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Abstract

Immunity to malaria has been linked to the availability and function of helper CD4+ T cells, 

cytotoxic CD8+ T cells and γδ T cells that can respond to both the asymptomatic liver-stage and 

the symptomatic blood-stage of Plasmodium sp. infection. These T cell responses are also thought 

to be modulated by regulatory T cells. However, the precise mechanisms governing the 

development and function of Plasmodium-specific T cells and their capacity to form tissue-

resident and long-lived memory populations are less well understood. The field has arrived at a 

point where the push for vaccines that exploit T cell-mediated immunity to malaria has made it 

imperative to define and reconcile the mechanisms that regulate the development and functions of 

Plasmodium-specific T cells. Here, we review our current understanding of the mechanisms by 

which T cell subsets orchestrate host resistance to Plasmodium infection, based on observational 

and mechanistic studies in humans, non-human primates and rodent models. We also examine the 

potential of new experimental strategies and human infection systems to inform a new generation 

of approaches to harness T cell responses against malaria.

Introduction

Plasmodium species are the causative agents of malaria, a devastating disease responsible 

for more than 200 million infections and approximately 450,000 deaths annually1. Malaria is 

transmitted when Plasmodium sporozoite [G] forms are deposited into the dermis during 

Anopheles mosquito blood-meals (Fig. 1). Parasites exit the dermis and transit through the 

circulation to infect hepatocytes in the liver. Over the next several days of asymptomatic 

liver-stage infection, parasites undergo amplification and differentiation into merozoites [G]. 
Merozoites emerge from infected hepatocytes either singly or as part of a merosome [G] and 

represent an antigenically distinct form of the parasite that targets host erythrocytes to 

establish blood-stage infection, the phase responsible for all clinical signs and symptoms 

associated with malaria.

Both cellular and humoral adaptive immune responses are essential for limiting Plasmodium 
parasite replication and the severity of malaria (Fig. 2). As detailed below, in immune 

animals and partially immune humans, parasite-specific, cytotoxic CD8+ T cells likely 

eliminate infected hepatocytes following recognition of parasite antigens presented on MHC 

class I molecules, whereas CD4+ T cell-dependent antibody responses can prevent 
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sporozoite invasion of hepatocytes. Both of these immune mechanisms effectively prevent 

the progression from asymptomatic to clinical disease. During the blood-stage of 

Plasmodium infection in naïve or partially immune hosts, parasitized erythrocytes (which 

lack functional MHC expression) are indirectly targeted by CD4+ helper T cells and possibly 

γδ T cells that may orchestrate secreted antibody responses or the anti-parasitic activity of 

phagocytes.

Experimental malaria models in rodents and non-human primates have expanded our 

understanding of T cell-mediated protection against malaria and provided mechanistic 

insights that have guided the development of multiple experimental anti-malarial vaccine 

platforms. However, major challenges to immune-mediated elimination of malaria remain. 

The lead subunit vaccine candidate, RTS,S (Mosquirix™) [G] provides only short-lived, 

partial protection against malaria2, 3, 4. Thus, despite the current conceptual frameworks for 

αβ and γδ T cell-mediated protection against Plasmodium, we still lack sufficient 

mechanistic understanding of their formation and function, which has hampered the design 

of efficacious vaccines that can be deployed in malaria-endemic regions. The development 

of innovative anti-malarial vaccine platforms and the potential application of 

immunotherapies that stimulate or enhance resistance to malaria will require deeper insights 

into the cellular and molecular mechanisms that govern anti-Plasmodium T cell responses.

In this Review, we examine recent advances in our understanding of Plasmodium-specific 

αβ and γδ T cell subsets with specific emphasis on the mechanisms that these populations 

use to facilitate or hamper immune control of malaria. We discuss the secreted mediators 

that αβ and γδ T cell subsets employ to orchestrate resistance to malaria, including 

cytokines and pro-apoptotic factors. Although much of the mechanistic data describing both 

infection- and vaccine-induced T cells were generated in mouse studies, we also highlight 

key associations identified in human field studies and controlled human malaria infection 

(CHMI) models. However, missing critical information and technical limitations continue to 

impede progress in the field (Box 1). Despite this, we also highlight technical innovations 

and recent experimental advances that have facilitated critical insights into the biology of 

Plasmodium-specific T cells (Box 2) and illustrate the major gaps that remain to be 

addressed through future clinical and experimental studies.

CD4+ T cells in malaria

CD4+ helper T (Th) cells are activated following engagement of pathogen-specific peptides 

presented on MHC class II molecules and are central to orchestrating key aspects of both 

innate and adaptive immunity during Plasmodium infection. The presence of Plasmodium-

specific CD4+ T cells has been identified as a correlate of protective immunity following 

either natural exposure or anti-malarial vaccination5, 6, 7, 8. When activated in the presence 

of specific polarizing cytokines, CD4+ T cells have the capacity to differentiate into one of 

several functionally distinct subsets. Given the complexity of the Plasmodium parasite 

lifecycle (Fig. 1), it is not surprising that a number of functionally diverse CD4+ T cell 

subsets have been identified in both experimental and clinical malaria studies and that their 

mechanism(s) of protection are distinctly linked to specific Plasmodium developmental 

stages (Fig. 2). Notably, accumulating evidence supports the idea that long-lived, sterilizing 
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immunity does not develop in humans following repeated exposure to Plasmodium parasites 

and there is also evidence of reduced efficacy of childhood vaccination in malaria-exposed 

individuals2, 8, 9, 10. These studies highlight the complexity of the regulatory circuits and 

immune checkpoints that become engaged during malaria. Rather than examine in detail the 

differentiation and regulation of CD4+ T cells, topics that have been recently 

reviewed11, 12, 13, we focus our discussion here on the mechanisms by which functionally 

distinct CD4+ T cell subsets shape resistance to liver- and blood-stage malaria.

Th1 cells.

The presence of Th1 cells and an elevated IFNγ response are signatures of both human14 

and rodent15, 16, 17, 18 malaria. In addition to IL-12, the formation of Plasmodium-specific 

Th1 cells has been linked to CD4+ T cell-intrinsic sensing of extracellular ATP by P2X719, 

and P. falciparum-activated human DCs may be uniquely programmed to promote Th1 cell 

differentiation20. The activity of T-bet upregulates IFNγ and approximately half of all Th1 

cell-associated genes, in addition to repressing the transcriptional programmes of other 

CD4+ T cell subsets (reviewed in detail elsewhere21), including Th2 cell, Th17 cell and T 

follicular helper (Tfh) cell subsets that are described below. During experimental blood-

stage infection, T-bet (Tbx21)-deficient mice exhibited the loss of IFNγ-producing splenic 

CD4+ T cells, which directly correlated with elevated parasite burdens22. Similarly, 

Plasmodium infection of Il12−/− mice reduced T-bet and IFNγ expression in CD4+ T cells 

and abrogated control of Plasmodium replication15.

