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Abstract

Alternative polyadenylation (APA) is a major driver of transcriptome diversity in human cells. 

Here, we use deep learning to predict APA from DNA sequence alone. We trained our model 

(APARENT, APA REgression NeT) on isoform expression data from over three million APA 

reporters. APARENT’s predictions are highly accurate when tasked with inferring APA in 

synthetic and human 3’UTRs. Visualizing features learned across all network layers reveals that 

APARENT recognizes sequence motifs known to recruit APA regulators, discovers previously 

unknown sequence determinants of 3’-end processing, and integrates these features into a 

comprehensive, interpretable cis-regulatory code. We apply APARENT to forward engineer 

functional polyadenylation signals with precisely defined cleavage position and isoform usage and 

validate predictions experimentally. Finally, we use APARENT to quantify the impact of genetic 

variants on APA. Our approach detects pathogenic variants in a wide range of disease contexts, 

expanding our understanding of the genetic origins of disease.
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In brief

A deep neural network enables precise engineering of polyadenylation signals, identifies human 

genetic variants that act through mis-regulating APA, and learns a comprehensive model of the cis 

regulatory APA code.

Alternative polyadenylation (APA) is a ubiquitous regulatory process by which multiple 

RNA isoforms with distinct 3’-ends can be derived from a single gene (Figure 1A) (Di 

Giammartino et al., 2011; Elkon et al., 2013; Tian and Manley, 2017). APA is tightly 

regulated through a combination of cis-regulatory sequences -- most importantly a set of 

competing polyadenylation (polyA) signals (PAS) -- and trans-acting RNA-binding proteins 

(RBPs) that recognize these sequences. Each PAS is defined by the 6-base central sequence 

element (CSE), most commonly AATAAA, and its upstream and downstream sequence 

elements (USE, dSe) that recruit mRNA-processing machinery to cleave and polyadenylate a 

transcript. Although we have extensive information about individual regulators and some of 

their interactions, we still lack an interpretable and quantitative model that integrates this 

information to predict isoform abundance and cleavage position.

Genetic variants that interfere with APA in cis have been implicated in disease (Danckwardt 

et al., 2008; Bennett et al., 2001; Wiestner et al., 2007) and a quantitative understanding of 

the APA code would dramatically improve our ability to identify such pathogenic variants. 

Experimentally characterizing every possible variant is not feasible even with high-

throughput measurement techniques such as massively parallel reporter assays (MPRA) 

(Patwardhan et al. 2009; Melnikov et al. 2012; Findlay et al. 2014; Matreyek et al. 2018; 

Sharon et al. 2012; Smith et al. 2013; White et al. 2013) which are still limited to tens of 

thousands of variants and mostly targeted to specific genes. Statistical methods, such as 

genome-wide association studies (GWAS), have had great success in linking genetic 

variation to disease but require large sampling to characterize rare variants and provide no 

information for de novo variants. Furthermore, GWAS cannot predict why a variant is 
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pathogenic. Similarly, models based on conservation cannot predict functional outcomes 

(Cooper et al., 2005; Fu et al., 2014; Pollard et al., 2010). Overcoming these limitations of 

scale and generality requires accurate and functionally-aware models that can be used to 

screen variants at genome scale and identify candidates likely to be most disruptive.

Perhaps a more intriguing application of a predictive sequence-function model for APA is 

the ability to engineer functional sequence elements. “Writing” functional DNA sequences 

that result in a specified level of gene expression and can be combined into gene circuits is 

the defining goal of synthetic biology (Purnick and Weiss 2009). Quantitative models that 

enable de novo design of cis-regulatory sequence elements could thus dramatically 

accelerate synthetic biology research and boost progress in metabolic engineering, synthetic 

immunology, mRNA therapeutics, gene therapy and related fields (Ruder et al. 2011; Sahin 

et al. 2014; Roybal and Lim 2017).

Deep learning has enabled important strides toward building predictive models that relate 

cis-regulatory sequence to molecular phenotype (Alipanahi et al., 2015; Jaganathan et al., 

2019; Kelley et al., 2016; Lanchantin et al., 2016; Leung et al., 2017; Xiong et al., 2015; 

Zhou and Troyanskaya, 2015). Such models have shown promise for identifying disease-

related variants and, when used together with genetic algorithms, are beginning to be 

deployed for de novo design of gene sequences (Biswas et al., 2018; Cuperus et al., 2017; 

Sample et al., 2018). Visualization techniques can provide insight into the regulatory motifs 

identified as important, thus making deep neural networks (DNNs) interpretable (Alipanahi 

et al., 2015; Kelley et al., 2016). Still, the datasets available for training neural networks in 

the context of gene expression are often limited in scale, which limits model quality. 

Moreover, visualization techniques have been limited to motifs learned in the lowest 

network layer rather than presenting a view of motif interactions across an entire regulatory 

region. Finally, engineering applications are only beginning to emerge and techniques that 

take full advantage of neural network approaches, such as those used in computer vision 

(e.g. DeepDream; Szegedy et al., 2014), still need to be developed.

Here we train a deep neural network, APARENT, on over 3 million synthetic APA reporter 

genes, overcoming size limitations inherent to traditional biological datasets. We 

demonstrate APARENT’s utility through three separate applications. First, we use it to 

identify and quantify regulatory interactions, furthering our understanding of the biology of 

APA. Second, we develop an optimization algorithm for forward engineering of synthetic 

PASs that result in precisely defined isoform expression levels and cleavage positions. Third, 

we apply APARENT to predict the impact and putative mechanism of genetic variants on 

APA and identify deleterious mutations that disrupt gene function by mis-regulating APA.

A Massively Parallel Reporter Assay for APA with over 3 Million Reporter 

Constructs

To generate a dataset large and diverse enough to represent the complexity of the APA code 

we constructed and transiently expressed minigene libraries of >3 million unique UTRs and 

obtained the isoform and cleavage data from the expressed RNA (Figure 1B). Each library 

expresses multiple PASs in a unique context -- 10 libraries were derived from seven different 
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human 3’UTRs but with USE and DSE regions replaced by randomized sequence; another 2 

libraries are fully degenerate with either a canonical (AWTAAA) or doped (95% A, 2% G/C, 

3% T) CSE (Figure 1C). Finally, upstream of a bGH PAS, we cloned a reporter library with 

1,085 PASs from the human reference genome. The 1,085 PASs come from a total of 817 

genes and constitute the complete set of all PASs in the ClinVar database with at least one 

annotated variant. To quantify isoform expression, we transiently transfected all libraries 

into HEK293 cells, extracted the expressed library RNA, and sequenced it (Figure 1B). In 

total, we collected isoform expression data for 3,372,030 unique reporters with an average of 

39 reads per reporter for random libraries and over 4000 reads per native human APA 

reporter. The majority of our reads, 53%, mapped to proximal isoforms while 28% mapped 

to distal isoforms. The remaining reads (19%) mapped to de novo PASs within the 

degenerate regions.

