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The medical AI insurgency: what physicians must know about
data to practice with intelligent machines
D. Douglas Miller1

Machine learning (ML) and its parent technology trend, artificial intelligence (AI), are deriving novel insights from ever larger and
more complex datasets. Efficient and accurate AI analytics require fastidious data science—the careful curating of knowledge
representations in databases, decomposition of data matrices to reduce dimensionality, and preprocessing of datasets to mitigate
the confounding effects of messy (i.e., missing, redundant, and outlier) data. Messier, bigger and more dynamic medical datasets
create the potential for ML computing systems querying databases to draw erroneous data inferences, portending real-world
human health consequences. High-dimensional medical datasets can be static or dynamic. For example, principal component
analysis (PCA) used within R computing packages can speed & scale disease association analytics for deriving polygenic risk scores
from static gene-expression microarrays. Robust PCA of k-dimensional subspace data accelerates image acquisition and
reconstruction of dynamic 4-D magnetic resonance imaging studies, enhancing tracking of organ physiology, tissue relaxation
parameters, and contrast agent effects. Unlike other data-dense business and scientific sectors, medical AI users must be aware that
input data quality limitations can have health implications, potentially reducing analytic model accuracy for predicting clinical
disease risks and patient outcomes. As AI technologies find more health applications, physicians should contribute their health
domain expertize to rules-/ML-based computer system development, inform input data provenance and recognize the importance
of data preprocessing quality assurance before interpreting the clinical implications of intelligent machine outputs to patients.
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INTRODUCTION
Before the epic sci-fi movie subway fight scene between human
hacker Neo and artificial intelligence (AI) being Agent Smith, rebel
leader Morpheus observes that Neo is, “beginning to believe” in
his power to defeat the Matrix. As forecasted in this 23rd century
Machine War, today’s 21st century real-world AI insurgency will
also fail without believable data science solutions for high-
dimensional data matrix decomposition and signal detection in
noisy dynamic (i.e., messy) datasets.
In prior scientific époques, reproducibility of novel research

findings was a central tenet of human knowledge expansion.1 The
inferential statistics of regression and correlation were the analytic
gold standard. By disproving the null hypothesis of data
similarities, scientists proved the alternatives that pointed to
new knowledge. Today, science finds itself at the nexus of
quantifiable biology and big data, where knowledge is increas-
ingly represented in immensely complex and rapidly accumulative
datasets. In this data-intensive computing era, knowledge
acquisition requires new scientific methods. Intelligent machines
use discriminative modeling to learn features hidden within data
manifolds, revealing insights otherwise obscure to humans. A key
to extracting such unobvious commonalities from complex high-
dimensional datasets is robust data dimensionality reduction and
meticulous matrix decomposition.
This new data-intensive scientific era raises many questions.

What is the right data (i.e., size, source, and quality) upon which to
train a learning computer system? Can humans unknowingly (or
intentionally) curate datasets that cause machines to confidently

predict erroneous outcomes? Can ever messier, bigger and more
dynamic data thwart intelligent machines? It is well-known that
answering these crunchy technology questions requires both data
and computing scientists to be well-informed on the exquisite
interdependencies between machine intelligence, knowledge
representation, and dynamic data. And for human health AI
applications, do input data quality and provenance issues pose
unique health risks that demand earlier and more meaningful
involvement of medical domain experts?
What has gone largely unrecognized by AI developers and

potential users is that the medical applications of machine
intelligence are highly susceptible to proper handling of increas-
ingly large, messy, and dynamic data inputs,2,3 and that medical
data matrix glitches can indeed have human health conse-
quences. Broadly framed by data science and AI computing
fundamentals, this perspective offers focused insights into the
challenges health professionals face when translating high
technologies to the human condition.