The exact mechanisms by which IFNγ and effector Th1 cells contribute to host protection 

during blood-stage Plasmodium infection remain largely speculative23, although 

experimental data suggests that IFNγ is critical for activating macrophages24, 25, 26 and may 

tune class-switch recombination in Plasmodium-specific B cells15. IL-2, another CD4+ T 

cell-derived, Th1-associated cytokine is important for activating natural killer (NK) cells, 

which may participate in protective immune responses by direct cytolysis of Plasmodium-

infected erythrocytes27. IFNγ-producing, TBET+ Th1 cells can also express macrophage 

colony stimulating factor (M-CSF, also known as CSF1), and CD4+ T cell-specific 

deficiency of M-CSF exacerbates the loss of CD169+ macrophages and abrogates the control 

of blood-stage infection28. Notably, deletion of CD169+ macrophages phenocopied the 

reduced parasite control seen in mice with a T cell-restricted deficiency in M-CSF, 

suggesting a key mechanistic role for M-CSF-expressing Th1-like cells in promoting the 

function or antigen presentation capacity of protective myeloid cells29. Regarding memory 

responses, Th1-like CD4+ T cells are maintained following resolution of acute experimental 

malaria and exhibit protective capacity upon recall in rodent models30,31, 32, 33. Deciphering 

the precise mechanisms by which memory Th1 cells orchestrate protective recall responses 

to blood-stage malaria remain important lines of investigation.

Th1 cell responses and IFNγ secretion have also been linked to host resistance during liver-

stage Plasmodium infection. In Plasmodium exposed34 and experimentally vaccinated34 

individuals, the presence of IFNγ-expressing, circumsporozoite [G] (CSP)-specific Th1 

cells was linked to reduced parasite burdens and disease severity. Although the precise 

mechanisms by which these liver-stage-specific CD4+ T cells orchestrated immunity was not 
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explored in detail, Th1 cell-associated IFNγ35, 36 may either directly activate inducible nitric 

oxide synthase in infected hepatocytes37 or potentiate the cytotoxic activity of Plasmodium-

specific CD8+ T cells via upregulation of MHC class I molecules on infected liver cells38. In 

controlled human malaria infection models39 (CHMI, see also Box 3) and following 

chemoprophylaxis and sporozoite (CPS) immunization [G] of malaria-naïve volunteers40, 

reduced blood-stage parasite burdens were associated with the presence of CD4+ T cells 

exhibiting characteristics of cytotoxic Th1-like cells. These cells exhibited elevated 

expression of CD38, IFNγ, CD107a, and granzyme B. The exact mechanisms by which 

cytotoxic CD4+ T cells participate in anti-Plasmodium immunity are not defined, but are 

potentially linked to the recognition and elimination of infected targets cells during either 

blood- or liver-stage infection (Fig. 2). In rodent models, Plasmodium-specific cytotoxic 

CD4+ T cells have also been identified35, 36, 41, 42 that may recognize and kill infected 

hepatocytes. The extent to which these cytotoxic Th1-like CD4+ T cells form in malaria 

exposed individuals remains a question and their relative contribution to controlling either 

blood- or liver-stage Plasmodium requires further study.

Studies have also identified pathological roles for Th1 cell responses and IFNγ secretion 

during Plasmodium infection. IFNγ has been linked to atypical memory B cell formation in 

Plasmodium-exposed humans43 and rodent models show that elevated Th1 cell and IFNγ 
responses44, 45 and B cell-intrinsic IFNγ signalling46 can either impair humoral immunity or 

expand phosphatidylserine-specific, self-reactive B cells that can exacerbate anemia47. 

Notably, multiple CD4+ T cell subsets, including Tfh cells express IFNγ during 

experimental malaria. Thus, fundamental questions remain regarding the relative 

contribution of key cellular sources of IFNγ during Plasmodium infection, including γδ and 

CD8+ αβ T cells. Future experimental studies that exploit conditional allelic deletions of 

IFNγ or its receptor should help resolve long-standing questions regarding the cell type-

specific sources and targets of IFNγ and help determine whether the protective versus 

pathological roles of this key Th1 cell-associated cytokine evolve as the infection progresses.

Th2 cells.

Th2 cells are primarily characterized by expression of the GATA3 transcription factor and by 

the production of IL-4 and IL-548. The role of Th2 cells in malaria is relatively unknown, as 

GATA3+ CD4+ T cells are rare or absent during Plasmodium infections49 and strong Th1-

type polarization of CD4+ T cells may limit Th2 cell differentiation50. However, IL-4, the 

major cytokine expressed by Th2 cells, can promote B cell class switching51, 52 and 

modulate macrophage responses53 during Plasmodium infection. Moreover, IL-4 has been 

identified as a correlate of enhanced humoral immunity in Plasmodium exposed humans54. 

By contrast, experimental infections showed that WT and Il4−/− mice clear P. chabaudi-
infected erythrocytes at identical rates52, suggesting that IL-4 may be dispensable for 

protection against blood-stage malaria. Regarding liver-stage infection, as discussed in detail 

below, CD4+ T cell-derived IL-4 is important for promoting potent effector CD8+ T cell 

responses against infected hepatocytes55, as well as maintaining functional Plasmodium-

specific memory CD8+ T cell populations56. Thus, there may be potentially important 

context-dependent roles for IL-4 and Th2 cells during malaria and further work is required 

to define the precise role of Th2 cells, independent of their secretion of IL-4.
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T follicular helper cells.

Both vaccination and infection-induced Tfh cells are broadly characterized by expression of 

the transcriptional repressor BCL-6, the chemokine receptor CXCR5, and the inhibitory 

receptor programmed cell death protein 1 (PD1)57. Multiple experimental systems have 

shown that expression of CXCR5 licenses pathogen-specific CD4+ T cells to undergo step-

wise Tfh cell differentiation within lymph nodes; Tfh cells first localize to the ‘T-B border’ 

of the follicle, engage in cognate interactions with B cells that reinforce their differentiation, 

and then migrate into the light zone of the germinal centre (GC) where they provide 

selection, survival, and maturation signals to differentiating GC B cells58. CXCR5+PD-1+ 

Tfh cells expand during both human and rodent blood-stage Plasmodium infections and are 

essential for promoting protective antibody responses that aid in the resolution of 

malaria44, 45, 59, 60, 61, 62. Plasmodium-specific Tfh cells express IL-2163 and inducible T 

cell costimulator (ICOS)64, 65, which promote maturation of Plasmodium-specific GC B 

cells and the generation of long-lived plasma cells and memory B cells (Fig. 2). As 

described for virus-specific Tfh cells66, Plasmodium-specific Tfh cells downregulate BCL-6 

and PD1 as they transition from effector to memory populations33, leaving CXCR5 as the 

most reliable marker for Plasmodium-specific memory Tfh-like cells. Reports also suggest 

that virus-specific Tfh cells retain greater plasticity and secondary proliferative potential 

compared to their terminally differentiated Th1-like counterparts66, 67. However, we and 

others showed that Plasmodium-specific Tfh-like memory cells are less protective than Th1-

like memory cells on a per-cell basis following adoptive transfer32, 33. The mechanisms by 

which either Tfh- or Th1-like memory CD4+ T cells orchestrate secondary immune 

reactions in malaria remain unknown.

The differentiation of Plasmodium-specific Tfh cells was examined in a recent single cell 

RNA sequencing (scRNA-seq) study that revealed early bifurcation of Th1 and Tfh cell 

differentiation68. Recent studies also showed that Plasmodium-specific Tfh cell development 

and function are promoted by IL-669 and countered by the activity of IRF370. Notably, 

effector CD4+ Tfh cells exhibiting mixed characteristics of either Th1 or T regulatory 1 

(Tr1) cells (described below) have also been reported during experimental 

malaria45, 31, 33, 71. These cells often co-express NK1.1, CXCR5, IFNγ, IL-21, and IL-10; 

and in one study, their formation and function did not depend on the function of BCL-631. 

