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Abstract

Dysferlin has been implicated in acute membrane repair processes, whereas myoferlin’s activity is 

maximal during the myoblast fusion stage of early skeletal muscle cell development. Both proteins 

are similar in size and domain structure; however, despite the overall similarity, myoferlin’s known 

physiological functions do not overlap with those of dysferlin. Here we present for the first time 

the X-ray crystal structure of human myoferlin C2A to 1.9 Å resolution bound to two divalent 

cations, and compare its 3D structure and membrane binding activities to that of dysferlin C2A. 

We find that while dysferlin C2A binds membranes in a Ca2+-dependent manner, Ca2+-binding 

was the rate-limiting kinetic step for this interaction. Myoferlin C2A, on the other hand, binds two 

calcium ions with an affinity 3-fold lower than that of dysferlin C2A; and, surprisingly, myoferlin 

C2A binds only marginally to phospholipid mixtures with a high fraction of phosphatidylserine.
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1. Introduction

The ability to modify and sculpt phospholipid membranes in a regulated manner is a critical 

process for almost all cell types. These processes involve the fusion of neurotransmitter-

containing vesicles for cell-to-cell communication in the case of neurons, gene transfer in 

the case of viruses, and maintenance of membrane integrity in the case of membrane repair. 

Dysferlin (DYSF) is a 237 kDa type II integral membrane protein that facilitates the Ca2+-

dependent aspects of membrane repair. Dysferlin is expressed in all mammalian tissues, but 

a mutant phenotype is more prevalent in human skeletal muscle. Prolonged membrane 

damage stimulates a cascade of immune factors that ultimately results in extensive muscle 

inflammation and damage [1, 2, 3]. Failure to adequately repair this damage can result in a 

gradual and progressive loss of muscle tissue. Indeed, mutations in the DYSF gene have 

been linked to Limb-Girdle Muscular Dystrophy Type 2B (LGMD-2B) or Miyoshi 

Myopathy (MM) in humans [4]. Dysferlin rapidly responds to injury by sensing Ca2+ influx 

through the site of damage, and then facilitates Ca2+-dependent patch-repair [5, 6]. 

Dysferlin-deficient muscle fibers demonstrate a primary defect in Ca2+-dependent, vesicle-

mediated membrane repair [7]. Given the association of dysferlin with LGMD-2B and MM, 
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and its importance in maintaining the integrity of the cell membrane, this protein has been 

hypothesized to play a critical role as a facilitator of membrane repair in skeletal muscles.

Myoferlin is a 230 kDa type II integral membrane protein that is encoded by the MYOF 

gene and is a paralog of dysferlin [8]. The protein is expressed in myoblasts, endothelial 

cells, cardiac and skeletal muscles. Myoferlin expression can also be detected in pulmonary 

tissue and at very low levels in kidney, placenta, and brain [9]. Myoferlin-null mice 

myoblasts are not able to form syncytial myotubes, and as a result, they cannot generate the 

large myofibers needed to form skeletal muscles [10]. Myoferlin mRNA is upregulated in 

patients diagnosed with Duchenne muscular dystrophy [11, 12, 13]. Indeed, increased levels 

of myoferlin measured in Duchenne muscular dystrophy patients suggest a role for 

myoferlin in muscle regeneration and muscle repair [10]. Aberrant myoferlin expression has 

also been linked to cancer progression, as the protein is over-expressed in numerous cancers 

(e.g. pancreas, lung, liver, breast, kidney) [14, 15, 16, 17, 18]. Its depletion results in 

impairment of caveole formation, perturbed EGFR and VEGFR2 activity, altered 

metabolism and mitochondrial function, reduced exosome formation and overall decrease of 

proliferative, migratory, and invasive properties of tumors [19, 20, 21, 22, 23].

The overall domain structure of both dysferlin and myoferlin is arranged as seven tandem 

C2 domains labeled C2A-C2G (Fig. 1a), a Ca2+-dependent, membrane-binding four-helix 

bundle domain known as FerA [24], and a Trp-Arg-rich DysF domain [25]. Both dysferlin 

and myoferlin possess a single C-terminal transmembrane helix that is embedded within a 

patching vesicle. The multiple C2 motifs are the most characteristic features of the ferlin 

proteins. C2 domains are typically Ca2+-dependent phospholipid binding domains with an 

approximate length of 130 amino acids [26]. Among all C2 domains of dysferlin, only the 

C2A domain strongly binds to lipids in a Ca2+-dependent manner [27]. The other C2 

domains show weaker or Ca2+-independent binding to phospholipids [27, 28]. In addition to 

C2A, C2E and C2F domains have been shown to play a core roll in the function of ferlin 

protein activity [29, 30].