Isoform ratios exhibited a wide range of variation within and between APA libraries (Figure 

1D, S1A). Variation could be attributed to the CSE but also the surrounding regulatory 

sequences. In UTRs with two strong signals - both AATAAA - the proximal site was slightly 

preferred, consistent with the “first come, first served” hypothesis of kinetic coupling 

(Bentley, 2014; DeZazzo and Imperiale, 1989) (Figure 1D; AARS, HSPE1, WHAMMP2). A 

weaker, proximal CSE can be favored, especially if the stronger, distal PAS is relatively far 

downstream, as with the TOMM5 library. However, expression of the proximal isoform is 

nearly completely suppressed when the TOMM5 DSE is randomized, underscoring the 

importance of regulatory sequence outside of the CSE.

Predicting Alternative Polyadenylation with APARENT

We then trained a DNN, APARENT (Figure 2A), to predict PAS usage from DNA sequence. 

Assuming that competing PASs are independently and identically regulated when they do 

not physically overlap, the DNN should learn a general model of APA from our minigene 

libraries even though only the proximal PAS was randomized.

APARENT was trained to predict the proximal APA isoform ratio of each variant UTR given 

its sequence as input. We used 95% of the data from 9 out of 13 libraries for training (~2.4M 

variants), 2% for validation (~50,000 variants) and 3% for testing (~80,000). Four libraries 

(including the 1,085 human reference PASs) were held out entirely, allowing for tests on 

generalization (Figure 1C). The best-performing model architecture consisted of two 

convolutional layers interlaced with subsampling layers, a fully connected layer, and a 

logistic regression output node (Figure 2A).

To evaluate APARENT, we tested its ability to infer the proportion (log odds) of proximal 

isoform expression (isoform use). The DNN performed remarkably well at predicting the 

isoform use of the combined test set (R2 = .88; Figure 2B). To show that joint training on all 

libraries improves generalization, separate DNNs were trained on each individual library and 

cross-tested by predicting isoform use of every other library. The DNN trained on the 

combined data performed at least as well as, and in some cases better than, any individual 

network on its corresponding library (min library R2 = .50, mean library R2 = .68, total R2 

= .88; Figure 2C). The degree of correlation changes depending on UTR library because of 

Bogard et al. Page 4

Cell. Author manuscript; available in PMC 2020 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences in variance; libraries with low or high variance in isoform use are coupled with 

lower or higher R2 respectively, as the mean prediction error remains almost constant. As a 

baseline test, we also compared APARENT to a 6-mer linear logistic regression model and 

found that APARENT outperforms this simpler model, suggesting that positional and non-

linear effects are important for accurately predicting APA (Figure S2A).

Next, we asked whether APARENT could generalize to entirely new UTR contexts. First, 

we predicted proximal isoform use of the three held-out libraries (HSPE1, SNHG6 and 

WHAmMp2). The predictions had a mean correlation and error comparable to the trained-on 

libraries (mean library R2 = .58, Figure 2D, S2B). Second, we evaluated APARENT’s 

performance on the fully held-out library of >1,000 reference human PASs. APARENT 

performed remarkably well (R2 = .69, Figure 2D) confirming that the model generalizes 

from completely random to evolved human 3’ UTRs.

Sequence Determinants of Isoform Selection

To visualize sequence determinants of PAS preference learned in the first convolutional layer 

we extracted filter position weight matrices (PWMs) following (Alipanahi et al., 2015) 

(Figure 2e, S2D–E, Table S1). The position-specific effect on PAS usage of each filter was 

quantified by measuring the correlation between activations and isoform use at each position 

across the PAS (Cuperus et al., 2017). We cross-referenced the PWMs with published 

binding data, as well as the Compendium of RNA Binding Protein motifs (Ray et al., 2013) 

using the Tomtom comparison tool (Gupta et al., 2007), and surveyed the top-scoring results 

for APA mediators.

We identified motifs matching known binding sites for all components of the core polyA 

machinery (Figure 2E, Layer 1). One filter clearly resembles the canonical CSE, AATAAA, 

which can directly bind WDR33/CPSF30, subunits of CPSF (Schönemann et al., 2014). We 

also identified filters corresponding to the CstF-binding motif. CstF functions in cooperation 

with CPSF to direct cleavage and polyA in the DSE (Pérez Cañadillas and Varani, 2003; Sun 

et al., 2018). TGTA is a regulatory motif commonly found in studies of APA and identified 

as a target of CFIm25 (Masamha et al., 2014; Zhu et al., 2018). Additionally, the motif 

recognized by hFip1 – another subunit of CPSF and an enhancer of CPSF-CstF interactivity 

(Kaufmann et al., 2004; Martin et al., 2012) -- was also represented. Importantly, the 

position-specific enhancing or suppressing effect assigned to each filter by APARENT is 

consistent with the known preferred binding position of its matched RBP: CFIm25 in the 

USE, CPSF at the CSE, hFip1 adjacent to the CSE, and CstF in the DSE (Figure 2E) (Hu et 

al. 2005). We identified additional RBP binding motifs in the filters of this layer, many 

previously implicated in APA regulation (Figure S2E and Table S1).

Variants of the consensus hexamer AATAAA are common (Gruber et al., 2016). These 

variants exhibit reduced affinity for recruiting the CPSF complex through WDR33/CPSF30, 

with the degree of affinity determined by the nucleotide substitution. We generated scaled 

filter PWMs and compared the filter response with published data (Gruber et al., 2016; 

Müller et al., 2014), confirming the impact of different CSE variants on APA (Figure 2F). 

We further validated motifs identified by the DNN directly in the data using a 6-mer log 
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odds ratio analysis (Figure S2C) (Rosenberg et al., 2015). As additional validation, we 

identified the same set of convolutional filter motifs when training a new network instance 

with an independent random weight initialization (Figure S2G).

Visualizing Motif Interactions

Next, we generalized the method of (Alipanahi et al., 2015; Cuperus et al., 2017) to 

visualize features learned in the second layer. By estimating PWMs and position-dependent 

effects from sequences that give rise to Layer 2 activations, we capture longer motifs or 

combinations of short motifs (Figure 2E, S2F, Table S2). Combinatorial effects of cis-

elements have been suggested in earlier bioinformatics studies of PASs (Cheng et al., 2006). 