This mixed ‘helper’ phenotype is perhaps not surprising because like many other CD4+ T 

cell subsets, Tfh cells are also highly plastic and can adopt characteristics of either Th1, 

Th2, Th17, or Treg cells. In Plasmodium-infected humans59 and rodents45, BCL-6-

expressing Tfh cells adopt a Th1-like phenotype59, 72, secrete IFNγ and provide relatively 

inferior help to B cells46. Additionally, Tfh-like cells can express FOXP3 and exert 

regulatory function; such cells are referred to as T follicular regulatory (Tfr) cells and 

localize to the GC, where they suppress humoral immunity via expression of either 

CTLA-473 or PD174. Notably, the role of Tfr cells during Plasmodium infection may be 

temporally distinct or context-dependent, as Tfr cells are reported to be a critical source of 

IL-10 that supports GC B cell responses during viral infections75. Although the key source 

of IL-10 that supports humoral immunity during malaria46 has not been reported, it will be 

of interest to determine whether either Tfh, Tfr or T regulatory type 1 (Tr1) cells regulate 

humoral immunity via provision of IL-10. The importance of Tfh cells during acute and 
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chronic malaria is now well documented. Although our understanding of Tfr cells continues 

to expand74, 76, 77, we still know very little about Tfr cell differentiation and function during 

either human or experimental Plasmodium infection. Aberrant Plasmodium-specific effector 

or memory Tfh or Tfr cell responses represent one possible explanation for the delayed 

acquisition or deficient maintenance of antibody-mediated anti-malarial immunity. Thus, 

future studies aimed at deciphering the phenotype, function, and role of Tfh and Tfr cells 

following either single or repeated Plasmodium exposures will be of interest.

Th17 cells.

In the presence of IL-6, IL-23, and TGFβ, naïve CD4+ T cells can adopt a functional 

programme governed by RORγt, an essential transcription factor regulating IL-17 

expression. Th17 cells have been linked to orchestrating neutrophil recruitment and function 

during multiple scenarios of microbial infection (reviewed in ref.78). Although pathological 

neutrophil responses have been associated with severe malaria79, 80, only a limited number 

of studies describe the presence of Plasmodium infection-induced Th17 cells. The first study 

described CD4+ T cells in malaria exposed individuals from Mali with the capacity to 

express IL-17A following in vitro stimulation81. In experimental models, only a very limited 

number of Th17 cells are detected in the spleens of Plasmodium-infected mice82, 83, 84, 85. 

Mechanistic studies failed to identify any role for Th17 cells and the genetic deficiency in 

Il17a did not influence either disease severity82 or protective immunity83. However, Th17 

cells can also secrete IL-2186, suggesting that Th17 cells, when present, may play a modest 

role in supporting GC reactions. IL-21 may also support CD8+ T cell responses, as has been 

described in Toxoplasma gondii infection87, 88. Moreover, rodent models have shown that 

the Th17 cell-associated cytokine IL-22 was essential for protecting against inflammatory 

pathology in the lung and liver in mice with malaria83. CD8+ T cells were found to express 

IL-22, although whether Th17 cells also served as a source of IL-22 was not determined. 

Further work is necessary to define the role of Th17 cells during Plasmodium infections. 

Whether Th17 cell populations can also be expanded in anti-malarial vaccinations and 

meaningfully contribute to host protection also remains to be addressed.

IL-27-producing CD4+ T cells.

IL-27 is a cytokine that has been linked to both pro- and anti-inflammatory immune 

functions. Initial analyses of the role of IL-27 during experimental malaria revealed its 

importance in limiting immunopathology in either primary or secondary blood-stage 

malaria89, 90, 91. First described as a myeloid-derived immunoregulatory factor, recent work 

using experimental P. berghei infection in mice revealed that IL-27 can also be produced by 

parasite-specific CD4+ T cells92. This study showed that IL-27 is produced by a subset of 

IL-10−IFNγ− CD4+ T cells during acute Plasmodium infection and that the primary effect of 

IL-27 is to suppress IL-2 production by other CD4+ T cells92. Given their 

immunosuppressive function, determining whether the expansion of IL-27-expressing CD4+ 

T cells is a potential signature of either acute or chronic Plasmodium infection warrants 

further investigation.

Kurup et al. Page 6

Nat Rev Immunol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IL-10-producing CD4+ T cells.

T regulatory type 1 (Tr1) cells express high levels of both BLIMP1 and T-BET, are FOXP3-

negative, and co-express IFNγ and IL-1093, 94, 95. These cells are widely regarded as a 

subset of terminally differentiated Th1 cells that have been reprogrammed to express IL-10. 

The precise mechanisms by which this transition occurs remain incompletely understood. 

However, experimental data support the view that CD4+ T cell-intrinsic IL-2790, IL-1096, 

and type I IFN signaling94 can promote Tr1 cell formation in Plasmodium-infected mice, 

whereas unspecified signals from CD8a+ cDC1s restrain the development of Tr1 cells97,. 

Type I IFNs also appear to promote rapid Tr1 cell formation following CHMI98. Tr1 cells 

have been established as the primary source of IL-1093, 94, 95 that both prevent 

immunopathology and facilitate parasite persistence during protozoan infections93, 99, 100. 

Malaria is no exception and Tr1 cells appear to limit protective immunity and parasite 

control93, 94, by either suppressing humoral immune responses94 or possibly by reducing the 

capacity of antigen presenting cells (APCs) to sustain T cell activity. An early cross-

sectional study in Gambia identified that children with mildly symptomatic malaria had an 

increased proportion of IL-10-producing CD4+ T cells compared to children with severe 

clinical malaria101. More recently, the presence of CD4+ Tr1 cells was associated with 

increased parasitemia during human Plasmodium infections95, yet was also associated with a 

decreased risk of severe clinical disease102. Therefore, while Tr1 cells can down-regulate 

pro-inflammatory responses during malaria, IL-10-production by Tr1 cells may impair 

parasite control93. Thus, both FOXP3+ Treg cells (discussed below) and FOXP3− Tr1 cells 

are critical regulators of host anti-malarial immunity, with FOXP3− Tr1 cells primarily 

serving to limit malarial disease severity. The precise mechanisms by which Tr1-derived 

IFNγ and IL-10 modulate protective versus pathological responses remain to be deciphered. 

Understanding of the factors that regulate Tr1 cell activity during Plasmodium infection will 

have important implications for controlling malaria-associated immunopathology.

Treg cells.

Treg cells are a class of CD4+ T cells delineated by their expression of the transcription 

factor FOXP3. Although Treg cells were originally identified as expressing high levels of 

CD25 and low levels of CD45RB on their cell surface, we now know that there is no single 

surface marker that demarcates all Treg cells. Along with FOXP3, the current definition of 

Treg cells encompasses the epigenetic ‘Treg signature’, of CpG demethylation in Foxp3 
conserved non-coding region 2, Tnfrsf18, Ctla4, Ikzf4 and Il2ra genes103, 104, 105. Treg cells 

are known to define host immune responses to human and mouse malaria, yet their impact 

and mode of action have remained controversial and contentious106.

