-level features were extracted from the full dose 

lesion-absent images in both backgrounds. The summary statistics of these features for the 

horizontal GLCM can be seen in figure 3, and the intensity features are shown in figure 4. 

As expected, the mean grey-level intensity was 110 HU for both liver and uniform 

background, regardless of reconstruction algorithm (see figure 4(a)). However, other 

features, such as contrast, energy, and homogeneity (figures 3(b), (d) and (e)) had differing 

characteristics depending on the reconstruction algorithm. Finally, the value of the texture 

correlation features differed between liver and uniform backgrounds for both FBP and IR 

(texture correlation feature of horizontal GLCM shown in figure 3(c)).

These trends are illustrated in the Lasso feature selection process as well. In both FBP and 

IR trials, the texture correlation features from the GLCMs were the most robust and were 

selected for use in the fitted models until the most stringent criteria (λ = maximum value) 

was applied. Homogeneity, on the other hand, was a stronger feature in the IR classification 

than it was in FBP.

Performance of the background classification demonstrated the ability of these texture 

features to differentiate a uniform background from the anatomical liver background. For 

FBP, the average area under the ROC curve (AUC) was 0.929, and for IR, the average AUC 

was 0.894. The mean square error (MSE) of the fitted models ranged from 0.25 when using 

a single feature for classification (correlation in the diagonal (FBP) or horizontal (IR) 

direction) to 0.12 when all features were included in the model. Demonstration of 

background classification performances, stratified by reconstruction type, can be seen in 

figure 5. While figure 4 shows small differences in average feature performance between the 

two backgrounds, the combined small differences in feature space work to separate the two 

classes of data—liver and uniform backgrounds—to improve classification performance. 

This is illustrated in figure 6; while there is overlap between the two classes when assessing 

a single feature (figure 6(a)), greater separation and improved AUC are seen with the 

incorporation of additional features (figures 6(b) and (c)).

Human reader performances and trends

The LROC performance values stratified by reader across dose and size are shown in an 

outlier boxplot in figure 7. No outliers are present, and there is overlap between readers in 

their performances. While Reader 1 had slightly reduced average performance compared to 

Readers 2 and 3, the values fall within one standard deviation and are not significant when 

compared by one-way ANOVA (p = 0.73). The average performance values for both 

backgrounds and reconstruction algorithms, when stratified across both lesion size and dose 
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level, can be seen in table 2. The average reader performance was 0.39 ± 0.11 for the 5 mm 

lesions, 0.80 ± 0.14 for the 7 mm lesions, and 0.94 ± 0.06 for the 9 mm lesions.

Background influence on human reader performances

Figure 8 illustrates the average LROC performance values when the background type 

differed, with the average performance values across the three readers shown in tables 3 and 

4. Spearman correlation coefficients (ρ) computed to compare the performance values in 

liver versus those in a uniform background found a correlation of ρ = 0.97 (95% CI: 0.96, 

0.99). The RMSE (equation (1)), for the liver versus uniform background was 0.064 (95% 

CI: 0.045, 0.10). Overall, performance trends were visually similar, with the average 

difference between liver and uniform background being 0.05 ± 0.04. At smaller lesion sizes, 

the liver background had better performance, but when larger lesions were involved, the 

uniform background had better performance. The linear relationship was:

AzLROC(Liver) = 0.13 + 0.83AzLROC(Water) (2)

(95% CI for slope: 0.75, 0.92, 95% CI for intercept: 0.066, 0.19). The largest difference in 

performance between liver and uniform background occurred for the full dose, 5 mm lesions 

with a difference of 0.18.

Secondary trends

Analysis was also performed to determine whether the reconstruction algorithm influenced 

reader performances (figure 9). The average difference between FBP and IR was 0.03 

± 0.03, and the largest difference occurred for the full dose 5 mm lesions (difference of 0.18 

between liver and water, and 0.13 between FBP and IR). The IR algorithm tended to have 

slightly higher performance values, though there was a one-to-one agreement between FBP 

and IR performance values. The linear relationship was

AzLROC(IR) = 0.037 + 0.96AzLROC(FBP) (3)

(95% CI for slope: 0.87, 1.05, 95% CI for intercept: −0.029, 0.10). The Spearman 

correlation coefficient between reconstruction algorithms was ρ = 0.96 (95% CI: 0.90, 1.0) 

and the RMSE = 0.046 (95% CI: 0.031, 0.080).