Filters that capture known motif interactions align well with the current understanding of 

APA regulation (Figure 2E, Layer 2, Top row). For example, APARENT identifies the core 

hexamer AATAAA in combination with a downstream polyT motif to upregulate selection 

compared to the average effect of AATAAA, reflecting known interactions with hFip1 

(Kaufmann et al., 2004). Another filter is sensitive to dual TGTA motifs, supporting the 

notion that CFIm25 binds as a dimer (Yang et al., 2010, 2011). A third example identifies 

strong combinatorial effects of DSE determinants, such as GT-rich motifs (CstF-binding) 

preceding a polyT motif further downstream.

We also find novel motif interactions with strong net effect sizes (Figure 2E, Layer 2, 

Bottom row). One of these filters is sensitive to a “multi-CSE” consisting of two overlapping 

canonical hexamers forming the 10-mer AAWAAAWAAA, estimated to substantially 

increase proximal selection compared to a single AATAAA. Another filter is sensitive to 

TGTAWTAAA, an overlapping binding site for both CFIm25 and CPSF. As detailed below, 

we find evidence that competitive binding of CFIm25 and CPSF can result in both strong up 

and downregulation depending on sequence context. Finally, one of the filters recognizes 

multiple polyT islands in the DSE to be preferential for APA selection, possibly due to the 

vast number of enhancing RBPs that bind to this motif.

Predicting Cleavage Distribution with APARENT

Since RNA-seq provides information about the precise cut position, we asked whether 

APARENT could be trained to predict the probability of cleavage occurring at any given 

position. To directly learn the cleavage distribution for each PAS we used a DNN almost 

identical to the isoform-based model, but with a final network layer that outputs a 

multinomial probability distribution of cleavage at any position across the sequence (Figure 

3A).

We evaluated this generalized version of APARENT in two ways. First, we compared the 

predicted average cleavage position with the observed average position of every test set 

sequence (Figure 3B). The two quantities correlated well (R2 = .82 for Alien1, R2 = .55 for 

the held-out WHAMMP2 library). Second, we compared the area under the proximal region 

of the predicted cleavage curve, which corresponds to total isoform abundance, against the 

previously predicted proximal isoform ratios (Figure 3C). The two predictions show strong 

agreement (R2 = .95).
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Encouraged by the substantial cleavage variation observed in the libraries, we searched for 

UTR variants with large deviation in cleavage sites (Figure 3D). These UTRs reveal a rich 

landscape of possible cleavage distributions ranging from unimodal cuts, to bimodal 

distributions with cut sites separated by as much as 10 nucleotides, to a cluster of positions 

where cleavage is initiated at many different sites. APARENT is able to predict these sites 

with high precision, suggesting the choice of cleavage site itself is governed by a 

deterministic regulatory code.

The Determinants of Cleavage Site Selection

To identify cleavage site determinants, we applied APARENT to a random sample of 

120,000 sequences from the Alien1 library, predicting their entire cleavage distribution. 

Each Layer 1 filter activation at every position was recorded and correlated with the 

magnitude of cleavage at every position, resulting in set of two-dimensional plots that 

together with their consensus sequence logos describe the regulatory impact of each filter 

motif on every cleavage site as a function of position (Figure 3E, S3A–B).

Consistent with earlier studies, the DNN filter heatmap characterizes the CA dinucleotide as 

the most favorable substrate for cleavage (Derti et al., 2012). However, TA and GA are also 

identified as functional, albeit weaker cleavage sites (Chen et al., 1995; Li and Du, 2013). 

We validated these findings by calculating the odds ratio of cleaving at every possible 

dinucleotide in the fully random Alien1 UTR library (Figure S3C) and found that cleaving at 

CA has a preferential bias (odds ratio = 4.7) compared to GA and TA (odds ratio = 2.7 and 

3.3, respectively). This observation conflicts with recent studies suggesting that there is no 

bias towards cA (Li and Du, 2013; Wang et al., 2018) but these studies are based on 

enrichment analyses of conserved native PASs, whereas our observations build on probing a 

uniformly random DSE for a functional response. The GT-rich motif, typically identified as 

the CstF binding site (Pérez Cañadillas and Varani, 2003), is found to enhance cleavage 

when located immediately downstream of the cleavage site (Figure S3B). Interestingly, the 

motif only appears to be functional for cleavage sites located ~15-30 bp downstream of the 

first nucleotide of the CSE.

Beyond cut site dinucleotides and CstF, APARENT revealed an extensive regulatory code 

governing the choice of cut site. For example, polyG and polyT motifs are highly effective 

cleavage site regulators; polyG preceding a cut site suppresses its usage, while a polyT motif 

enhances usage. PolyG and polyT strongly enhance or suppress cleavage adjacent to or far 

away from the CSE, locations at which the dinucleotides CA, TA, and GA have no 

measurable impact.

Recently, 3’ mRNA secondary structure was implicated in guiding cleavage site position 

(Wu and Bartel, 2017). We computationally folded the sequence upstream (−45 to −1) and 

downstream (+7 to cut site) of over 100k Alien1 PASs and evaluated the significance of 

structure relative to each cut position (Freyhult et al., 2005). We found that cleavage position 

indeed correlates with increased secondary structure (Figure 3F). We then confirmed that 

APARENT predicts cleavage accurately even at distances >40 bases from the CSE, where 

cut magnitude is highly correlated with MfE (Figure 3G).
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Precise Forward-Engineering of PASs with Stochastic Sequence 

Backpropagation

We then asked if APARENT could computationally engineer PASs according to target 

specifications and constraints. Previous approaches to forward engineering typically employ 

genetic algorithms, but because these algorithms rely on random chance and selection to 

generate new sequences instead of predicting improvements, they can easily get stuck in 

local minima. We took a different approach, by extending a computer vision method 

(Szegedy et al., 2014), previously used in genomics to visualize TF binding sites 

(Lanchantin et al., 2016), to the task of forward-engineering PASs (Figure 4A, STAR 

methods). We randomly initialized a PWM and send it as input to APARENT and specified 

an objective function in terms of APARENT’s outputs (isoform or cut). Since a neural net is 

differentiable, we computed the gradient of the objective w.r.t the PwM (with 

backpropagation). We then iteratively optimized the PWM with gradient ascent to perform 

better at the objective, generating sequences that conform to target APA ratios or cleave at 

target positions. The resulting algorithm, SeqProp, can accurately construct PASs that 

conform to a wide range of target objectives. To evaluate APARENT’s engineering 

capabilities, we synthesized, assembled, and expressed the engineered PASs in our APA 

assay (Figure 4B, STAR methods). For comparison, we used data from our human wild type 

reporter library as a reference for the native range of alternative isoform use.

Engineering Isoform Expression

We first optimized PASs for a range of target isoform use: 0%, 25%, 50%, 75% and 100%. 

We generated 10 sequences per target expression for 6 different UTR contexts. We noted 

that for the 100% target objective, sequences usually converged to ~95-98% predicted usage. 