Most of the inconsistencies observed in the mouse models of malaria (elaborated in various 

reviews106, 107, 108) can be traced back to the incomplete characterizations of various T cell 

subsets, limitations in the methodologies used to deplete Treg cells, or variations in the 

infection models used. For example, CD25 is expressed by activated conventional CD4+ and 

CD8+ T cells and is not expressed by a significant proportion of Treg cells109, yet anti-CD25 

(PC61) has been commonly used to ‘deplete’ Treg cells106, 107, 108 in mice. When mice were 

treated with an anti-CD25 antibody at the onset of infection, better control of P. yoelii 
infection was seen in BALB/c mice110, but not in C57BL/6 mice93. Furthermore, treatment 
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with anti-CD25 exacerbated P. chabaudi infection in BALB/c mice111. In addition, the 

timing of depletion of Treg cells in mouse studies has been inconsistent, with these studies 

often failing to consider the Treg cell kinetics associated with blood-stage malaria73. When 

Treg cells were depleted using anti-CD25 treatment at the peak of their population 

expansion (as opposed to at the onset of infection93) in P. yoelii-infected C57BL/6 mice73, 

parasitemia was better controlled. Given that Treg cells rapidly repopulate the host in 1–2 

days after their complete depletion112, 113, informed Treg cell-depletion strategies may need 

to be tailored to the kinetics of Treg cell expansion in malaria. For instance, C57BL/6 mice 

treated with anti-CD25 antibody before the onset of P. berghei (ANKA) infection were better 

protected from experimental cerebral malaria (ECM)114, 115. But ECM symptoms remained 

unchanged with precise depletion of Treg cells in FOXP3-Diphtheria toxin receptor (DTR) 

transgenic (DEREG) C57BL/6 mice116, suggesting a minimal role for Treg cells in the ECM 

model. Malaria is a complex disease in which Treg cell numbers and function are kinetically 

modulated during its course. A better understanding of the Treg cell kinetics and 

employment of precise Treg cell-depletion strategies accordingly might help understand the 

underlying mechanisms of immunoregulation in malaria, using the mouse model.

Longitudinal or cross-sectional studies in human subjects from endemic areas naturally or 

experimentally infected with Plasmodium consistently show that Treg cell populations 

expand in blood-stage malaria; and lower Treg cell frequencies are associated with lower 

parasite loads along with more favorable disease outcomes73, 108, 117, 118, 119. Our inability 

to manipulate the immune system in humans has made it difficult to know if the expansion 

of Treg cell populations is a cause or consequence of enhanced parasite loads. Lower 

frequencies of functionally deficient Treg cells are associated with lower parasitemia levels 

in the African Fulani people, who are naturally more resistant to malaria, compared to the 

sympatric Mossi people118. This suggested that Treg cell expansion in humans may be a 

consequence, rather than the cause, of increasing parasite loads in malaria. In addition, 

longitudinal studies showed that clinical malaria was associated with higher Treg cell 

frequencies compared to pre-infection or convalescent levels73. Also, higher pre-infection 

Treg cell frequencies correlated with increased risk of febrile malaria120. Further 

longitudinal, controlled infection studies with human malaria will help draw better parallels 

on the nature of Treg cell responses and functions in the human and mouse model of 

malaria; and might advance our mechanistic understanding of immunoregulation by Treg 

cells in blood-stage malaria.

Treg cells can be broadly classified into two subsets based on their origins: thymically 

derived Treg (tTreg) cells, which differentiate in the thymus from immature CD4+CD8+ 

precursors, and peripheral Treg (pTreg) cells, which originate from conventional CD4+ T 

cells in peripheral tissues that have upregulated FOXP3 in response to chronic or sub-

optimal T cell receptor (TCR) stimulation, homeostatic cues or commensal 

bacteria121, 122, 123, 124, 125. The presence of a diverse array of non-overlapping TCRs in 

tTreg and pTreg cells, indicates a distinct, non-redundant role for either Treg cell subsets in 

the recognition of antigens105, 126. Yet, the relative contributions of pTreg or tTreg cells in 

most infections, including blood-stage malaria, remain unresolved. This is partly due to the 

absence of precise markers that can distinguish pTreg cells from tTreg cells. Although the 

expression of Neuropilin-1 in mice and Helios in humans are sometimes used to separate 
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tTreg cells from pTreg cells105, their lack of accuracy has confounded our abilities to 

segregate their functional roles in various infection models122, 127. Some earlier studies with 

experimental human malaria have suggested that pTreg cells may be induced in response to 

blood-stage malaria, through TGFβ activation107, 119, 128. However, the role of TGFβ is now 

considered to be mostly limited to inducing Treg cells in vitro122, 129, 130. Other studies have 

suggested that tTreg cell populations may expand in response to blood-stage malaria in both 

humans and mice93, 111, 114, 131. Therefore, the relative contributions of, one, antigen-driven 

proliferation, two, cytokine-mediated differentiation, and three, recruitment to peripheral 

tissues, to the generation and function of tTreg or pTreg cells in blood-stage malaria remain 

unsettled. More research needs to be done to help understand the relative contributions of 

tTreg or pTreg cells to the overall impact of Treg cells in combating blood-stage malaria.

The mechanism by which Treg cells function in malaria is also a relatively understudied 

area. Recent work from our own laboratory using a mouse model of malaria infection 

showed that Treg cells use CTLA-4 expression to hinder productive interactions between 

Tfh cells and B cells in GC reactions in lymphoid tissues; this resulted in compromised 

humoral and cell-mediated immune responses to blood-stage malaria73. Populations of Treg 

cells that expand in febrile malaria in humans and mice express higher levels of CTLA4; and 

therapeutic blockade of CTLA4 tailored to the kinetics of CTLA4 expression or Treg cell 

expansion in blood-stage malaria resulted in better control of the infection in the mouse 

model. In addition to expressing CTLA4, Treg cell populations that expand in P. yoelii- 
infected mice transcriptionally upregulate genes that are associated with Treg function, 

including Gpr83, Penk1, GzmB, Socs2 and Il10132. More extensive investigations in the 

future will help determine the roles of these genes, as well as the molecular mechanisms of 

immunoregulation in blood-stage malaria.

The immuno-regulatory responses to malaria, spearheaded by Treg cells help rein in the 

immune system from damaging the host. Malaria is a protracted disease with multiple 

phases of complex host-pathogen interactions leading to discrete waves of cellular and 

humoral immune responses. Only mechanistic studies using the mouse model, with 

concurrent observational studies in humans may help decipher the mechanistic 

underpinnings of immunoregulation by Treg cells in primary or subsequent blood-stage 

malaria infections.

CD8+ T cells in malaria

CD8+ T cells recognize pathogen-derived peptides bound to surface MHC class I molecules 

on APCs or infected cells and contribute to the clearance and immune memory against many 

intracellular pathogens. Malaria parasite-specific CD8+ T cells have been described in the 

blood of humans living in endemic areas133, 134 and after vaccination135, 136, 137. In 

experimental malaria, CD8+ T cells specific for sporozoite antigens, liver-stage antigens (the 

pre-erythrocytic stages) and blood-stage antigens (erythrocytic stage) (Fig. 2) have been 

described after infection or vaccination138, 139, 140. Although CD8+ T cells are primed 

against the various pre-erythrocytic stages of malaria in the vertebrate host, their relevance 

to protection in a primary infection is contentious140, 141. This is largely because an infected 

mosquito delivers only a few hundred sporozoites into the host dermis142, leading to a very 
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low proportion of infected hepatocytes prior to release of blood-stage merozoites140, 143. 

Further, liver-stage malaria offers a short window of opportunity (~7 days in humans and ~2 

days in mice)144, 145 to mount optimally functional146 effector CD8+ T cell 

responses106, 144, 147. Additionally, repeated exposure to Plasmodium infections does not 

generate sufficient immunity against the liver-stages in humans despite eliciting disease-

limiting humoral immunity against the pathogenic blood stage148, 149, 150; the precise 

reasons for this remain a major knowledge gap. However, if sufficient antigen-specific CD8+ 

T cell responses are generated against the pre-erythrocytic stages of Plasmodium by 

immunization, progression to blood-stage malaria can be prevented in humans, non-human 

primates and the mouse models5, 151, 152, 153. Hence the underlying mechanisms of priming, 

dynamics and function of CD8+ T cell responses to malaria are areas of intense research in 

the quest for an anti-malarial vaccine.

