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Abstract
Objective
To determine whether quantitative EEG (QEEG) features predict neurologic outcomes in
children after cardiac arrest.

Methods
We performed a single-center prospective observational study of 87 consecutive children
resuscitated and admitted to the pediatric intensive care unit after cardiac arrest. Full-array
conventional EEG data were obtained as part of clinical management. We computed 8 QEEG
features from 5-minute epochs every hour after return of circulation. We developed predictive
models utilizing random forest classifiers trained on patient age and 8 QEEG features to predict
outcome. The features included SD of each EEG channel, normalized band power in alpha,
beta, theta, delta, and gamma wave frequencies, line length, and regularity function scores. We
measured outcomes using Pediatric Cerebral Performance Category (PCPC) scores. We
evaluated the models using 5-fold cross-validation and 1,000 bootstrap samples.

Results
The best performing model had a 5-fold cross-validation accuracy of 0.8 (0.88 area under the
receiver operating characteristic curve). It had a positive predictive value of 0.79 and a sensi-
tivity of 0.84 in predicting patients with favorable outcomes (PCPC score of 1–3). It had
a negative predictive value of 0.8 and a specificity of 0.75 in predicting patients with unfavorable
outcomes (PCPC score of 4–6). The model also identified the relative importance of each
feature. Analyses using only frontal electrodes did not differ in prediction performance com-
pared to analyses using all electrodes.

Conclusions
QEEG features can standardize EEG interpretation and predict neurologic outcomes in chil-
dren after cardiac arrest.
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More than 10,000 children in the United States experience
a cardiac arrest annually.1–3 Following return of circulation, ac-
curate and timely neuroprognostication is critical in making
management decisions.4–6 Clinical and resuscitation variables
may not optimally predict neurobehavioral outcomes since they
do not directly assess brain function.7–10 EEG data can be
obtained noninvasively at the bedside and provide a standardized
brain activity assessment, which may be useful in delineating the
extent of brain injury.11,12 When neurologists and intensivists
predicted neurobehavioral outcomes from cardiac arrest cases,
the addition of EEG data significantly improved prognostication
accuracy.13 Current practice involves EEG review by an elec-
troencephalographer, and several EEG features have been as-
sociated with gross neurologic outcome at hospital discharge in
children after cardiac arrest.13–26 However, since visual EEG
interpretation relies on qualitative interpretations by electro-
encephalographers, inter-rater agreement limitations12,25–27 may
influence EEG-based neuroprognostication.12,25–27

Quantitative EEG (QEEG) analyses use computationally
derived features that highlight specific components of EEG
with numerical values.28 Thus, QEEG analyses circumvent
inter-rater variability limitations and provide a more objective
method for stratifying brain injury severity. This may be
helpful for clinical trials, acute treatment decisions, and neu-
roprognostication. In addition, QEEG features can extrapo-
late long-term trends29 that may not be identified by an
electroencephalographer. With further development, QEEG
analyses could be used by bedside caregivers, thereby po-
tentially serving as a widely implementable neuromonitoring
tool. QEEG features are associated with outcome after cardiac
arrest in adults,28–30 but similar studies have not been con-
ducted in children. Since the characteristics of cardiac arrest,
EEG, and outcomes are age-dependent, studies of QEEG are
necessary in children. In this study, we present a machine
learning algorithm that uses QEEG features to predict neu-
rologic outcomes in children resuscitated after cardiac arrest.

Methods
Standard protocol approvals, registrations,
and patient consents
This study was approved by the Institutional Review Board at
the Children’s Hospital of Philadelphia. We obtained written
informed consent for each participant.

Cardiac arrest database
This was a prospective study of consecutive infants and
children treated in the pediatric intensive care unit of a single

tertiary care referral hospital between September 2012 and
February 2016. Clinical practice at our institution was to
perform continuous EEG monitoring in all encephalopathic
patients resuscitated after cardiac arrest to identify electro-
encephalographic seizures, consistent with recent guidelines
and consensus statements.31,32 EEG monitoring was initiated
urgently and performed with a portable bedside Grass-
Telefactor video-EEG system using 21 gold-over-silver scalp
surface electrodes positioned according to the international
10–20 system and affixed with collodion adhesive. EEG data
were deidentified and full-length tracings were saved for re-
search purposes.