Machine intelligence
Computer scientist and AI guru Andrew Ng (of Google Brain,
Baidu, and NVDIA) has offered the view that, “The measure of a
good AI technology is that it does well what humans can do easily
in one second”.4 While a machine that truly mimics higher
cognitive function awaits human design,5 AI technologies are
accelerating complex problem-solving in data-dense sectors like
finance, cyber-security, social media, econometrics, computer
vision, and logistics tracking (i.e., blockchain).6,7
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Discriminative models for supervised machine learning (ML) are
typically programmed to predict how an exploratory testing
dataset relates to trusted training data.7 Preprocessing of training
datasets enhances the yield of AI analytic modules for reliably
selecting the most crucial features and faults, potentially
rendering advanced AI modules automated (i.e., unsupervised
deep learning (DL)).7 Unlike humans who can effectively transfer
past experiences and expertise to new tasks, AI modules that
generalize poorly to new datasets (other than those it trained on)
can cause massive ML failures.8 Careful preprocessing of
exploratory testing datasets before AI analytics helps to generalize
knowledge in subsequent testing dataset runs.
Computer programming and DL expert François Chollet (of

Google AI and Keras) attributes AI’s recent remarkable success as
follows, “You can achieve a surprising amount using only a small
set of very basic techniques”.9 Pure DL engines are discriminative
modeling algorithms, systems of neural networks (i.e., nets) with
multiple hidden layers in which neurons receive, weigh and
combine inputs to produce an output that is passed to the next
layer.7 Such relative simplicity implies that one need not be an AI
technology expert to accomplish DL. But such simplicity also
belies the fact that the inherent data structure is often the missing
link to efficient and accurate AI analytics.
Innately different data structures (i.e., text, images, telemetry

signals, and video) demand different computational approaches.
For example, imaging data structures (i.e., natural or digital image
pixel arrays) are best learned using convolutional neural nets,
while linguistic text structures (i.e., natural language interfaces) are
better learned by recurrent neural nets. Absent clear neural net
comprehension of these innate data structures, even the fastest
graphics processing units, and most massive data troves are not
very good learners.
And not all datasets can be trusted. Very slight data matrix

perturbations, introduced intentionally into discriminative neural
nets by generative adversarial nets (GAN’s), can cause an AI
module to become 99% certain of a predictive model output that
human experts immediately recognize as 100% erroneous.10 The
dual goals of purposefully pitting generative nets against
discriminative nets are better discriminator object and feature
identification (i.e., reinforcement learning), and better generator
learning about how to deceive discriminators. Such net-versus-net
rivalry instills machines with artificial imagination, a creativity that
can contribute to novel in silico prodrug design.11 Google AI chief
scientist Yann LeCun calls GAN’s, “The coolest idea in DL in the last
20 years”.12 However, uncurated or poorly preprocessed original
training datasets have a chilling effect on GAN performance.

Knowledge representation
Many organizations share a common problem—they have a lot of
data, but their data structure does not match a particular question
that they want to solve. For AI start-ups and businesses outside
“The Big Nine” (i.e., Alibaba, Amazon, Apple, Baidu, Facebook,
Google, IBM, Microsoft, and Tencent), creating a curated high-
quality training dataset is not easy.13 As cognitive computing and
big data analytics innovator Adrian Bowles (of IBM, GTE, and
Aragon Research) has opined, “There is no machine intelligence
without knowledge representation.”14 So knowledge (i.e., digits,
facts, beliefs, pictures, and general information) must be placed
within context for machines to test the validity of what they have
learned against other existing or new inputs. Without a clear data
map, intelligent machines cannot make sense of data inputs.
Data scientists traditionally spend 70–80% of their time cleaning

data and choosing the right data to mine.15 Clear data taxonomies
provide ordered representations of the formal structure of
knowledge classes or types of objects within a data domain.
Ontologies use data rules and representations to factor in how

object types relate to each other, and how data domains influence
objects within them. Taxonomies and ontologies help ordered
proximity algorithms (i.e., k-word nearest neighbor search for text
and fast nearest neighbor search for dynamic indexing) make
statistical inferences and associations based on geometric
distance functions (i.e., vector calculus) that reflect data similarity,
or dissimilarity.16,17 More advanced analytics (like AI) compel data
scientists to create tools and technologies that can wrangle an
ever-expanding and more complex data universe2,3—cleaning,
labeling, organizing, and integrating data from many different
sources.18