Discussion

The purpose of this study was to determine the correlation of human observer performance 

for localization of small low contrast lesions within uniform water background and 

anatomical liver background. Multiple papers have reported the importance of task-driven 

detectability, especially when IR methods, which challenge traditional image quality metrics 

such as contrast-to-noise ratio and image noise, are used (Racine et al 2016, Solomon et al 
2017).
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For this study, the backgrounds selected were water with a DC component added to mimic 

the density of average contrast-enhanced liver parenchyma background (110 HU) and 

anatomical liver parenchyma regions chosen to be free of major vessels. We found the 

human observers’ average performance values for a specific lesion size, dose level, and 

reconstruction type were highly correlated between anatomical and uniform backgrounds for 

the task of localizing low contrast liver lesions. While several studies have been designed 

with anatomical and uniform backgrounds (Baker et al 2012, De Crop et al 2015, Solomon 

et al 2017), these studies have focused on characterizing the noise properties of the images 

as background or reconstruction algorithm varied, rather than exploring the direct effect of 

differing backgrounds on the task (lesion localization). For example, De Crop et al compared 

a cadaver lung background to a standardized lung phantom background (CATPhan) and 

found good correlation between image quality parameters (noise, contrast-to-noise ratio, 

contrast detail) to visual graphical analysis (VGA) scores. To our knowledge, however, our 

study is the first to directly compare human observer lesion localization performance 

between clinical (liver parenchyma) and phantom (uniform water) backgrounds.

Of secondary interest was exploring the relationship between reconstruction algorithms and 

lesion detectability. Our comparison yielded high correlations in lesion detectability between 

FBP and IR images (ρ = 0.96). While IR algorithms have been shown to decrease the noise 

associated with the use of reduced doses, they have also been shown to decrease the 

conspicuity of subtle lesions, such as those associated with metastatic liver disease (Baker et 
al 2012, Solomon et al 2017). While a few of the configurations in this work had larger 

performance differences between reconstruction algorithms (i.e. 5 mm lesion at full dose), 

the average differences were small (0.03 ± 0.03) and the AzLROC scores between FBP and 

IR were highly correlated. The differences present due to lesion size and dose level were 

much larger than the differences seen between reconstruction algorithms.

We also examined the trends in lesion detectability as dose and lesion size changed. As 

expected, lesion detectability increased as lesion size increased and as dose increased. A 

larger difference in performance was seen between 5 mm and 7 mm lesions than between 7 

mm and 9 mm lesions. This trend was also seen with the different dose levels; a larger 

performance difference was seen between quarter and half doses than between half and full 

doses. Several studies have sought to determine how much CT dose can be reduced while 

maintaining detectability. While results in previous studies have varied from 16% to as much 

75% (Baker et al 2012, Kalra et al 2012, Xu et al 2015), Goenka et al and Fletcher et al 
demonstrated a 25% reduction is possible (Goenka et al 2014, Fletcher et al 2015). In our 

study, the number of dose levels (3: full, half, and quarter) do not allow us to thoroughly 

explore what amount of dose reduction is possible while maintaining localization 

performances; our data showed that half dose IR resulted in worse performance compared to 

full dose FBP. Additionally, performance drop-off is smaller between full and half dose 

images than between half and quarter dose images. In future work, exploring additional dose 

levels between half and full dose would allow for quantification of dose reduction between 

IR and FBP, as well as for better characterization of the dose-performance curves between 

half and full doses. However, this study sought to correlate readers’ localization 

performances in various backgrounds and reconstruction algorithms while keeping other 

parameters, such as dose and lesion size, constant.
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The ROIs containing liver parenchyma free of major vessels is a limitation of the study. One 

of our concerns was that, by removing anatomical landmarks such as blood vessels, we 

would overly simplify the liver background, making it indistinguishable from the uniform 

water background. Classification of the background images demonstrated textural 

differences in CT number continue to exist between the liver and uniform background 

images; however, human reader performance showed high correlation and agreement in 