For a long time it was assumed that CD8+ T cell responses against pre-erythrocytic stages of 

Plasmodium were primed by infected hepatocytes154. Yet, the unlikelihood of rare naïve 

CD8+ T cells, encountering infrequently infected hepatocytes in the liver made this event 

improbable based on the existing paradigms of T cell priming mechanisms155. Early studies 

revealed that CD11c+ dendritic cells (DCs) played a vital role in priming CD8+ T cell 

responses to pre-erythrocytic developmental stages of Plasmodium156. Sporozoite antigen-

specific CD8+ T cell responses are generated in the skin-draining lymph nodes at the site of 

inoculation, primarily by the uptake and cross-presentation of sprorozoites by CD8+ CD11c+ 

DCs157, 158. However, the observation that late liver-stage arresting genetically attenuated 

Plasmodium parasites (GAPs) elicited better protective CD8+ T cell responses compared to 

early liver-stage arresting GAPs or radiation attenuated Plasmodium sporozoites (RAS) 

suggested that the developmental progression of Plasmodium in infected hepatocytes had a 

decisive role in generating better, perhaps antigenically broader CD8+ T cell responses159. 

Recent findings from our lab identified a class of monocyte-derived CD11b+CSF1R
+CD207+F4/80+CD11c+ APCs in the liver that acquired Plasmodium following hepatocyte 

infection, to prime CD8+ T cell responses against liver-stage specific antigens, in the liver-

draining lymph nodes (Kurup et al submitted). This finding uncovers how a broad spectrum 

of CD8+ T cell responses are primed against the bona fide liver stages of development in 

malaria. The precise mechanisms by which APCs acquire Plasmodium liver-stage antigens 

from infected hepatocytes remain to be elucidated, and may involve extrinsic or cell-intrinsic 

innate immune pathways. In contrast to natural infections, live-attenuated vaccines using 

RAS generate sterilizing CD8+ T cell mediated immune responses only after intravenous 

inoculation of the parasites160, 161. Here, CD8+ T cell responses may be primed in the 

spleen, in addition to the liver-draining lymph nodes162. Furthermore, other immune cells 

including NK cells, helper T cells and regulatory T cells influence the generation and 

maintenance of productive CD8+ T cell responses55, 163, 164, 165. A deeper understanding of 

the dynamics of CD8+ T cell priming in natural Plasmodium infections or live-attenuated 

malaria vaccines will help us devise strategies that can help engender stronger and long-

lasting protective immunity to malaria.

Intravital and in vivo imaging studies showed that adoptively transferred sporozoite-specific 

effector CD8+ T cells clustered around infected hepatocytes, resulting in loss of 

Plasmodium-GFP signal indicating the likely destruction of the parasite and infected host 
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cell166, 167; and it is assumed that memory CD8+ T cells may function similarly. Activated 

CD8+ T cells are capable of elaborating a number of anti-microbial effector mechanisms, 

broadly divided into cytolytic and cytokine pathways168, 169. Among the various effector 

pathways and molecules associated with CD8+ T cell function, while granzymes and Fas/

FasL mediated pathways appeared dispensable for the effector functions of CD8+ T cells 

against liver-stage malaria in mice, IFNγ, TNF and perforin contributed to protective 

immunity, depending on the Plasmodium species and genetic background of the 

host170, 171, 172, 173, 174, 175. IFNγ is known to directly impair Plasmodium development in 

human hepatocytes in culture176. Mechanistic studies with the mouse models of malaria 

indicated that IFN-γ produced by CD8+ T cells induced nitric oxide synthase (and hence 

nitric oxide) in the infected hepatocytes to help eliminate them177. However, adoptively 

transferred Plasmodium circumsporozoite protein (CSP)-specific CD8+ T cells deficient in 

IFNγ were able to confer protection from P. yoelii liver-stage malaria178. The variation in 

the functional roles of CD8+ T cells depending on the parasite species and the genetic 

background of the host179, 180 indicates that effective CD8+ T cell responses in malaria may 

be influenced by cell-extrinsic and natural host defence mechanisms. The precise 

mechanisms by which CD8+ T cells function to limit liver-stage infection in human malaria 

remain unknown, and a better understanding of those will help further our ability to tailor 

sterilizing immunity to malaria.

As indicated above, the protective role of CD8+ T cell responses generated against pre-

erythrocytic developmental stages of a primary Plasmodium infection are possibly relevant 

in subsequent infections or in vaccinations. Although the higher frequencies of peripheral 

CD8+ T cell responses elicited by various immunization strategies against Plasmodium may 

reflect the higher chances of protection from subsequent challenges with live 

sporozoites9, 153, 180, 181, if and how they functionally and numerically contribute directly to 

protection against liver-stage malaria is currently unknown. Nevertheless, a tangible pool of 

liver-resident CD8+ T cell populations specific for the liver-stage antigens of malaria, that 

might directly target infected hepatocytes, are generated and maintained after immunizations 

with RAS182 or through ‘prime and trap/target’ subunit vaccinations that target the 

liver182, 183, 184. These LFA1hi CXCR6+ CD69+ CXCR3+ CD8+ T cells that establish a 

niche within the hepatic sinusoids can be primed outside of the liver and offer protective 

immunity to subsequent sporozoite challenges182, 184, 185, 186. Although liver-resident 

memory CD8+ T cells appeared essential for immunity after RAS immunization of mice182, 

whether these cells alone are sufficient for sterilizing immunity, or provide a ‘sensing and 

alarm’ function187 to recruit circulating Plasmodium-specific CD8+ T cells remains an 

important knowledge gap. A thorough understanding of the origin, dynamics and functional 

mechanics of Plasmodium specific liver-resident CD8+ T cells may help tailor this 

population to better protect from future liver-stage Plasmodium infections.

Although CD8+ T cells are vital for protection from liver-stage malaria, they are thought to 

contribute little to control of the blood-stage of malaria infection, mostly owing to the lack 

of MHC class I on erythrocytes188, 189, 190. Yet, robust CD8+ T cell responses directed at 

various Plasmodium erythrocytic-stage antigens are primed, primarily in the spleen, in 

blood-stage malaria191, 192. Of note, human CD8+ T cells generated in infection with P. 
vivax that preferentially colonizes reticulocytes, specifically eliminated parasitized 

Kurup et al. Page 11

Nat Rev Immunol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reticulocytes though an HLA-I mediated, granulysin driven mechanism, possibly 

contributing to protection193. Although the breadth of their role in protection to blood-stage 

malaria with other Plasmodium species may be limited, CD8+ T cells are speculated to drive 

the highly pathogenic cerebral malaria in humans, based on parallel studies in the mouse 

model194, 195, 196, 197. The pathogenic role of CD8+ T cells in murine experimental cerebral 

malaria is mediated directly by perforin and Granzyme B, and indirectly by IFN-γ-driven 

accumulation of parasitized RBC in the brain196, 198, 199. Cerebrovascular endothelial cells 

are possibly targeted by CD8+ T cells in an antigen-specific manner, to drive blood-brain 

barrier dysfunction, subsequent vascular leakage and neuronal death194. Of note, cerebral 

malaria is limited to certain mouse strains, Plasmodium species or 

isolates200, 201, 202, 203, 204. Recent experiments from our laboratory suggest that the 

magnitude of certain blood-stage specific CD8+ T cell responses, which is largely predicated 

on the size of the precursor pool in specific mouse strains, may contribute to disease 

specificity205. Although the functional role of CD8+ T cells in orchestrating cerebral malaria 

in humans remains unresolved206, 207, mostly owing to the ethical implications of invasive 

studies, only further research can enhance our understanding in this relatively understudied 

yet clinically critical area of malaria pathogenesis.