Study data consisted of prospectively defined demographic,
cardiac arrest, resuscitation, postcardiac arrest care, EEG, and
neurologic outcome variables. Data were collected pro-
spectively using an electronic case report form in Research
Electronic Data Capture (REDCap), a web-based electronic
data application.33

We assessed outcomes at discharge from the pediatric in-
tensive care unit by chart review using Pediatric Cerebral
Performance Category (PCPC) scores. The PCPC is a vali-
dated 6-point scale that categorizes degrees of functional
impairment (1 = normal, 2 = mild disability, 3 = moderate
disability, 4 = severe disability, 5 = coma and vegetative state,
and 6 = death).34 Unfavorable neurologic outcome was de-
fined broadly as PCPC scores of 4–6, and not only death
(PCPC score = 6), to reduce the influence of family deci-
sions regarding withdrawal of technological support on
outcome categorization. A patient’s outcome would be cat-
egorized as unfavorable whether a family chose to withdraw
or continue technological support of a child with severe
neurologic injury.

We enrolled 87 consecutive patients. We excluded 5 patients
who had good neurologic outcome soon after the cardiac
arrest but subsequently died due to medical complications
unrelated to their initial cardiac arrest (figure 1). We also
excluded 9 patients who did not have early EEG recordings
and 4 patients who did not have late EEG recordings. Thus, 69
patients were included for analysis (figure 1).

Statistical analyses comparing demographic and clinical data
were performed using Stata 15.0 (College Station, TX). We
report summary statistics as medians and interquartile ranges
for continuous variables and counts and proportions for cat-
egorical variables. We examined the association of each vari-
able with neurologic outcome using χ2 or Fisher exact tests for

Glossary
AUROC = area under the receiver operating characteristic curve; CI = confidence interval; NPV = negative predictive value;
PCPC = Pediatric Cerebral Performance Category; PPV = positive predictive value; QEEG = quantitative EEG; ROC =
receiver operating characteristic.
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categorical variables and Wilcoxon signed rank test or
Kruskal-Wallis tests for continuous variables.

EEG data extraction and preprocessing
Due to the data recordingmethods, we did not have continuous
data for all patients across all time points. Therefore, we selected
5-minute EEG epochs from every hour of EEG available. The
selected 5-minute EEG epochs were filtered and tested for
artifacts using a MATLAB script. The signal filtering process
was done by first using a 6th order Butterworth bandpass
filter35,36 between 0.1 and 50 Hz. The signals were then filtered
with a 60 Hz notch filter to ensure removal of the 60 Hz power
line artifact.37,38 We checked the filtered signals for artifacts
using the following steps. We calculated EEG channel SDs for
all channels across all 5-minute epochs for all patients. Statistical
outliers, defined as values that were more than 3 median ab-
solute deviations away from the median,39 were calculated for
the computed SDs through all the 5-minute epochs to identify
artifacts. If any of the epochs contained artifacts, then the
5-minute window was shifted until there was a window within
the given hour without artifacts. If there were no windows
within the hour that were artifact-free, then no epochwas selected
from that hour. An electroencephalographer visually inspected
and validated all EEG clips to ensure correct preprocessing.

QEEG features
We computed 8 QEEG features: SD of each channel in the
5-minute epochs, normalized band power in alpha, beta, theta,

delta, and gamma wave frequencies, line length, and regularity
function scores.28 Feature selection was clinically motivated
and was intended to capture voltage, spectrographic charac-
teristics, and trace discontinuity. All features were computed
per channel from 5-minute epochs from every hour of EEG
available.

SD was used as a feature to illustrate the variance of the signal.
Spectrographic features of the EEG were captured using the
normalized band power values of delta (0.5–3 Hz), theta (4–7
Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (25–50
Hz) waves.29,40 The band power in each frequency range was
first computed and then normalized with respect to the total
power of the 5-minute epoch. The band powers were nor-
malized in this manner because their relative ratios and the
variability in ratios to the total EEG power are considered
important in clinical practice.41 Line length, which is the sum
of all absolute distances between consecutive points,42 was
used to depict overall voltage and continuity. Line length is
a running window measure of the path-dependent distance
traced out by the EEG signal. Regularity function scores
capture patterns of discontinuity in an EEG signal. The reg-
ularity function28 outputs a value between 0 and 1 where
a higher value corresponds to a signal with a more regular
amplitude. In addition to the QEEG features, patient age was
added as a feature because age plays a critical role in assessing
pediatric EEGs.