Computer languages for querying databases (i.e., C++, Java,
and C#) follow set data rules and programming methods. Static
methods depend on data class; they are object-oriented, requiring
objects to access variables inside of a data class (i.e., static or class
variables). Nonstatic methods require an instance be created (i.e.,
instantiated); they access the individual characteristics (i.e.,
nonstatic or instance variables) of each object being generated
from the data class. R is one statistical computing and software
platform comprised of functions, data and compiled code in well-
defined formats. Open-access R platforms enable users to carry
out advanced statistical operations (i.e., data aggregation, clean-
ing, analysis, and representation) and data mining (i.e., time-series
forecasting, data visualization, string manipulation, and predictive
modeling) in diverse data spaces.18

Rules-based computing systems make inferences from data.
Their data-driven static analyses (with Java, Python or R) use large
amounts of code to infer coding rules to guide a good data
analysis strategy. Given a set of facts (i.e., a knowledge base) and a
set of rules (i.e., “if-then” coding statements), a rules-based system
directs the computer to a recommendation. Human experts in the
knowledge domain can help to specify the steps to making a
decision and can identify special cases (i.e., expert-based rules). By
comparison, ML-based computing systems often begin by
searching large, heterogeneous and complex data spaces (i.e.,
query-database communication).19 ML outputs identified by
historical training data runs are derived from a combination of
numerous input variables, and modeled into learned patterns (i.e.,
features). Unlike rules-based systems, ML systems rely only on the
outcomes knowledge of experts in the problem domain, and ML
rules are largely inferred by feature engineering, with the goal of
predicting a future outcome (i.e., causal inference).7,20 Analogous
to human reasoning, ML is more adaptive to continuously
improved data preparation.

Dynamic data

“Many mathematical objects can be under-
stood better by breaking them into consti-
tuent parts, or finding some properties of
them that are universal, not caused by the
way we choose to represent them”.

This quote from leading AI scientist, Yoshua Bengio (of
Université de Montréal), reflects the fact that many of today’s AI
computing breakthroughs are predicated on data science solu-
tions.21 Increasingly, modern datasets are dynamic, arriving
sequentially in batches over time that are potentially correlated
(i.e., time-series data) and stored in multiple locations (i.e.,
distributed data networks). Data scientists know that these
dynamic high-dimensional datasets are often messy—corrupted
by redundant data, outliers and missing entries requiring robust
preanalysis data completion and/or data recovery.15
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Dr. Bengio continues, “We can also decom-
pose matrices in ways that show us infor-
mation about their functional properties that
is not obvious from the representation of the
matrix as an array of elements.”

Data matrix decomposition simplifies the AI knowledge
extraction process, reducing computation time and minimizing
the risk of predictive model over-fitting. In traditional multivariate
datasets, the number of features or variables being collected (data
dimensions, p) is smaller than the number of cases (data elements,
n). The recent explosion of dynamic data has spawned a high-
dimensional data era wherein p is often orders of magnitude
greater than n.22 AI’s full future impact is largely predicated on
high-dimensional data reduction and signal detection in noisy
dynamic datasets.
Computing run times of simple AI diagnostic modules (i.e., auto-

encoders and support vector machines), advanced convolutional
or recurrent neural networks, and other DL algorithms depend
greatly on the dimensionality of the inputted data. To achieve
computing efficiencies, data scientists use a wide variety of
dimensionality reduction and feature selection techniques:
principal component analysis (PCA),2 generalized spike models,22

robust PCA,23,24 PCA whitening,25 robust subspace tracking,24 low
rank plus sparse [L+ S] data decomposition26 and algorithms (i.e.,
t-distributed stochastic neighbor embedding).27 With proper
preprocessing of dynamic datasets, AI technologies are becoming
more efficient at signal processing (i.e., satellite communications
and seismology), computer vision (i.e., video surveillance and
traffic patterns), and network traffic analysis.