To get as close to 100% usage as possible, we directly maximized the proximal class score 

(the log odds) just before the sigmoid output. We optimized 20-50 PWMs per library for 

maximal proximal preference and sampled up to 10 sequences from each PWM for a total of 

1,200 “Max” PASs (Figure 4C, S4D–E). The predicted isoform use of all generated 

sequences were highly accurate when compared to experimental measurements (Figure 4D, 

S4A–B, Movie S1, R2 = .90). The “Max” sequences had a mean usage higher than any 

native PAS measured in the array, and the strongest sequence had a usage of 99.7% (against 

a strong distal PAS). We also optimized sequences for maximal preference with previously 

unseen UTR library backgrounds (Figure S4C). Again, the sequences were regulated as 

predicted.

The USE and DSE regions exhibit similar characteristics across UTR contexts, suggesting 

there is a “consensus” template for a strong PAS (Figure 4C, S4D–E). Strong USEs typically 

include polyT and possibly tAtA, polyC, or TGTA motifs. Strong DSEs contain a stretch of 

polyT, an A-rich stretch, followed by GT- or CT-rich content and finally another stretch of 

polyT. While the generated patterns share many similarities, there are also differences due to 

the UTR context. An example is the polyG track found in the Alien2 DSE, a repressor motif 

that SeqProp uses to suppress a downstream competing PAS.
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We performed saturation mutagenesis of one of the sequences maximized for proximal 

isoform (Figure 4E). The vast majority of variants were measured to have a down-regulatory 

effect on isoform abundance, and the few upregulatory SNVs had low measured net effects. 

These results indicate that SeqProp indeed converges sequences to (local) optima.

Visualizing Motif Interactions Across an Entire PAS

When visualizing higher layer features we cannot resort to simply sampling the data, as we 

did for visualizing motifs in the first and second layer, because the very long length of the 

dense layer neurons (186 nt) make it exceedingly unlikely that we find maximally activating 

examples by chance. However, SeqProp can be used for visualization of higher-layer 

features in a DeepDream-style procedure whereby dense neurons are maximized by gradient 

ascent (Olah et al., 2017). The resulting sequence logos combine functional motifs identified 

in lower layers and describe global sequence determinants of PAS strength by (Figure S2H–

I). The neurons specialize on different sequence subspaces, where G- and GC-rich sites are 

much less favored compared to sites containing various conserved T- and GT-rich stretches.

Engineering cleavage position

Next, we optimized randomly initialized PASs for cleavage across a wide range of target 

positions downstream of the CSE hexamer, while also maximizing site preference (Figure 

4F, S4I, Movie S2). SeqProp could successfully generate cut distributions with high 

specificity, even at extreme distances (Figure 4G, S4F–G, total R2 = .94 between predicted 

and measured average cut positions). For cleavage sites within 30 nt, the optimized DSEs 

converged to sequences with no predictable secondary structure. Rather, APARENT 

positioned core processing elements (CstF, various RBP binding sites, etc.) in optimal 

locations relative to the cleavage site (Figure 4F, S4I). For cleavage beyond 30 nt, SeqProp 

built sequences upstream of the cleavage site that were predicted to form stable hairpins with 

stem lengths that increase with site distance (Figure S4H).

To validate the hypothesis that DSE hairpin folding is a crucial determinant for the 

engineered sequences with distant cuts, we performed saturation mutagenesis of an 

engineered sequence targeted for cleavage +35 nt downstream of the CSE (Figure 4H). 

SNVs outside the hairpin had very low effect on cleavage magnitude at the target cut site, 

while nearly any interference with the hairpin structure had a down-regulatory effect (Figure 

4I). Interestingly, a few SNVs further stabilized the hairpin structure, and a majority were 

measured to have slightly upregulatory effects at the target cut site.

APARENT Accurately Predicts Native APA

Next, we turned to APADB, a dataset of APA events from multiple human tissues. We 

extracted every pair of adjacent 3’ UTR PAS sequences and used the corresponding RNA-

seq read counts to estimate relative isoform proportions (see STAR Methods). For this part 

of the analysis, we pooled the isoform read counts across all tissues. Building on our 

assumption that individual PAS strengths are independent when signals are well-separated, 

we used APARENT to score each of the two PASs for every neighboring pair. We then used 
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logistic regression with these scores and the logarithm of the distance between the sites as 

the only features to predict isoform use in APADB (Figure 5A).

Predicted isoform use agreed well with APADB measurements (R2 = .70, Figure 5B). 

Performance also increased , monotonically with APADB read coverage, as deeper 

sequencing results in higher quality estimates of the true isoform ratios (Figure S5A). 

APARENT also outperformed a DNN trained exclusively on APADB at predicting 

preferential site usage (binary APA classification, AUC=.97, Figure 5C, S5B). Consistent 

with earlier studies (Lackford et al. 2014; Li et al. 2015), the model learned a positive 

relationship between increased distance and use of the proximal site (Figure S5C).

APARENT Predicts APA across different tissue and cell types

Next, we tested how well APARENT’s predictions compared with measurements from 

individual tissues and cell types. We used RNA-seq data from APADB (Müller et al., 2014) 

and (Lianoglou et al., 2013) to estimate true isoform proportions per cell type for all 3’ UTR 

APA events (see STAR Methods). When considering all pairs of adjacent PASs, APARENT 

could predict the preferred PAS almost perfectly (Figure 5D–E, mean AUC = .97 across 

tissues). When narrowing the data to only pairs where both isoforms have at least one 

supporting read in a given tissue, performance only slightly decreased (mean AUC = .88). 

Due to the low average read count (10-50 reads per isoform and tissue type), obtaining 

reliable estimates of more balanced PASs is fundamentally more challenging than detecting 

extreme events (Figure S5D). To understand why APAReNt achieves high classification 

rates across tissues and cell types (without having trained on cell type-specific data), we 

compared the measured APA isoform proportions between pairs of tissues and observed 

very small differences for the majority of pairs (Figure S5E; mean R2 = .97, mean difference 

in isoform proportion = 0.031). We do find subsets of APA sites which are significantly 

differential, but these sets are small (on average 3.3% of all events have an isoform 

difference > 0.25).

Finally, we used APARENT to predict the cut distribution of every individual human PAS 

sequence. We compared the mean predicted cut position of each PAS against the mean cut 

position estimated from the RNA-Seq data of (Lianoglou et al., 2013) and found strong 

correlation across all cell types (Figure 5F–G).These results suggest that a non-tissue-

specific cis-regulatory model such as APARENT is efficient for 3’UTR APA inference in 

general, regardless of tissue.