Figure 1 Workflow of data collection and analysis

AUC = area under the receiver operating characteristic
curve; NPV = negative predictive value; PPV = positive pre-
dictive value; QEEG = quantitative EEG; ROC = receiver op-
erating characteristic.
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Early and late EEGs
For all 5-minute epochs, the 8 QEEG features were computed
for each channel and then averaged across all channels. All
QEEG features were then averaged across early (0–17 hours
after return of circulation) and late (18 hours–end after return
of circulation) EEG recordings to determine the predictive
ability power of early vs late EEG data.

Model selection and training
The feature matrix formed to train the classifiers had 69
samples with 9 features each. The labels were binary outcomes
(favorable or unfavorable neurologic outcomes). We trained
logistic regression, support vector machine, and random for-
est classifiers. We used the random forest classifier to classify
the EEG features given its robustness and interpretability.43

Model evaluation
We used 5-fold cross-validation to examine the performance
of the 3 machine learning classifiers. To evaluate model per-
formance, we computed receiver operating characteristic
(ROC) curves, area under the ROC curve (AUROC), accu-
racy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). For all models, we also
calculated 95% confidence intervals (CIs) for accuracies and
AUROC values based on 1,000 bootstrapped samples.

Data availability statement
Anonymized data not published within this article can be
made available to qualified investigators upon request to the
corresponding author.

Results
Patient demographics
Table 1 provides demographic data. Thirty-seven (54%)
patients had favorable outcomes (PCPC 1–3) and 32 (46%)
patients had unfavorable outcomes (PCPC 4–6).

Model performance
Table 2 provides the test characteristics (accuracy, sensitivity,
specificity, PPV, NPV, and AUROC values) for the early and
late EEG random forest models with 5-fold cross-validation.
Figure 2 provides the ROC curves for the early and late EEG
random forest models with 5-fold cross-validation. The ROC
curve is a plot of the algorithm’s sensitivity vs false-positive
rate (1 − specificity) for different cutoff values at which the
algorithm assigns outcomes. The AUROC is representative of
the algorithm’s utility for clinical decision-making. If the area
is close to 1.0, then its discrimination is excellent. If the area is
near 0.5, then its ability to discriminate between binary out-
comes is close to chance. Early EEGs showed better results
than late EEGs across all performance metrics, but the dif-
ferences were not statistically significant. The random forest
model could predict clinical outcomes based on early QEEG
features with an accuracy of 0.80, sensitivity of 0.84, specificity
of 0.75, PPV of 0.79, NPV of 0.80, and AUROC of 0.88. The
random forest model could predict clinical outcomes based

on late QEEG features with an accuracy of 0.70, sensitivity of
0.76, specificity of 0.62, PPV of 0.70, NPV of 0.69, and
AUROC of 0.74.

To better understand the generalizability of the models, 1,000
bootstrapped samples were used to compute the 95% CIs for
the accuracies and AUROC values (table 3). The random
forest model for early EEG had a mean accuracy of 0.69 (95%
CI 0.68–0.70), and the mean AUROC was 0.80 (95% CI
0.79–0.81). For late EEG, the mean accuracy was 0.61 (95%
CI 0.61–0.62), and the mean AUROC was 0.70 (95% CI
0.69–0.71).

Since limited montage EEG can be obtained more easily than
full-array EEG, we evaluated random forest models using only
frontal electrodes (Fp1, Fp2, Fz) in the same manner as
models built using all EEG channels. The random forest
model using early QEEG features performed better than the
random forest model using late EEG features across all per-
formance metrics, but the differences were not statically sig-
nificant. The random forest model with 5-fold cross-validation
using early QEEG features from frontal electrodes had an
accuracy of 0.71, sensitivity of 0.76, specificity of 0.66, PPV of
0.72, NPV of 0.70, and AUROC of 0.80. The random forest
model using late QEEG features from the frontal electrodes
had an accuracy of 0.67, sensitivity of 0.70, specificity of 0.62,
PPV of 0.68, NPV of 0.65, and AUROC of 0.72. Figure 3
depicts ROC curves for early and late EEG random forest
models with 5-fold cross-validation using only frontal
electrodes.

We computed 95% CIs for the accuracies and the AUROC
values of the models using only frontal electrodes using 1,000
bootstrapped samples (table 3). The random forest model for
early EEG using frontal electrodes had a mean accuracy of
0.67 (95% CI 0.66–0.67) and a mean AUROC of 0.76 (95%
CI 0.75–0.77). The late EEG model using frontal electrodes
had a mean accuracy of 0.64 (95% CI 0.63–0.65) and a mean
AUROC of 0.71 (95% CI 0.70–0.72).