Although roles for dysferlin and myoferlin in normal maturation and function of muscle 

cells have been posited, a lack of knowledge about the characteristics and specific functions 

of the various domains of these proteins is a major obstacle in understanding their respective 

mechanism of action. The physiological differences between dysferlin and myoferlin are 

supported by the fact that, despite their overall similarity, they do not appear to be 

functionally interchangeable [32]. Our analysis of the C2A domains from both proteins 

shows that dysferlin C2A binds phospholipid in the presence of Ca2+ slower than other C2 

domains. In addition myoferlin binds Ca2+ with a much lower affinity than dysferlin C2A; 

and, its Ca2+-dependent phospholipid-binding activity is much reduced relative to dysferlin 

C2A. These findings define crucial differences between myoferlin and dysferlin that may 

explain why these two paralogs cannot fully complement the function of the other.
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2. Results

2.1. X-ray Crystal Structure of Human Myoferlin C2A

Human myoferlin C2A (residues 1–125) was crystallized in 0.1 M BisTris, pH 6.5, 20% 

PEG 3350, 0.3 M SrCl2 or CaCl2. Strontium ion has been used as a surrogate for Ca2+ in 

many Ca2+-binding proteins, including the C2B domain of synaptotagmin 1 [33]. We 

completed the Sr2+-bound form for phasing purposes, which we did not utilize. Further, the 

quality of the Sr2+-bound crystals were better than the Ca2+-bound form of myoferlin C2A 

crystals. The cell constants of the two data sets were almost identical. Crystals were grown 

at 23 °C (Fig. 2A) in space group P212121 with three molecules in the asymmetric unit 

(Table 1). X-ray data were collected at SSRL (Stanford Synchrotron Radiation Lightsource). 

The crystals diffracted to 1.93 Å and were solved by molecular replacement (Fig. 2) using 

the NMR-derived structure of Ca2+-free myoferlin C2A as the search model (2DMH [34]). 

Previously, we solved the crystal structures of dysferlin C2A and dysferlin C2Av1 (C2A 

variant 1) [35]. Both dysferlin C2A domains crystallized with three molecules in the 

asymmetric unit; and interestingly, the inner DysF domain of dysferlin also crystallized with 

three molecules in the asymmetric unit [25]. While it is tempting to speculate about the 

oligomerization state of ferlins based on crystallographic observations, currently there are no 

other experimental indications that implicates trimerization with ferlin function.

Myoferlin C2A consists of eight β-strands with a type-2 (P-type) C2 domain topology. The 

β-strands form three loops (Loops 1, 2, and 3) at the apex of the C2 domain that shape the 

divalent binding pocket. In myoferlin C2A, loop 3 possesses three of the residues that bind 

Ca2+ (Asp-71, Phe-72, Glu-73). Loop 2 possesses one of the Ca2+-binding residues (Asn-40) 

(sites I and II, Fig 2C). The phospholipid-binding residues of C2 domains are typically 

linked to the same loops that bind Ca2+. Phe-17 on loop 1 and Ile-75 on loop 3 (Fig. 2B and 

C) are located at the apex of their respective loops and should act as phospholipid-anchoring 

residues for this C2A domain (Fig. 2B) [36].

An NMR solution structure of the un-liganded human myoferlin C2A was initially deposited 

with the PDB by the RIKEN Structural Initiative (RSGI) as 2DMH in 2006 [34]. As such, 

no accompanying biochemical data was published. We can, therefore, compare the 20 NMR 

structures of the un-liganded myoferlin C2A domain with our ligand-bound X-ray structure 

of myoferlin C2A within the experimental limits of the two structures (root-mean-square 

deviation of atomic positions [RMSD] = 0.96 ± 0.06 Å, over all Cα atoms). No Ca2+ or 

divalent cation was reported in the NMR structure of myoferlin C2A [34]. It is possible that 

the myoferlin C2A used for the NMR structure could have access to calcium ions from the 

buffer solution. However the rotamers of the acidic residues coordinating the divalent cations 

in the crystal structure versus the solution-state structure are clearly The most obvioust. 

Therefore, it is unlikely that the NMR structure contained bound divalent cations.

The most obvious difference between the two structures is the deviation of loop 3 (Figs.

2E,F). The difference-distance matrix of myoferlin C2A without Ca2+ (2DMH) was 

subtracted from the difference-distance matrix of the crystal structure of myoferlin C2A with 

bound cations. A difference- distance matrix is generated by calculating the distances 

between all pairs of equivalent Cα atoms in each molecule and then subtracting those 
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distances. This allows a means of quantitatively assessing any structural similarity or 

differences between two structures. (Fig 2E). The residues that form loop 3 (residues 71–79) 

deviate significantly, indicating a significant difference between the two loops. Interestingly, 

there is little difference in the loop 1 (residues 12–22) conformation between un-liganded 

and liganded structures of myoferlin C2A, thus suggesting an unusually rigid loop 1 

structure (Fig. 2E,F).