APARENT Predicts SNVs Linked to APA Misregulation

Nucleotide variants near PASs in human 3’ UTRs have been implicated in genetic disease, 

including IPEX syndrome, Thrombophilia and Alpha and Beta Thalassaemia. Most disease-

implicated APA variants identified so far act by disrupting the CSE hexamer (Bennett et al., 

2001; Gehring et al., 2001; Higgs et al., 1983). While a number of cryptic pathogenic 

variants have been identified in the USE and DSE, it is largely unknown how many high-

impact non-CSE mutations exist in disease-implicated PASs. Using APARENT, we set out 

to characterize the frequency and complexity of cryptic APA variants across the human 

Bogard et al. Page 10

Cell. Author manuscript; available in PMC 2020 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genome. We curated and synthesized >1,000 ClinVar variants -- SNVs and InDels linked to 

medical phenotypes (Landrum et al., 2018) -- occurring within 50 nt upstream and 100 nt 

downstream of an annotated PAS, as well as >10,000 variants from saturation mutagenesis 

of PASs in disease-implicated UTRs (ACMG, ClinVar, HGMD; Figure 6A; STAR methods) 

(Kalia et al., 2017; Landrum et al., 2014, 2016; Stenson et al., 2017).

APARENT’s predictions agreed well with the measured fold changes of variant isoforms 

and could accurately classify the direction of change (Figure 6B, S6A, R2 = .75 / Correctly 

predicted direction = 90.3% for CSE and non-CSE variants, R2 = .51 / Correctly predicted 

direction = 88.2% for non-CSE variants only). Of the 12,348 measured variants, 757 non-

CSE variants resulted in at least a 2-fold change in isoform abundance. The occurrence rate 

of such variants was about 3.7% in the USE and 8.7% in the DSE.

We further validated APARENT on variants found in the 1000 genomes data (1000 

Genomes Project Consortium et al., 2012), comparing our predictions against transcriptomic 

measurements from the GEUVADIS project (Lappalainen et al., 2013). Since few insertions 

or deletions were found near PASs in the 1000 genomes variant annotation, we focused our 

analysis on SNVs. APARENT could infer isoform fold changes that agreed well with 

measured fold changes averaged over individuals carrying a variant (R2 = .68, Figure S6B, 

see STAR Methods).

APA SNVs Can Act Through Complex Regulatory Mechanisms

To identify variants that modulate APA through a non-linear regulatory interaction, we 

searched for SNVs whose experimentally measured direction of isoform expression change 

is incorrectly predicted by a linear 6-mer model, but correctly predicted by APARENT. 

While we found >90% agreement with APARENT on the predicted direction, the 6-mer 

model was considerably worse at predicting the magnitude of change. We identified 293 

variants with a significant disagreement between the two model’s predictions, comprising 

~2.3% of all the variants assayed (Figure 6C). Of those, 258 were predicted correctly by 

APARENT and only 35 by the 6-mer model (Figure S6C).

Figure 6D (top) displays a variant, correctly predicted by APARENT but not the 6-mer 

model, where the creation of a CstF site in the DSE results in a 1.27-fold decrease in isoform 

abundance rather than an increase, as might naively be expected. The measured distribution 

reveals that the main cut site is in fact only 1 nt upstream of the CstF site, consequently 

shifting cleavage to a less used cut site further upstream, all of which APARENT correctly 

predicts. The variant impact is particularly difficult to predict as there are 4 valid possible 

cut dinucleotides upstream of the main cut site. In our array we find additional cases of 

complex interaction between PAS components for variants causing both gain and loss of 

CstF binding sites (Figure S6D–E).

Many human PASs contain additional CSE hexamers in either the USE or DSE. Commonly, 

we would expect these hexamers to recruit CPSF and initiate independent polyA. 

Interestingly, Figure 6D (bottom) illustrates an example where the extra CSE hexamer 

instead takes on the role of a cut site rather than CPSF recruiting site. When the variant 
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knocks out the extra CSE, cleavage downstream of both hexamers is upregulated rather than 

downregulated, resulting in a 1.6-fold increase in isoform abundance. Again, APARENT is 

able to predict the cut alteration accurately. In our collection of assayed variants, we find 

many more examples of cryptic CSE variation that affects APA non-trivially (Figure S6I). In 

addition, we find rare cases where a competitive CFIm25 binding site overlapping the CSE 

can have both up-regulatory and down-regulatory effects, largely dependent on the global 

strength of the wild type PAS (Figure S6F–H). We also find that variants altering folding 

structures can either enhance or repress enclosed cut sites (Figure S6J), and that variants 

interfering with canonical cleavage sites can both upregulate and downregulate total isoform 

levels (Figure S6K). In Figure S6K, we observe an example in the ARSA PAS where 

cleavage at a cryptic cut site is more efficient than the native CA dinucleotide, as knocking 

out the CA element results in a net-increase in isoform abundance. Clearly, it is insufficient 

to merely consider the creation or destruction of local motifs when assessing a variant. 

Rather, we must consider the composition of the entire PAS.

Many ClinVar SNVs Act Through Modulation of APA

More than half of ClinVar variants within PASs that are annotated as pathogenic occur in the 

CSE hexamer, however, a number of pathogenic variants in the DSE were both measured 

and predicted to have large effects on APA (Figure 7A, HBA2 104 G>T, F2 97 G>A, etc.). 

Importantly, APARENT also predicts low effects on APA for those pathogenic USE variants 

known to be deleterious through other mechanisms than APA (Gazda et al., 2008; Jenkinson 

et al., 2016; Poller et al., 1999). Across all assayed ClinVar and HGMD variants, we observe 

the fraction of variants with a strong effect on APA to increase with clinical significance 

(Figure 7B), supporting the link between misregulation of APA and disease. Similar to the 

analysis of (Huang et al., 2017) for assessing a model’s utility in prioritizing variants, we 

obtain an aUc of 0.916 at prioritizing pathogenic over benign variants based solely on 

predicted APA fold change. We also emphasize the vast number of variants of uncertain 

significance (VUS) that remain to be clinically classified, ~11% of which are associated 

with at least a 2-fold change on isoform abundance.

We also find variants annotated in ClinVar as of “conflicting interpretations of 

pathogenicity” which have significant predicted and measured effects on APA (Figure S7A). 

For example, variants found in the TYMP UTR (3C>T, 10G>A) and a variant found in 

HBA2 (98T>C). These results suggest APA misregulation is a functional consequence either 

causing or contributing to these phenotypes and that these variants are likely pathogenic. 

Besides variants found in ClinVar, we observe >1,000 currently unannotated mutations 

having at least 2-fold APA change in disease-implicated PASs.