Feature significance
Feature significance was evaluated using Gini importance.44

The reported scores range from 0 to 1, in which higher scores
indicate more important features. Figure 4 reports the features
importance scores. For the early EEG model, the most im-
portant features were gamma band power, delta band power,
and beta band power. For the late EEG model, the most
important features were age, alpha band power, and delta
band power.

Discussion
We used random forest models to identify multiple QEEG
features that are predictive of neurologic outcome in children
after cardiac arrest. When predicting outcomes, the worst
mistake would be to incorrectly predict an unfavorable
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Table 1 Demographic data for the full cohort divided by neurologic outcome

Variable Full cohort (n = 69)

Neurologic outcome

p ValueFavorable (n = 37) Unfavorable (n = 32)

Age, y 1.4 (0.3, 7.0) 0.6 (0.2, 9.3) 2.4 (0.4, 6.5) 0.27

Male 46 (67) 25 (68) 21 (66) 0.86

Race 0.83

White 36 (52) 19 (53) 17 (47)

Black 17 (25) 9 (53) 8 (47)

Other 16 (23) 9 (56) 7 (44)

Hispanic 9 (13) 6 (67) 3 (33) 0.40

In-hospital cardiac arrest location 45 (65) 25 (56) 20 (44) 0.66

Witnessed cardiac arrest 50 (72) 28 (56) 22 (44) 0.52

Bystander CPR for out-of-hospital cardiac arrest (n = 24) 21 (87) 11 (53) 10 (48) 0.54

CPR duration, min (n = 52) 10 (5, 20) 8 (4, 10) 20 (10, 40) <0.01

Initial rhythm 0.35

Asystole 9 (13) 3 (33) 6 (67)

Pulseless electrical activity 9 (13) 3 (33) 6 (67)

Bradycardia 27 (39) 17 (63) 10 (37)

Ventricular fibrillation or tachycardia 8 (12) 4 (50) 4 (50)

Other/unknown 16 (23) 10 (63) 6 (38)

Cardiac arrest cause (may have >1)

Sudden infant death syndrome 4 (6) 3 (8) 1 (3) 0.38

Drowning 7 (10) 2 (5) 5 (16) 0.16

Shock 31 (45) 18 (58) 13 (42) 0.50

Respiratory failure 27 (39) 15 (55) 12 (44) 0.80

Trauma 5 (7) 4 (11) 1 (3) 0.22

Epinephrine doses 0.44

0 8 (12) 6 (16) 2 (6)

1 13 (19) 7 (19) 6 (19)

2 10 (14) 6 (16) 4 (13)

3 13 (19) 7 (19) 6 (19)

4 3 (4) 1 (3) 2 (6)

≥5 17 (25) 6 (16) 11 (34)

Unknown 5 (7) 4 (11) 1 (3)

Initial lactate (n = 65) 5.2 (2.8, 8.5) 5.3 (2.6, 8.4) 5.1 (2.8, 9.4) 0.48

Lowest pH initial 24 h after cardiac arrest (n = 68) 7.2 (7.0, 7.3) 7.2 (7.0, 7.3) 7.2 (7.0, 7.3) 0.97

Intubated 51 (74) 26 (51) 25 (49) 0.58

Induced hypothermia 8 (12) 4 (50) 4 (50) 0.83

Benzodiazepine infusion 55 (80) 30 (55) 25 (45) 0.76

Continued
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outcome, leading to withdrawal of technological support in
a patient who might have had a favorable outcome. Thus,
a model predicting unfavorable outcomes aims to minimize
false-positives and thereby achieve high specificity. The ran-
dom forest model that best predicted unfavorable neurologic
outcome used all electrodes and early QEEG features, and it
had a specificity of 0.75 and PPV of 0.79. Since these are
imperfect, the model should not be used in isolation when
guiding clinical decision-making. However, these data suggest
that multimodal models are likely to benefit from inclusion of
QEEG data.