Entering the medical matrix
Binary numeric (i.e., digital) datasets are ideal for training neural
net algorithms for (un-)supervised feature recognition in complex
data matrices. Digital medical images representing human
anatomical structures and physiological functions are large (i.e.,
magnetic resonance imaging (MRI)= 200 MB per image), but
generally clean data files.28,29 This partly explains why applying AI
technologies to digital medical imaging (i.e., radiology, dermatol-
ogy, histopathology, and retinal photography) datasets translates
well, achieving ≥95% of human accuracy for predicting disease
types and severity.6 But while digital medical imaging data quality
is often superior to other medical data, it too can be messy. As
such, attention must be paid to the careful preprocessing of all
medical datasets, whether the data are static or dynamic.
Static Datasets—once utilized to distinguish AM from FM radio

signals, PCA vector calculus is now used to de-convolute digital
electrocardiogram30 and electroencephalogram31 recording sig-
nals. When applied to static body imaging, the generalized spike
model detects localized disease-induced anatomical variations of
organ landmarks wherein the PCA eigenvectors are rendered
sparse.22 Robust PCA of static brain MRI studies can separate
clinically useful functional from diffusion MRI information.23

PCA preprocessing of genomic data (by creating file-backed big
matrix objects for analyses using R package algorithms and
statistical tools) defines relevant gene expression clusters within
high-dimensional genomic data arrays, rapidly creating polygenic
risk scores for conditions like celiac disease.32 Conventional PCA
and hybrid ML algorithm analyses of heterogeneous high-
dimensional (i.e., neuroimaging and biomarkers) and low-
dimensional (i.e., medical records) data manifolds have shown
comparable (83–85%) accuracy for discriminating healthy subjects
from those with mild cognitive impairment and patients with
documented Alzheimer’s disease.33

Applying low rank plus sparse (L+ S) decomposition to
contrast-enhanced digital subtraction imaging allows for auto-
mated background subtraction of S component differences (i.e.,
perturbations), while L images are useful for image-to-image
realignment and change detection23 (Fig. 1). RPCA-based change
detection methods reflecting S component perturbations
between an original image and the L image dataset can
demonstrate spatiotemporal disease progression (i.e., angiogra-
phy of vascular diseases and23 fundoscopy of retinal diseases34)
(Fig. 2).
Dynamic Datasets—Encoding of clinically relevant spatiotem-

poral information in dynamic MRI datasets—organ motion,
contrast agent uptake, tissue signal relaxation, etc.—requires data
acquisition at each gated time point to be faster than the
physiological process being studied. MRI hardware is too slow to
fully sample data during dynamic 4-D imaging. RPCA is helpful for
detecting sparse outliers in the under-sampled k-dimensional
subspace within dynamic MRI datasets, and is useful for region-of-
interest detection and tracking.23

Fully cinematic MRI data acquisition at each time point is
inefficient because of information redundancy across multiple
image frames. By learning inter-frame motion fields, RPCA
improves cine MRI resolution without creating aliasing artifacts,
and accelerates image reconstruction via background noise
suppression. RPCA spatiotemporal data correlations at each time
point permit reconstruction of time-series datasets of related
dynamic MRI images; the resulting near-instantaneous data
snapshots increase acquisition speeds.26

Matrix medical complications
The blending of statistical methods with computer science must
take human utilities into account when designing inference and
decision-making systems. This is of particular importance in the
medicine, where the application of AI technologies with the
intention of caring for others without robust consideration of
medical dataset characteristics can predispose unique human
health complications.
The first complication-predisposing condition is analytic system

reliability, which is fundamentally related to AI module design. AI
modules are trained on datasets and purposefully engineered to
not achieve 100% predictive accuracy for feature detection, in
order to be generalizable for learning on other new testing
datasets. Such inherent AI module mutations can have health