Saturation Mutagenesis of Disease-Relevant PASs Reveals Putative 

Pathogenic Variants

We then studied the composition of known pathogenic PASs through experimental and 

computational saturation mutagenesis (Figure 7C). The TP53 1175A>C mutation transforms 

the canonical CSE AATAAA into the weaker AATACA and has been implicated in Basal 

Cell Carcinoma (Stacey et al., 2011). We identified two important regulatory regions in the 
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DSE: the CstF binding site TGT[C/G]T and an HNRNPH binding site. We also find an SNV 

in the DSE that results in a 9-fold isoform change, as it interferes with CstF binding and cut 

site secondary structure (Figure S7B). The PAS contains two additional annotated ClinVar 

variants, a benign variant 1422G>C further downstream in the DSE and a VUS 1160T>G in 

the USE, both of which are predicted and measured to have negligible effects. Given that 

Basal Cell Carcinoma is caused by APA misregulation in the TP53 UTR, our results suggest 

there are many more mutations that could lead to disease (6.0% of USE and DSE variants 

are estimated to have at least a 2-fold change). APARENT’s predictions agree well with the 

measured fold changes in TP53 (R2 = .86 for all variants, correctly predicted direction of 

fold change for >2-fold variants = 93.3%).

Next, we performed saturation mutagenesis of the FOXC1 PAS, which contains a pathogenic 

DSE variant 734A>T implicated in Glaucoma (Medina-Trillo et al., 2016) (Figure 7C). This 

variant is known to alter a miRNA target site, potentially affecting both APA site preference 

(as a DSE regulator) and isoform stability. Indeed, both the predictions and experiments 

confirm ~2-fold upregulation. Roughly 6.3% of additional DSE nucleotide substitutions 

within this site are measured to have at least a 2-fold effect on APA, and APARENT predicts 

these effects accurately (R2 = .84 for all variants, correctly predicted direction of fold change 

for >2-fold variants = 93.7%).

Finally, we highlight the impact of a variant 97G>A (20210G>A) at the cleavage site in the 

prothrombin gene (F2) 3’UTR (Figure 7D). This gain-of-function variant is found in nearly 

2% of the population and has been directly linked to Thrombophilia by increasing total RNA 

abundance 1.4-fold (Danckwardt et al., 2008; Gehring et al., 2001). APARENT accurately 

identifies the weak wildtype CG dinucleotide as a functional cleavage site, and furthermore, 

correctly predicts that the CA variant increases isoform abundance about 1.3-fold. We find 

that a considerably rarer variant 108C>T (also linked to thrombosis) (Stapenhorst et al., 

2001) has a more pronounced upregulatory effect (>2-fold), possibly by enhanced binding of 

CstF (Danckwardt et al., 2004). The VUS 96C>T has a low isoform fold change compared 

to other pathogenic variants and is likely benign, while the VUS 106T>A results in a 1.41-

fold change and may be deleterious.

We carried out saturation mutagenesis to functionally characterize many more PASs and 

genes implicated in disease (HBA2, HBB, INS, BRCA1, TPMT; Figure S7C–E). In many 

cases we were able to validate negligible effects on APA for annotated benign variants or 

VUSs, but we also identified many VUSs with considerable impact on APA, providing 

evidence for misregulated APA as the functional cause for disease. In general, APARENT is 

able to call variants with high sensitivity and specificity, and we find that most disease-

implicated PASs contain approximately 5-10% variants outside of the CSE with at least 2-

fold changes to APA isoform abundance, but the frequency of such high impact variants can 

reach 15% (e.g. HBA2, Fig. S7C). Importantly, high-impact variants in disease-implicated 

PASs may violate general trends of APA regulation, supporting the need for a non-linear 

functional model of APA to predict the impact of such variants. For example, a TA inserted 

between two neighboring canonical CA cut sites in the BRCA1 UTR directs all cleavage to 

the TA site, even though CA on average is the preferred element (Figure S7E).

Bogard et al. Page 13

Cell. Author manuscript; available in PMC 2020 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

We introduced APARENT, a DNN capable of accurately predicting APA in human 3’UTRs. 

Many of the sequence features identified as important by APARENT could be mapped to 

known cis-regulatory sequence elements, including known binding sites of core components 

of the polyA and cleavage machinery (CFIm25, CstF, CPSF and hFip1). APARENT also 

identified regulatory features that have not previously been described. For example, we 

found that the choice of cleavage site is regulated deterministically by sequence features 

besides the favored CA dinucleotide. APARENT identified GA and TA as almost equally 

functional, but also found that cleavage site selection is regulated by a more extensive cis-

regulatory code combining RBP binding motifs (e.g. polyG/polyT/CstF) with secondary 

structure.

Recent work on visualizing the motifs learned by the first layer of a CNN has begun to 

address latent skepticism about the interpretability of dNns (Alipanahi et al., 2015; Kelley et 

al., 2016). We expanded on this work and showed that our network identifies important 

regulatory features of widely varying complexity, ranging from short motifs learned in the 

first layer, to longer and spatially connected combinations of motifs in the second layer, to 

full-length PAS compositions, including secondary structure, learned in the deeper layers.

We then built on our visualization algorithm to develop SeqProp, a method for engineering 

PASs. We applied SeqProp to design PASs targeting a range of isoform usage and cleavage 

positions. An experimental validation of over thousand designed sequences showed excellent 

agreement between targeted and measured characteristics. Previously, computational 

engineering of functional cis-regulatory DNA sequences has mostly been done with genetic 

algorithms. However, in genetic algorithms, the search naively generates new sequences by 

making random changes, instead of generating those that are predicted to improve the target 

objective. Moreover, a discrete nucleotide-swapping search may easily get stuck in local 

minima, especially if the search space is very large and the objective is met by only a narrow 

subset of sequences.

We expect that SeqProp will be applied to forward-engineer of functional 3’UTRs, enabling 

control over mRNA-stability, possibly even in a tissue-specific manner. In mammalian 

synthetic biology, such engineered PASs could provide an additional layer of control for 

improving molecular circuits that rely on miRNAs or RBPs binding to the 3’UTR (Xie et al. 

2011; Ausländer et al. 2012; Strovas et al. 2014; Wroblewska et al. 2015). While initial work 

in fields such as gene therapy, mRNA therapeutics or cell therapy with chimeric antigen 

receptors primarily focused on optimizing the coding regions of therapeutic genes, it is 

likely that precise control over untranslated regions can enhance therapeutic efficacy and 

help minimize off-target effects (Ruder et al. 2011; Sahin et al. 2014; Roybal and Lim 2017). 

Moreover, although we here focused on APA, SeqProp can be generalized to other cis-

regulatory regions such as the 5’UTR, introns or even promoters and enhancers, providing 

an approach for generating transcripts or genes with tailor-made properties.