Predictive performance was compared between early and late
EEGs. The selected cutoffs for early and late EEGs maximized
the number of patients included in the data analysis because
patients who did not have both early and late EEG recordings
were excluded. Early EEGs showed better results than late
EEGs across all performance metrics. However, the difference
in model performance between early and late EEGs was not
statistically significant. Nevertheless, these results are consis-
tent with a previous QEEG study in adults that indicated that
the predictive value of EEG is highest at 12–24 hours after
cardiac arrest.28 This is a promising avenue of investigation
because early EEG features can be reliably used for neuro-
prognostication during the acute stages when interventions
may be most efficacious. This early ability to predict outcome
may also be useful for stratifying patients soon after cardiac
arrest for future neuroprotection studies.

Considering the small sample size (69 samples with 9 features
each), logistic regression was fitted on the dataset for its
simplicity, efficiency, and robustness to noise.45 A support
vector machine was then trained on the same data because it is
more flexible than logistic regression and allows for kernels
that are nonlinear.46 A third classifier, the random forest, was
used because ensemble methods perform with the highest
accuracy for many datasets, and is commonly used for medical
applications.43 Of the 3 machine learning classifiers, the ran-
dom forest classifier had the best performance based on 5-fold
cross-validation, and thus it was used to classify the features.

For our main analyses, QEEG features were averaged across
all channels because there were no clinically significant dif-
ferences in performance between channels. However, since
hypoxic–ischemic brain injury is diffuse, we hypothesized that
a limited set of frontal channels might yield similar test
characteristics. The finding that the performance of the
models using only the frontal channels was comparable to the
performance of the models using all channels (tables 2 and 3)
implies that the model can be implemented using EEG data
just from the frontal EEG channels (Fp1, Fp2, Fz), which
might be more feasibly obtained soon after cardiac arrest than
a full array EEG.47

While this study showed promising results, there are several
limitations. First, this study had a relatively small sample size
(n = 69). Therefore, we were unable to partition our data to

Table 1 Demographic data for the full cohort divided by neurologic outcome (continued)

Variable Full cohort (n = 69)

Neurologic outcome

p ValueFavorable (n = 37) Unfavorable (n = 32)

Length of stay: ICU, d 17 (8, 39) 18 (9, 39) 13 (7, 42) 0.59

Length of stay: hospital, d 22 (11, 52) 28 (15, 55) 16 (6.5, 43.5) 0.09

Abbreviations: CPR = cardiopulmonary resuscitation; ICU = intensive care unit.
Data are presented as n (%) or median (interquartile range).

Table 2 Performance metrics of random forest models with 5-fold cross-validation using early and late EEGs

Accuracy Sensitivity Specificity PPV NPV AUROC

All channels

Early EEG 0.80 0.84 0.75 0.79 0.80 0.88

Late EEG 0.70 0.76 0.62 0.70 0.69 0.74

Frontal channels

Early EEG 0.71 0.76 0.66 0.72 0.70 0.80

Late EEG 0.67 0.70 0.62 0.68 0.65 0.72

Abbreviations: AUROC = area under the receiver operating characteristic curve; NPV = negative predictive value; PPV = positive predictive value.
The table compares the performance ofmodels developedwith all channels andmodels using only frontal channels (Fp1, Fp2, Fz). Themodelswere evaluated
using accuracy, sensitivity, specificity, PPV, NPV, and AUROC.
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include a holdout validation set for our model. While we
used cross-validation and bootstrapping to overcome the
limitations of the small sample size, these results should be
validated in a larger study. Second, this study used a MAT-
LAB script for artifact removal that is not as accurate as
clinically trained neurologists. While manual EEG review
is the current gold standard, independent component
analysis–based algorithms could obtain EEG of improved
signal quality.40 Third, this study was based only on EEG,
but multimodal models also incorporating clinical features
could provide a more complete understanding of the neu-
rologic state of the patient and yield more accurate

neuroprognostication. Fourth, we assessed short-term out-
come using a relatively simple outcome measure. Future
studies might incorporate longer-term patient-centered
neurobehavioral outcomes. Fifth, clinically interpreted
EEG data were known to the clinical teams and may have
influenced care decisions. To reduce the influence of in-
dividual decisions regarding withdrawal of technological
support on outcome categorization, we used an outcome
measure that grouped death and unfavorable neurologic
outcome. Thus, outcome would be categorized as unfavor-
able whether a family chose to withdraw or continue tech-
nological support of a child with severe neurologic injury.

Figure 2 Receiver operating characteristic curves (ROC) and area under the receiver operating characteristic curves
(AUROC)

Mean ROC and AUROC values for random forest model with 5-fold cross-validation predicting neurologic outcome in (A) early and (B) late EEG using all
channels.