Fig. 1 Data matrix decomposition for accelerated dynamic MRI of
three contrast enhanced image phases.18 Compressed sensing (CS)
images reflect sparsity only, while low rank plus sparse (L+ S)
images provide improved spatiotemporal resolution resulting from
the automated background suppression of the sparse (S) compo-
nents, enhancing contrast resolution. (Reproduced with the
permission of the Institute of Electrical and Electronics Engineers)
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application consequences. Although diagnostic accuracies ≥95%
are achieved using ML or DL analytics of relatively clean, static
digital medical imaging datasets, this high accuracy level is not
reproducible when using messy, dynamic data inputs.6,29 Dataset
preparation should be informed by medical experts, with
appropriate business due-diligence to avoid financial pressures
on the dataset preparers.
The second risk comes when interpreting AI output data to

patients in the clinical setting. Medical testing discussions are
often fraught due to physician–patient knowledge imbalances,
especially when the diagnostics and related care options are
complex. Doctors cannot ethically relate AI model results for
predicting an important outcome (i.e., the genetic odds of
disease32 or likelihood of inpatient death35) to their patients
without also plausibly explaining how the “black box” generated
those odds.6,36 While doctors might assume that the precision of
an approved AI medical applications is high, doctors disinterme-
diated from the training data cannot vouch for either the quality
of the raw data or the rigor of data preprocessing.28

Thirdly, while data scientists know that data provenance—the
origin of datasets in time and place—is a key determinant of the
inferences to be drawn from it, most physicians do not. Fetal
ultrasound markers of Downs Syndrome derived using 1990s low-
res 2-D ultrasound source data do not carry the same predictive
value when remodeled with modern high-res 3-D imaging fetal
ultrasound datasets.37 And while ML analytics of 3-D fetal
ultrasound imaging data at scale could augment diagnostic
observer reproducibility, it could also skew individual case medical
decision-making as compared to human experts (i.e., the need for
amniocentesis to detect the trisomy 21 chromosome). When
Google AI’s Automated Retinal Disease Assessment tool was field
tested in India’s rural population,38 inferences drawn using cohort
training datasets from developed world places could not be
readily translated in the undeveloped world.

The AI insurgency—learning from the matrix revolutions
In the Matrix movie trilogy, the Oracle’s revolutionary cause was to
save humanity by unbalancing algorithms. When first meeting
Neo, her human instrument of digital disruption, the Oracle points
to a sign bearing the words of Socrates—Temet Nosce (Know
Thyself). Modern physicians know that the grounding premise of
medical practice remains scientific knowledge. However, the
undisciplined pursuit of neo-technologies by AI-enthused medical
users in the absence of transparent input data quality assurances
could unknowingly do harm in clinical practice.
Techniques long applied for data matrix decomposition in

computer science and engineering are now being used to wrangle
high-dimensional dynamic medical datasets. Physicians wanting
to put AI into meaningful use in clinical practice need not be data

or AI experts. But in today’s rapidly evolving data-intensive AI
insurgency, if (like Neo) health professionals freely choose to enter
the Matrix, then (like the Oracle) they must deeply understand and
reflect on the human health impacts of knowledge representation
and dynamic data on machine intelligence.
When Neo asks, “What is the Matrix?”, Morpheus responds,

“Control”. Modern medicine has entered the Matrix. Once inside,
health professionals must proceed deliberately, endeavoring to
first grasp the limits of such powerful AI technologies before
embracing them. Not unlike CGI battle adversaries Neo and Agent
Smith, nonadversarial networking of medical, data and computing
experts could reveal critical strengths and weaknesses of rival
scientific methods. By engaging to jointly inform the inferences
derived from complex medical datasets, these AI insurgents could
derive deep understanding from data obscurity, coming to
“believe” in their capacity to translate AI technologies into
improved patient care.
To do less would cede control to the matrix.
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