γδ T cells in malaria

γδ T cells are a subgroup of T cells that express distinct TCRγ and TCRδ chains and 

account for around 4% of all T cells in healthy adult humans208, 209, 210, 211. The precise 

contributions of γδ T cells to host immunity remain unresolved, primarily owing to the wide 

spectrum of effector functions they possess, that may be governed by the immediate tissue 

microenvironments212. Predictably, the contributions of γδ T cells to anti-malarial immunity 

also remain poorly understood and disputed213. Although γδ T cell populations, specifically 

those expressing the Vγ9+Vδ2+ chains (which constitute ~75% of all γδ T cells in humans), 

expand in primary P. falciparum or P. vivax infections214, 215, 216, 217 and correlate with 

protection218, how they function during Plasmodium infection remains to be determined. It 

is remarkable that in human malaria, Vγ9+Vδ2+ γδ T cell populations appear to expand 

during acute, primary infections, but possibly contract with each subsequent exposure to 

malaria, despite reactivation each time216, 217, 219. Although the progressive improvement in 

tolerance to clinical malaria with multiple exposures in endemic regions has been attributed 

to the decline of Vγ9+Vδ2+ γδ T cells220, it is hard to ascertain if the γδ T cell kinetics is 

also a cause or an effect in this relationship. Considering that the frequencies of Vγ9+Vδ2+ 

γδ T cells naturally increase with age221, and most humans are exposed to malaria from 

childhood in endemic regions, recurrent Plasmodium challenges that hinder γδ T cell 

expansion220 may indeed help control clinical malaria with age in endemic regions. It is 

noteworthy that severity of symptomatic malaria (excluding cerebral malaria) and mortality 

in primary infections increase with age222, 223 and could be a direct function of naturally 

increasing frequencies of γδ T cells. However, based on studies using the mouse model of 

malaria, γδ T cells were observed to undergo clonal expansion, albeit disproportionately, in 

various tissues as a consequence of blood-stage malaria. γδ T cells are reported to serve as a 

source of IL-21 that may support Tfh cell responses224, and γδ T cells helped control 

Plasmodium recrudescence in a TCR-dependent fashion, possibly via by their production of 
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colony stimulating factor-1 (M-CSF)225. Of note, γδ T cells are also a correlate of protective 

efficacy in experimental RAS immunizations5, 8, 226. Depletion of γδ T cells at the time of 

RAS vaccination in mice hindered the influx of CD11c+ DCs into the liver, prevented 

optimal effector CD8+ T cell responses and sterilizing immunity to future sporozoite 

challenges. In contrast, γδ T cell ablation immediately before challenge of RAS immunized 

mice did not diminish protection226. These data suggest that γδ T cells may help facilitate 

effective CD8+ T cell responses that provide immunity to liver-stage malaria, although the 

underlying mechanisms remain a major knowledge gap. Future mechanistic studies that 

segregate the pre-erythrocytic and erythrocytic developmental stages of malaria will help 

improve our understanding of γδ T cell function in Plasmodium infections and anti-malarial 

vaccines in humans.

The fundamental mechanisms of γδ T cells function in the context of infections are also 

poorly understood. γδ T cells are thought to be among the first lines of defence against 

infections, with abilities to contextually stimulate or repress immune responses through 

distinct natural or induced cell subsets212, 227, 228, 229, 230. γδ T cells can also be recalled in 

reinfections, target pathogens directly in a TCR dependent or independent manner, or 

indirectly by enlisting other cell subsets208, 212, 231. These properties that bridge the 

distinctions of innate and adaptive responses make γδ T cells functionally unique. 

Vγ9+Vδ2+ γδ T cells may help control primary Plasmodium infections in humans through 

the production of various immune mediators, such as IFNγ, TNF or granzyme B, in addition 

to possibly killing the merozoites directly in blood-stage malaria72, 214, 232, 233. In human 

malaria, Vγ9+Vδ2+ γδ T cell populations undergo polyclonal expansion upon sensing of 

phosphoantigens derived from P. falciparum or P. vivax apicoplast [G], is independent of 

classical antigen presentation, but requires the presence of monocytes, CD4+ T cells or 

exogenous cytokines214, 215, 220, 225, 234, 235, 236, 237. By contrast, in P. chabaudi blood-stage 

malaria in mice, Vδ6.3+ (also known as TRAV15N-1+) γδ T cells specifically undergo 

clonal expansion and exhibit a unique transcriptional and functional profile that contributes 

to protection225. In summary, there is emerging evidence for key roles of γδ T cells in the 

control and pathogenesis of malaria and these should prompt further studies to decipher the 

mechanisms involved.

T cells and vaccine design

Multiple anti-malarial vaccine platforms are being evaluated in humans for their capacity to 

effectively target and block either sporozoite- or liver-stage progression, or trigger humoral 

responses that reduce the severity or delay the onset of blood-stage malaria and clinical 

disease (recently reviewed in238, 239). RTS,S, the most clinically advanced anti-malaria 

subunit vaccine, is believed to stimulate the production of antibodies that may either target 

sporozoites for destruction or prevent their ability to reach the liver. The humoral immune 

response to RTS,S likely involves T cell help and there is some evidence of CD4 T cell 

responses in vaccinees, although much work remains to characterize these responses and 

determine why immunity after RTS,S vaccination is of short duration238, 239. While whole 

parasite vaccines, including RAS, GAP, CPS, and chemically attenuated blood-stage 

platforms, are likely to trigger the expansion and function of Plasmodium-specific CD8+ and 

CD4+ T cells and antibodies responses, similar to rodent models discussed above, 
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information on which of these platforms provides the best T cell responses in humans 

remains limited. Despite the many correlates observed in experimentally vaccinated humans, 

the true requirements for either Tfh, Th1, or cytotoxic CD4+ and CD8+ T cells and the 

precise effector mechanism by which these T cell subsets might mediate protection in 

humans are not understood. Advances in basic mechanistic insights into the role of T cells in 

malaria should provide a roadmap to address these issues in human vaccines.

Due to the low parasite burden and lack of disease association, the liver-stage of 

Plasmodium infection remains a particularly attractive target for T cell-based vaccines. 

Attenuated whole parasite vaccines such as RAS elicit potent protective liver-stage 

immunity in animals and humans240, 241. The protective mechanisms of these vaccines are 

likely a function of their ability to generate T resident memory in the liver targeting multiple 

parasite antigens162. However, such whole parasite vaccines are complicated by the 

cumbersome production process, the need to deliver large numbers of sporozoites multiple 

times via intravenous immunizations to achieve potent immunity and reduced efficacy in the 

field242. Prime-boost approaches with viral vectored antigens designed to elicit T cells have 

shown some promise in vaccine trials in malaria naïve subjects, although the number of 

antigens investigated to date is small and it is unclear how potent the current viral vectored 

immunization approaches are at eliciting liver T resident memory populations243.

An intriguing possible solution to the latter issue, that has had success in animal models, is 

to initially prime circulating T cell responses and then pull or trap these cells in the liver 

during the boosting phase, with liver-tropic viral antigen delivery systems such as adeno-

associated virus182 or liver-targeted antigen and adjuvant containing nanoparticles244. 

Another potential solution is to combine subunit and RAS vaccinations, to take advantage of 

the ability to RAS to generate liver T resident memory but limit the number of cumbersome 

RAS immunizations184. Further work to optimize these systems and evaluate them in 

clinical trials should be a priority.