We applied APARENT to predict the impact of 3’UTR variants in ClinVar and HGMD 

within 50 base pairs of the CSE and performed saturation mutagenesis on disease-implicated 
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PASs. We found that many variants annotated as pathogenic also had a strong impact on 

APA, suggesting a molecular mechanism for disease. Model predictions were validated 

experimentally through massively parallel measurements of the impact on APA of over 

12,000 human PAS variants. We identified a large number of VUSs that nonetheless resulted 

in strong shifts in the APA isoform distribution, making them intriguing candidates for 

future investigation. Approximately 4% of USE and 9% of DSE variants resulted in an at 

least 2-fold change in isoform abundance, confirming the importance of regulatory 

information outside the CSE. APARENT was able to identify and correctly predict the 

impact of complex variants that could not be explained by a simpler linear model, enabling 

us to detect novel regulatory interactions, such as variants interfering with RNA folding, 

cryptic cut sites or combinatorial effects.

Though we focused exclusively on APA in the 3’UTR, PASs are also found in terminal 

introns. Although predictive models of alternative splicing are available, more work is 

required to integrate them with the APA model introduced here. Second, it is likely that 

some of the cis-regulatory sequences identified in our assays differentially control transcript 

stability rather than regulating APA directly. Such sequence elements could be identified in 

an independent MPRA focused on mRNA stability (Zhao et al. 2014; Rabani et al., 2017). 

Still, the work presented here provides a comprehensive view of the regulatory code guiding 

APA and has direct implications for both basic biology and genomic medicine.

Supplementary Material
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Highlights

• Trained a neural network to predict APA using data from over 3 million 

reporters

• Visualized learned features to reveal a rich cis regulatory code for APA

• Developed and tested an algorithm to accurately engineer polyadenylation 

signals

• Predicted and experimentally characterized over 12,000 human APA variants
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Figure 1. Massive Parallel Reporter Assay for Alternative Polyadenylation
A) APA and the polyA signal. Newly-transcribed mRNA is targeted by multiple factors 

(grey) that enhance or suppress selection of APA sites. A PAS (below) is defined by the 6-

base CSE and regions of approximately 50 bp both upstream and downstream.

(B) Massively parallel reporter assay for APA. Millions of unique reporters are cloned from 

degenerate oligos and transiently transfected in human cell culture where they are expressed 

and alternatively polyadenylated. RNA is extracted, sequenced and quantified for every 

reporter, and the data used to train a deep neural network.

(C) The library is comprised of multiple sublibraries that vary in structure and 3’UTR 

context (human italicized; CSE sequence denoted in legend; thick black bar = plasmid, thin 

= native 3’UTR sequence). Degenerate sequence was introduced up and/or downstream 

(N20-45) of the proximal PAS, and in some cases, within the CSE (degenerate, red). The 

CSE sequence is either the canonical AATAAA (green), the canonical with a single base 

substitution (yellow), or varied (red; SNHG6 = NNTAAA, Alien1 = AWTAAA, Alien2 = 

(95% A, 2% G/C, 3% T)).

(D) The distribution of relative proximal site usage per unique sequence for each library. 

Each histogram is color-coded to match the proximal CSE.

See also Figure S1.
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Figure 2. Model Architecture, Performance and Layer-by-Layer Feature Analysis
(A) APARENT takes a 1-Hot-coded PAS sequence as input to predict % proximal isoform 

and % cleavage at each position.

(B) Predicted vs. observed proximal isoform log odds of the test set.

(C) Cross-library confusion matrix when predicting proximal isoform use. Diagonal entries 

are tests on the training library. Off-diagonal entries are models trained on one library but 

tested on another.

(D) Predicted vs. observed proximal use on held-out random libraries (HSPE1, SNHG6, and 

WHAMMP2; mean R2 = .58), and on the held-out native human PAS library (HUMAN; R2 

= .69).

(E) RBP motif logos and per-position effects (Pearson’s r between filter activation and 

proximal use) learned in the first and second convolutional layers. Layer 2 filters are shown 
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with their proposed effector interactions. Additional RBP motifs of Layer 1 and 2 are shown 

in Figure S2E–F.

(F) Left: Sequence Logos for the CSE detector filter. Right: Ranked CSE variants extracted 

from the filter. Below: Comparison of variant scores against previously-published data.

See also Figure S2 and Table S1, S2.
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Figure 3. Cutsite Predictions and Regulatory Determinants Learned by APARENT
(A) APARENT’s output layer predicts the probability of cleavage at each of the 186 input 

nucleotides.

(B) Average predicted cut position on the Alien1 test set. X-axis denotes average position. 

The Y-axis sorts each sequence on observed cut position.

(C) Predicted isoform abundance using the DNN of Figure 2A vs. integration of cleavage 

distribution using the DNN of Figure 3A.
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(D) Example Alien1 sequences with their predicted (blue) and observed (red) cut 

distribution. The panel also shows the average Alien1 cut distribution.

(E) Selection of layer 1 filters validating known and newly discovered cleavage 

determinants. Each plot measures correlation between a filter activating at a certain position 

and cleavage occurring at some other position. See Figure S3B for additional identified 

motifs.

(F) % sequences from the Alien1 library with significantly folded USEs (black) or CSE-Cut 

regions (red), as a function of cut position relative to the CSE. “USE” refers the 50 nt region 

upstream of the CSE, and “CSE-Cut” refers to the region from the end of the CSE to the cut 

position.

(G) Predicted vs. observed cut magnitude at positions near (left) or far from (right) the CSE. 

The color encodes DSE MFE.

See also Figure S3.
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Figure 4. Forward-Engineering of PASs by Backpropagation
(A) A sequence PWM is iteratively optimized against a polyA objective by gradient ascent 

through APARENT.

(B) The sequences were synthesized in an oligo array, expressed in HEK293 and measured 

by sequencing.

(C) PWMs engineered for target isoform abundance. Shown are the target objectives, the 

measured percentile among human sequences, the number of PWM samples, and measured 

proximal use.
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(D) Measured isoform use per isoform objective. The ‘Native’ category displays human 

sequences.

(E) Saturation mutagenesis of a PWM maximized for proximal use. The heatmap shows 

measured isoform fold change (in log-scale) as a result of each SNV. APARENT’s predicted 

log fold changes strongly agree with these measurements (R2 = 0.77). (F) PWMs engineered 

for cleavage at target positions. Shown are the target objectives, the number of PWM 

samples, measured/predicted cleavage profiles and predicted MFE structures of the DSE.

(G) Average cut profile of all synthesized sequences separated by objective cut position.

(H) Saturation mutagenesis of a PWM optimized for cleavage at CSE+35. The heatmap 

shows measured change in cleavage proportion as a result of each SNV.