AzLROC across backgrounds. This, coupled with the visual similarity present in figure 1, 

suggests the textural differences present in anatomical liver parenchyma have negligible 

effect on lesion localization. As the task at hand is hypodense lesion localization, we believe 

the exclusion of the major vessels, which are hyperdense relative to the liver parenchyma, 

had minimal effect on the localization performances seen. Human readers can mentally 

construct a map of the major vessels and tend to ignore them when searching for lesions. 

Future studies to explore whether inclusion of major vessels influences reader detection and 

localization performance are underway.

An additional limitation is the use of medical physicists as readers instead of clinically 

trained radiologists. However, as Solomon et al also highlights, by cropping and presenting 

small ROI images, the task is simplified to a detection task as opposed to a clinical scenario 

of integrating patient information with the full imaging data (Solomon et al 2017). Medical 

physicists frequently perform low-contrast detection tasks during routine imaging protocol 

testing; the task presented here is similar to scenarios encountered by medical physicists. 

Thus, we do not believe this to be a significant limitation of the study. Finally, the window 

level and window width were limited to 40/400, the standard setting for abdominal CT 

imaging in many institutes. Although the window level and width settings may have some 

impact on lesion detectability and reader performance, exploring this impact is beyond the 

scope of this study.

Conclusion

The strong correlation demonstrated here between liver parenchyma and uniform 

backgrounds (ρ = 0.97) suggest that future human observer studies for liver lesion detection 

can be greatly simplified. Additionally, we found high correlation between the two 

reconstruction algorithms (ρ = 0.96). Using a uniform background and one reconstruction 

algorithm in future studies would allow a greater variability in lesion size and contrast, and a 

greater number of dose levels to further characterize the dose relationship, especially 

between half and full doses, on lesion detectability and localization. For the task of 

localizing low contrast liver lesions, human observer performance was highly correlated 

between anatomical and uniform backgrounds. This suggests that lesion localization studies 

emulating a clinical test of detecting liver lesions within a liver background can be 

performed using a uniform background.
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Abbreviations

CT Computed tomography

FBP Filtered back projection

IR Iterative reconstruction

LROC Localization receiver operating characteristic

AzLROC Area under the LROC curve

ρ Spearman correlation coefficient

CTDIvol Volume CT dose index

mGy milliGrays

DICOM Digital imaging and communications in medicine

ROI Region of interest

GLCM Grey-level co-occurrence matrix

Lasso Least absolute shrinkage and selection operator

λ Lasso weighting parameter

GUI Graphical user interface

MRMC Multi-reader, multi-case

TPLF True positive localization fraction

FPF False positive fraction

ROC Receiver operating characteristic

MSE Mean square error

RMSE Root mean square error

CI Confidence interval
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Figure 1. 
Side-by-side comparison of factors studied, including background ((a) liver versus (b) 

uniform), reconstruction algorithm (FBP versus IR), dose (full, half, and quarter of original 

acquisition dose), and lesion size (5 mm, 7 mm, and 9 mm).
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Figure 2. 
GUI for this reader study. (a) The user selected which set of data to analyze, with the option 

to (b) select which image to analyze. (c) The template (the lesion inserted into noise-free 

background) is displayed, and the current image (d) is shown to the user. The user selects the 

location (red asterisk in (d)), and ranks the confidence of the lesion’s presence in the image 

(e). In addition to choosing the image in (b), the user can scroll through the images using the 

previous and next buttons in (f). Upon conclusion of the image set, the user’s results are 

saved as a.mat file.
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Figure 3. 
Background texture characteristics of horizontal gray-level co-occurrence matrices (GLCM) 

from the full dose signal-absent images. (a) illustrates the definition of the horizontal 