Additionally, it is unclear from human vaccine trials whether targeting a single antigen will 

permit generation of sufficient T cells to provide sterilizing liver-stage immunity to 

Plasmodium.

The field of malaria subunit vaccines is desperately in need of new target antigens to 

evaluate and the capacity to carry out whole parasite immunization studies in human 

volunteers could be a fertile basis for such antigen discovery. Importantly, recent work in 

animal models shows that detection of a T cell response to a Plasmodium antigen does not 

ensure that antigen will elicit T cells that can protect against infection245. Thus, additional 

screening approaches, perhaps based on demonstrated antigen-specific recognition of 

infected hepatocytes, must be developed to identify protective antigens and determine if 

protective antigens share characteristics such as surface or secreted localization or 

differentiation stage specificity, that will facilitate their identification and potential 

incorporation into a successful malaria vaccine.

In summary, recent mechanistic studies of the T cell response to malaria from the 

combination of animal models and human vaccine/challenge studies have provided new 
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insights and identified critical knowledge gaps to overcome in developing potent, T cell-

based vaccines for malaria. Emphasis should be placed on identifying of the mechanisms 

that determine the formation and persistence of liver-resident memory CD8+ T cells, as well 

as circulating memory CD4+ Th1 and Tfh cells with the capacity to orchestrate phagocytic 

and humoral responses. New mechanistic insight should facilitate refinements in the 

formulation, delivery, and induction of protection by next-generation anti-malarial vaccines.

Conclusions and perspectives

Cell-mediated immune responses are critical for immunity against malaria. Here, we have 

summarized our current understanding of the roles of various T cell subsets that contribute 

to protection against both pre-erythrocytic and erythrocytic stages of malaria, as understood 

from experimental or natural infections in humans or animal models. However, there are 

many fundamental questions that remain unanswered (Box 4). Addressing these gaps should 

help advance our understanding of the mechanical underpinnings of the immunology of 

malaria and move the field closer to developing more practical, feasible, and reliable 

immunization and therapeutic interventions that would help control or eliminate malaria.
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Glossary terms:

Sporozoite
Plasmodium parasite life form transmitted by mosquito bite capable of initiating the asexual 

cycle of growth and differentiation in the vertebrate host

Merozoite
Plasmodium parasite life form that first develops in infected hepatocytes and is capable of 

initiating either sexual or asexual cycles of development in host red blood cells

Merosome
Host cell-derived, membrane-bound structures containing multiple merozoites that bud from 

infected hepatocytes during Plasmodium egress from the liver. Merosomes release 

merozoites into circulation after rupture

RTS,S (Mosquirix™)
Candidate anti-malarial vaccine furthest along in global development. RTS,S is comprised of 

two subdomains of the Plasmodium falciparum circumsporozoite protein that are associated 

with units of the hepatitis B surface antigen and formulated with the adjuvant AS01 (3-O-

desacyl-4’-monophosphoryl lipid A and the saponin QS-21). Infection is prevented by 

inducing antibodies that either immobilize sporozoites in the skin or prevent sporozoites 

from infecting the liver
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Circumsporozoite protein (CSP)
Immunodominant, high-density surface antigen expressed by Plasmodium sporozoites that is 

the target of humoral and cellular immune responses that either block sporozoite infection of 

the liver or eliminate infected hepatocytes, respectively

Chemoprophylaxis and sporozoite (CPS) immunization
Vaccination strategy whereby virulent sporozoites are delivered by either mosquito bites or 

needle injection with prophylactic delivery of a drug targeting Plasmodium blood-stages. 

Parasites initiate and complete liver-stage development, release merozoites, and initiate the 

first wave of blood-stage infection before being eliminated by the drug. Vaccinated 

individuals are thereby exposed to antigens that derive from multiple parasite lifecycle 

stages while remaining protected against clinical disease by the anti-blood-stage drug

Apicoplasts
Non-photosynthetic organelles that characterize protists within the Phylum Apicomplexa 

that are likely derived from an algal endosymbiont. The composite of apicoplast functions 

are not fully known but defined activities primarily relate to essential metabolic pathways 

necessary for the viability of Plasmodium and other Apicomplexans
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Box 1:

Unravelling T cell responses in human malaria

Below, we summarize some of the main challenges to determining the mechanisms of T 

cell-mediated protection in natural and controlled human Plasmodium infections.

Specificity:

High-resolution studies of Plasmodium-specific T cell responses generally requires 

knowledge of the identity of the peptide epitopes and MHC restriction elements. 

Identifying immunodominant subsets of CD4+ and CD8+ T cells will necessitate a 

greater emphasis on deciphering immunodominant T cell epitopes that are targeted by 

liver- or blood-stage-specific T cells. Notably, some dominant T cell epitopes targeted by 

substantial populations of T cells do not represent protective epitopes205; this is likely 

due to large numbers of precursor T cells bearing T cell receptors (TCRs) that can 

recognize the epitope presented by professional antigen-presenting cells (APCs), but a 

lack of this epitope on infected cells. Determining which of the detectable epitope-

specific T cell responses are the most protective represents a major goal.

Location:

With regard to liver-stage Plasmodium T cell-mediated protection, experimental data 

suggests that liver-resident T cells are key to eliminating Plasmodium-infected 

hepatocytes before merozoites emerge to establish clinical malaria. This presents a 

substantial hurdle for sampling and studying these cells in patients with malaria who have 

been either naturally exposed or exposed through controlled human malaria infections 

(see Box 3) or experimental vaccination platforms. Identifying circulating T cell 

populations that serve as a surrogate for protective tissue-resident T cells represents a 

major limitation for understanding the mechanisms by which liver-stage, and potentially 

blood-stage, T cells mediate protective immunity.

Regulation:

Malaria is well known to engage various co-stimulatory, co-inhibitory, and 

immunoregulatory circuits that alter the function of parasite-specific effector T cells. The 

number, complexity, and temporally overlapping expression patterns of these pathways 

represent significant challenges to understanding how such circuits govern the 

development and function of Plasmodium-specific memory T cells.

Polyfunctionality:

Plasmodium-specific effector and memory CD4 T cells commonly exhibit mixed 

characteristics of both Th1, Tfh, and Tr1 cells, including the simultaneous expression of 

T-bet, Bcl-6, IFNγ, IL-10 and IL-21. The extent to which these multifunctional cells 

either promote or hinder the development and function of long-lived adaptive immune 

responses remains a question.
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Box 2:

Tools, systems, and approaches to study Plasmodium-specific T cell 
responses

In recent years, multiple new tools have been developed to enhance resolution and focus 

studies on mechanisms of T cell function during experimental malaria. Technologies now 

exists to interrogate the development, persistence, and precise effector functions of bona 
fide Plasmodium-specific T cells. Novel T cell receptor (TCR) transgenic mouse models 

have stimulated new insight into the biology and regulation of Plasmodium-specific T 

cells. Investigators can also generate fluorescently labeled multimeric peptide–MHC 

complexes to directly identify, quantify, and phenotype Plasmodium-specific, effector 

and memory CD4+ and CD8+ T cells using flow cytometric methods. Already such tools 

have been used to describe the single-cell transcriptomic profile of Plasmodium-specific, 

effector CD4+ T cells68 and critical factors that regulate the formation and protective 

mechanisms of effector and memory blood- and liver stage T cell 

responses33, 70, 185, 246, 247. Combining these methods with functional assays has greatly 

expanded our understanding of the quantitative, qualitative, and functional features of 