(I) The measured SNV effects of Figure 4H grouped by the effect on DSE hairpin folding. 

The Y-axis displays the measured fold change (in log-scale) of cleavage proportion at the 

target cut site (CSE+35) due to each SNV.

See also Figure S4 and Movie S1, S2.
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Figure 5. Performance of APARENT on Endogenous APA
(A) The extended model for predicting isoform ratio between adjacent APA sites of the 

APADB and Leslie datasets.

(B) Leave-one-out Cross-validation of predicted vs. observed proximal use on the 1,000 

Pooled-tissue APADB PASs with highest measured total read count.

(C) ROC curves obtained from classifying preferential site usage on held-out APADB data. 

APARENT is compared against a DNN and a linear 6-mer model trained only on APADB.

(D) Preferential site prediction ROC curves in tissues and cell types from APADB and Leslie 

datasets. (Top) All pairs of adjacent PASs. (Bottom) only pairs where both sites have 

supporting reads in the tissue.

(E) Bar chart of preferential site classification scores (AUC) per tissue.

(F) Predicted vs. observed mean cut position relative to the CSE of individual human PAS 

sequences. The observed mean cut position per PAS was estimated from the Lianoglou et al. 

RNA-Seq data, pooled across cell types. Only high-quality estimated PASs with a minimum 

pooled read count of 500 were included (n=797, R2 = .74).

(G) Bar chart showing the correlation (R2) between predicted and observed mean cut 

position of high-quality estimated PASs with a minimum read count of 200, separated by 

cell type of the Lianoglou et al. data.
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See also Figure S5.
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Figure 6. Predicting the human APA variants and the existence of complex variation
(A) MPRA used to measure the effect of human genomic APA variants on APA from 

ClinVar, hGmD, and ACMG genes.

(B) Measured isoform fold changes of all variants (Y-axis). X-axis denotes PAS position. 

The color indicates predicted fold change (blue/red = −/+ log odds ratio). All variants: R2 = 

0.64. Significant variants (p < 0.0001): R2 = 0.75. Correctly predicted direction of change in 

isoform abundance (increase or decrease) = 90.3% of all variants. The figure is also 

annotated with the total number and % correctly predicted direction of fold change for USE 

and DSE variants with at least a 2-fold change in isoform abundance.

(C) Variants with significant measured fold change (p < 0.00001) where APARENT and a 

linear 6-mer model disagree on the direction of change.

(D) Two complex variant examples discovered in Figure 6C. (Top) A CSTF binding site 

variant was measured to decrease total RNA isoform abundance 1.27-fold. (Bottom) A 

cryptic CSE hexamer variant was measured to increase total RNA isoform abundance 1.6-

fold.

See also Figure S6.
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Figure 7. Characterization of pathogenic variants and PASs linked to disease
(A) Measured fold changes of pathogenic variants in ClinVar and HGMD (Y-axis). X-axis 

denotes PAS position. Color indicates APARENT predictions. The table lists all variant 

identifiers.

(B) Strip plot of all assayed variants categorized by clinical significance in ClinVar. The 

‘ACMG’ category contains all of the unannotated variants obtained from saturation 

mutagenesis. The ‘Benign’ set contains 170 variants, ‘Likely benign’ contains 419 variants, 

‘VUS’ contains 946 variants and ‘Pathogenic’ contains 19 variants. AUC = 0.916 for 
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classifying the pathogenic set from the benign set based only on APARENT’s predicted log 

isoform fold change.

(C) Saturation mutagenesis of the TP53 (Basal Cell Carcinoma) and FOXC1 (Glaucoma) 

PASs. The heatmaps visualize measured and predicted APA isoform fold changes and are 

annotated with variants from ClinVar and HGMD. Shown above the heatmaps are 

correlations (R2) between predicted and measured isoform log fold changes, the total 

number of variants with at least 2-fold changes in isoform abundance and % correctly 

predicted direction of fold change.

(D) Saturation mutagenesis of the F2 (Thrombophilia) PAS. Shown are also the measured 

wildtype and variant cleavage distributions (black and red lines), and the predicted variant 

cleavage distribution (blue dashed line), for the pathogenic 97G>A variant (measured / 

predicted RNA isoform abundance increase = 1.39 / 1.31-fold).

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Fetal bovine serum Atlanta Biologicals Cat # S11150

DMEM, high glucose, 
pyruvate

ThermoFisher Scientific SKU # 11995-065

Critical Commercial Assays

Oligonucleotide Library 
Synthesis (244K)

Agilent Part # G7223A

NEBNext Poly(A) mRNA 
Magnetic Isolation Module

New England Biolabs Cat # E7490S

NextSeq 500/550 High 
Output Kit v2.5 (75 Cycles)

Illumina Cat # 20024906

NextSeq 500/550 High 
Output Kit v2.5 (150 Cycles)

Illumina Cat # 20024907

NextSeq 500/550 Mid 
Output v2 kit (150 cycles)

Illumina Cat # FC-404-2001

MiSeq Reagent Kit v3 (150-
cycle)

Illumina Cat # MS-102-3001

Deposited Data

Random 3’ UTR APA 
MPRA

This study GSE113849 / https://github.com/johli/aparent

Designed 3’ UTR APA 
MPRA

This study GSE113849 / https://github.com/johli/aparent

ClinVar Database Landrum et al., 2014 ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz

APADB, Pooled-Tissue Müller et al., 2014 http://tools.genxpro.net/apadb/download/track/hg19.apadb_v2_final.bed/

APADB, Tissue-specific Müller et al., 2014 http://tools.genxpro.net/apadb/browse/

Leslie APA Atlas, Tissue-
speciic

Lianoglou et al., 2013 http://cbio.mskcc.org/public/Leslie/ApA/atlas-lianoglou/alignments/unique/clean-final/unified-atlas.bam

GEUVADIS Lappalainen et al., 2013 https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/processed/

Experimental Models: Cell Lines

HEK293FT Invitrogen Cat # R70007

Software and Algorithms

APARENT Software This study https://github.com/johli/aparent

APARENT Model Training This study https://github.com/johli/aparent

SeqProp Software This study https://github.com/johli/aparent

6-mer Logistic Regression 
Model

This study https://github.com/johli/aparent

Random 3’ UTR Data 
Processing Software

This study https://github.com/johli/aparent

Designed 3’ UTR Data 
Processing Software

This study https://github.com/johli/aparent

APADB Data Processing 
Software

This study https://github.com/johli/aparent

Leslie Data Processing 
Software

This study https://github.com/johli/aparent
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REAGENT or RESOURCE SOURCE IDENTIFIER

ClinVar Data Processing 
Software

This study https://github.com/johli/aparent

GEUVADIS Data Processing 
Software

This study https://github.com/johli/aparent
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