GLCM, noting the relationship being quantified relative to a reference pixel. For the 

horizontal GLCM, the matrix is formed by comparing the intensities between each pixel in 

the image and its horizontal neighbor. The features extracted from the liver and uniform 

signal-absent images include (b) contrast, (c) correlation, (d) energy, and (e) homogeneity.
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Figure 4. 
Intensity features from the full dose signal-absent images. (a) shows the mean intensity 

between liver and uniform backgrounds for FBP and IR images. Similarly, (b) and (c) show 

the standard deviation and entropy from the signal-absent images.
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Figure 5. 
Classification performances in separating images containing liver background from uniform 

background with 10-fold cross-validation. Each ROC line represents a different fitted model 

as fewer features are allowed for use in the prediction. Average performance of (a) FBP was 

0.93 and for (b) IR was 0.89, illustrating the texture- and image-based features are capable 

of differentiating between the two backgrounds, regardless of reconstruction algorithm.
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Figure 6. 
Feature space plots with classification performance (AUC) for three background 

classification models (a) when one feature, (b) two features, and (c) three features are used 

in the model. Note that separation between classes (liver and uniform backgrounds) 

improves as more features are incorporated.
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Figure 7. 
Outlier box plots demonstrating localization performance (AzLROC) by reader, stratified by 

dose (x-axis) and lesion size (y -axis). Each box plot represents the average of four readings 

(FBP and IR in two backgrounds). All three readers have a similar mean performance for 

each stratification, and no outliers are present.
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Figure 8. 
Liver versus Uniform background: average localization performances between liver (stars) 

and uniform water background (connected circles) for FBP (a) and IR (b) algorithms. Error 

bars represent 95% confidence intervals.
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Figure 9. 
Average localization performances between FBP (stars) and IR (connected circles) for (a) 

liver and (b) uniform background. Error bars represent 95% confidence intervals.
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Table 1.

Comparison of acquisition and reconstruction parameters between the liver and uniform backgrounds. Similar 

settings were used, although the liver cases contain greater variability in tube potential (kVp) and dose 

(CTDIvol).

Liver background Uniform background

Acquisition parameters

kVp 100, 120 kVp 120 kVp

Rotation time 500 ms 500 ms

CTDIvol 10.5 ± 8.5 mGy 9.6 ± 0.1 mGy

Reconstruction parameters

Siice thickness 5 mm 5 mm

FBP kernel B40f B40f

IR kernei I40f, strength 3 I40f, strength 3
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Table 2.

Average LROC performance ± standard deviation across all three readers when stratified by dose and lesion 

size for both reconstruction algorithms and backgrounds. Performance increases as the lesion size increases 

and the dose increases. Overall average for dose level and size are also shown.

5 mm 7 mm 9 mm Average

Full dose 0.50 ± 0.08 0.93 ± 0.03 0.99 ± 0.02 0.80 ± 0.23

Half dose 0.40 ± 0.07 0.85 ± 0.05 0.97 ± 0.02 0.74 ± 0.25

Quarter dose 0.27 ± 0.04 0.63 ± 0.07 0.87 ± 0.04 0.59 ± 0.26

Average 0.39 ± 0.11 0.80 ± 0.14 0.94 ± 0.06 0.71 ± 0.26
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Table 3.

Average localization performances across readers for FBP, stratified by lesion size, dose level, and background 

(liver: L, uniform water: W).

FBP

5 mm 7 mm 9 mm

Dose L W L W L W

Full 0.56 0.38 0.93 0.92 0.99 0.99

Half 0.41 0.38 0.80 0.86 0.96 0.97

Quarter 0.30 0.24 0.66 0.58 0.89 0.88
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Table 4.

Average localization performances across readers for IR, stratified by lesion size, dose level, and background 

(liver: L, uniform water: W).

IR

5 mm 7 mm 9 mm

Dose L W L W L W

Full 0.53 0.51 0.91 0.96 0.97 0.99

Half 0.45 0.36 0.85 0.90 0.97 0.97

Quarter 0.30 0.24 0.62 0.64 0.81 0.91
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