Table 3 Accuracies and area under the receiver operating characteristic curve (AUROC) values of random forest models
developed using early and late EEGs

Mean accuracy Accuracy 95% CI Mean AUROC AUROC 95% CI

All channels

Early EEG 0.69 0.68–0.70 0.80 0.79–0.81

Late EEG 0.61 0.61–0.62 0.70 0.69–0.71

Frontal channels

Early EEG 0.67 0.66–0.67 0.76 0.75–0.77

Late EEG 0.64 0.63–0.65 0.71 0.70–0.72

Abbreviation: CI = confidence interval.
The table compares the performance ofmodels developedwith all EEG channels andmodels using only frontal channels (Fp1, Fp2, Fz). Mean values and 95%
CI values were computed with 1,000 bootstrapped samples.
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Figure 3 Receiver operating characteristic curves (ROC) and area under the receiver operating characteristic curves
(AUROC)

Mean ROC and AUROC values for random forest model with 5-fold cross-validation predicting neurologic outcome in (A) early and (B) late EEG using only
frontal channels (Fp1, Fp2, Fz).

Figure 4 Feature importance scores of random forest models

Feature importance scores of random forest models for (A) early EEG data and (B) late EEG data. Scores were evaluated using Gini importance.44 Features
scores range from 0 to 1 and higher scores indicate more important features. Bp = band power.
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There are 2 additional technical considerations. First, based
on feature importance scores evaluated using Gini impor-
tance,44 line length had lower importance scores for both early
and late EEG models. The line length feature was computed
from 5-minute windows, which may have been too wide to
capture the important details of the EEG that would have
been predictive of outcome. Especially for capturing transient
events such as bursts, it may be necessary to use smaller
windows. One study that developed an automated burst de-
tection method with 84% accuracy recommended using
1-second windows.42 Using a smaller moving window within
the 5-minute epoch could be explored in future analyses. We
did not implement a shorter time window because some EEG
recordings extended up to 10 days and doing computations
on 1-second windows would have made the model compu-
tationally intensive. Second, it is surprising that the normal-
ized gamma (25–50 Hz) band power had the highest feature
importance score for the early EEG model since frequencies
above 25 Hz are not commonly encountered in scalp EEG.48

Frequencies in the gamma band range may be attributed to
muscle and movement artifacts.40,48 The artifacts in each
patient’s recording should be similar since they were acquired
under similar recording conditions. The frequency band
powers were normalized with respect to the total power in
each window so the gamma band comprising a higher pro-
portion of the total EEG power indicates that there is rela-
tively lower power in frequencies below 25 Hz, where most
brain activity is detected. Decreased brain activity is predictive
of an unfavorable outcome. Our results showed that patients
who had favorable outcomes generally had higher power in
the delta (0.5–3 Hz) band.

In future studies, we are interested in exploring several ave-
nues. First, in this study the models classify patients into 2
classes (favorable or unfavorable outcomes) based on the
probabilities of a patient belonging to either class. In binary
classification, the class with greater than 0.5 probability is the
predicted class. However, there are some patients whose
probability of belonging to either class can be close to 0.5,
such that predictions are made with considerably less cer-
tainty. These patients are more often misclassified, thereby
reducing the predictive power of the models for such patients.
Instead of binary classification, it might be beneficial to in-
clude a third class when the probabilities of a patient be-
longing to either class are less certain. An initial model could
focus on multinomial logistic regression with 3 classes of
outcomes. Second, we intend to combine clinical variables
with QEEG features to build more comprehensive multi-
modal models. Specific clinical variables are commonly used
by intensive care unit clinicians to predict outcomes in chil-
dren with cardiac arrest.6 Third, employing deep learning
models can also improve predictive performance. Recently,
there have been studies that use deep learning with con-
volutional neural networks to extract information from raw
EEG recordings.49,50 Deep convolutional neural networks
have shown promise in decoding information from EEGs and
revealing novel features that could be used in EEG analysis.50

Overall, these data provide initial evidence that QEEG fea-
tures, which are standardized and may make EEG in-
terpretation more objective for clinical decision-making, can
contribute to outcome prediction in children after cardiac
arrest. Further study is needed to assess the benefit of using
QEEG features in the context of multimodal models for
clinical trials or neuroprognostication.
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