Plasmodium-specific CD4+ T cells and CD8+ T cells.
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Box 3:

Controlled human malaria infection models

Major advances in our understanding Plasmodium pathogenesis, host immunity, and 

correlates of protection are projected to come from controlled human malaria infection 

(CHMI) models. CHMI involves either the delivery of live sporozoites by mosquito bites 

or by direct injection, or via delivery of Plasmodium-infected erythrocytes by needle 

injection. The development of fulminant blood-stage infection and clinical disease are 

blocked by the use of defined parasite strains with well-established drug sensitivity 

profiles in combination with the timely delivery of effective and appropriate antimalarial 

drugs. Studies typically cure infections at either a pre-determined parasite density or 

when the infection becomes detectable by microscopic examination of blood smears or 

PCR. The utility of such seemingly risky studies is apparent when we consider that 

candidate vaccines may be rapidly evaluated for efficacy before costly clinical trials are 

initiated in malaria endemic areas. CHMI models also facilitate examination of immune 

correlates of resistance and susceptibility. In malaria-naïve adults from non-endemic 

regions, CHMI has made it possible to examine dynamic changes in myeloid and 

lymphoid populations that arise in response to a first exposure to Plasmodium. Such 

studies have already revealed unexpected and potentially critical expansion of clonal 

populations of γδ T cells and cytotoxic CD4 T cells. In malaria-exposed individuals, 

CHMI should also reveal whether specific populations of effector or regulatory immune 

cell subsets are “boosted” following subsequent parasite exposures. Several such CHMI 

trials have taken place in malaria endemic settings248, 249, 250, and future CHMI studies 

will continue to expand our understanding of how the host responds and coordinates 

immune responses against Plasmodium parasites. These studies will also better define the 

precise mechanisms by which T cells contribute to controlling liver- and blood-stage 

Plasmodium infections.

Kurup et al. Page 31

Nat Rev Immunol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 4

Key outstanding questions on T cell mediated immunity to malaria

• To what extent do phagocytes mediate clearance of circulating parasites and 

does IFNγ directly regulate these processes?

• What factors govern the generation, maintenance, and function of Tfh cells 

during malaria? Does repeated Plasmodium parasite exposure distinctly 

program effector and memory Tfh cell responses?

• Which sets of signals regulate the differentiation and function of IL-27- and 

IL-10-expressing effector CD4+ T cells during malaria? Do these functionally 

distinct subsets persist as memory cells and do they also regulate recall 

responses? Are IL-27-expressing cells a signature of malaria? What are the 

primary cellular targets of IL-27 and IL-10 during malaria? Do the effects of 

IL-27 and IL-10 evolve as infection progresses?

• What are the contributions of distinct populations Th1 and Tfh memory CD4+ 

T cells in protection against repeated exposure to malaria? How do 

inflammation, antigen persistence, and the presence of specific 

immunoregulatory circuits impact the formation and function of Plasmodium-

specific memory CD4 T cells?

• What are the relative roles of either self- or antigen-specific peripheral and 

thymic Tregs in primary and repeated Plasmodium infections?

• What signals regulate liver resident CD8+ T formation, dynamics, 

mechanisms of maintenance and protection in malaria?

• What are the key functional dynamics of CD8+ T cells in human cerebral 

malaria?

• What antigens stimulate oligoclonal γδ T cell expansions and do memory γδ 
T cell populations persist? By what mechanisms do γδ T cells protect against 

liver-stage and blood-stage malaria? Do the γδ T cells elicited by vaccination 

meaningfully contribute to host resistance to malaria?
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FIGURE 1: Plasmodium life cycle.
The life cycle begins when a Plasmodium-infected female Anopheles mosquito takes a 

blood meal from a human host and deposits Plasmodium sporozoites into the skin. Motile 

sporozoites exit the dermis and travel through the blood to access hepatocytes. Sporozoites 

invade liver cells via interactions between Plasmodium circumsporozoite protein (CSP) and 

heparin sulfate molecules expressed on hepatocytes. One P. falciparum sporozoite will 

undergo differentiation over 6–7 days and amplify into ~10,000 merozoites. Infected 

hepatocytes release merozoites and merosomes, which are membrane bound packets of 

merozoites, into the blood stream where they proceed to invade erythrocytes. Merozoites 

undergo repeated rounds of asexual replication. A minor proportion of merozoites will 

differentiate into either male or female gametocytes that can be ingested by other female 

Anopheles mosquitos. In the mosquito midgut, male and female gametocytes fuse and 
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develop into a motile ookinete. Ookinetes embed within the mosquito midgut wall and 

develop further into oocysts. Each oocyst produces thousands of sporozoites over a period of 

two weeks. Sporozoites eventually migrate to the salivary glands and poise the mosquito to 

transmit malaria to a new host.
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FIGURE 2: Overview of tissue-specific, T cell-mediated immune resistance networks during 
Plasmodium infection.
CD8α+ dendritic cells (DC) in the skin-draining lymph nodes and spleen, as well as CFS1R
+ CD11c+ cells in the liver-draining lymph nodes, serve as antigen presenting cells and play 

an important role in bridging innate and adaptive immune responses during malaria. Upon 

phagocytosis of merozoites, parasitized RBC (pRBC), sporozoites, debris from infected 

hepatocytes, or circumsporozoite protein formulated as part of the RTS,S vaccine, DCs will 

process and present Plasmodium antigens to activate naïve CD4+ and CD8+ T cells. DC 

production of specific cytokines, such as IL-12 and IL-6, skew CD4+ T cell differentiation 

toward T helper 1 (Th1) and T follicular helper (Tfh) lineages. Th1 cells produce the 

cytokine IFN-γ that activates macrophages to enhance their phagocytic function and 

stimulates production of reactive oxygen species that are toxic to the parasite. Tfh cells 

engage parasite-specific B cells and orchestrate the germinal centre (GC) reaction, where 

they express co-stimulatory factors (CD40L) and secreted soluble factors (IL-4 and IL-21) 

that promote GC B cell (GCB) antibody isotype switching, affinity maturation, and somatic 

hypermutation, as well as the generation of memory B cells (MBC) and long-lived antibody-

secreting plasma cells (PC). Parasite-specific antibodies potentially function to immobilize 

or target sporozoites for antibody dependent cellular cytotoxicity (ADCC), block merozoite 
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invasion of RBCs, opsonize pRBC to enhance their phagocytosis, target merozoites and 

pRBC for ADCC, and activate the classical complement-pathway. Sporozoite- or liver-stage-

specific, tissue-resident (Trm) CD8+ T cells elaborate the cytokines IFN-γ and TNF and 

trigger extrinsic cell death pathways via expression of perforin and granzyme to kill infected 

hepatocytes. Cytotoxic CD4+ T cells may function similarly to kill infected target cells 

expressing MHC class II. Cytotoxic CD8+ T cells also have the potential to kill infected 

reticulocytes that transiently retain expression of MHC. B cells and CD4+ and CD8+ T cells 

are subject to regulation by other αβ T cells, including Tregs, IL-27-secreting CD4+ T cells, 

and Tr1 cells (the latter two subsets are not depicted). γδ T cells are activated in response to 

liver and blood-stage infection in response to unknown cues. These cells express cytokines 

that may include IFN-γ and myeloid activating factors like M-CSF. γδ T cells likely 

promote blood and liver stage parasite clearance by orchestrating and amplifying the activity 

of phagocytes. The contributions of Th17 and Th2 cells are less clear, but may be related to 

either recruiting and activating phagocytes or promoting Plasmodium-specific GC B cell 

reactions.
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