2.2. differences in Ca2+ Binding Between Myoferlin C2A and Dysferlin C2A

Despite the overall similarity between the 3D structures of myoferlin and dysferlin C2A 

(RMSD = 1.91 Å, over all Cα atoms), the manner in which Ca2+ is coordinated between the 

two domains is different. Using the dysferlin C2A structure as a reference, the first Ca2+-

binding site in myoferlin C2A (Site I, Fig. 2C) utilizes a reduced ligation shell with only 

three oxygen atoms contributed by the domain. The high affinity site in dysferlin C2A, on 

the other hand, binds Ca2+ with one additional oxygen atom contributed by Asp-18 on loop 

1 [35]. Therefore, relative to the same binding site in dysferlin C2A, the myoferlin C2A site 

I is incomplete (Fig. 2C). The more typical loop 1 aspartate (Asp-18 in dysferlin C2A) has 

been substituted with Gly-18 in myoferlin C2A. The majority of protein sequences identified 

as myoferlin in the Genbank database utilize a glycine at this locus (Fig. S3). The ligation 

shell for the second binding site in myoferlin C2A (Site II, Fig. 2C) is similar to that of 

dysferlin C2A [35].

Comparing NMR solution structures to a crystal structure can be problematic due to 

differences in buffer conditions and data collection temperatures; however, some key 

differences can be concluded. Superposition of the 20 NMR-derived ligand-free structures 

shows heterogeneity in conformation of loop 3, but less variation in loop 1 (Fig. 3a). In other 

C2 domains, loop 1 is flexible, and therefore not modeled in X-ray structures, or it is 

completely absent from domain as in the case of otoferlin C2A [37]. Loop 1 in myoferlin 

C2A appears more rigid than other loop 1 sequences in C2 domains. Its rigidity can be 

traced to a difference in the primary sequence of a conserved stretch of residues that make 

up loop 1. In (Type-1) synaptotagmin C2 domains, the …SDPYVK… motif, located at the 

C-terminal end of the loop 1 sequence is essential for Ca2+ binding, and is a hallmark of the 

C2 motif. Mutations of synaptotagmin C2 domains within this conserved motif eliminate 

Ca2+-binding in vitro [38, 39], as well as Ca2+-dependent exocytosis in Drosophila in vivo 
[40]. In myoferlin C2A, the corresponding sequence is …PDPIVS…, where the first serine 

in the conserved sequence has been been replaced by a proline (Pro-20); Pro is conserved at 

this locus in the majority of myoferlin sequences (Fig. S2, S3). In general proline augments 

the local structural rigidity of loops, and with two proline residues in close proximity within 

the same loop, we would therefore expect them to significantly decrease the conformational 

entropy of that loop. Indeed, in the NMR-derived, un-liganded domain, the average RMSD 

for backbone atoms for the residues in loop 1 (residues 10–22) is 0.52 Å, while the average 

RMSD between the 20 computed NMR structures is 0.78 Å A for loop 3 (residues 71–79). 

The average RMSD value is 0.42 Å for all structures calculated using backbone atoms for 

the whole domain. Similarly the relative rigidity of myoferlin C2A loop 1 is also reflected in 

the crystallographic B-factor of the liganded form of the domain. For loop 1 amino acids 

(residues 10–22), the average refined B-factor is 30.86 Å2, while loop 3 (residues 71–79) is 
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44.26 Å2. The refined B-factor for all atoms in myoferlin C2A domain, averaged from all 

three molecules in the asymmetric unit, is 26.94 Å2 (Fig. 3b, Table 1).

2.3. Lipid-Binding Model for Dysferlin and Myoferlin C2A

As peripheral membrane binding domains, C2 domains often possess bulky hydrophobic 

residues at the tips of loops 1 and 3 to use as membrane-anchors [36, 41]. Myoferlin C2A 

possesses one bulky hydrophobic residue on loop 1 (Phe-17) and one hydrophobic residue 

on loop 3 (Ile-75), which is analogous to other C2 domains with membrane anchors. 

Dysferlin C2A has a single residue on loop 3 that could serve as a membrane anchor 

(Met-75); however, the membrane-binding potential of loop 1 is less clear. The sequence of 

Loop 1 of dysferlin C2A is His-Thr-Pro-Asp-Thr-Asp-Ile-Ser-Asp; therefore, it does possess 

a hydrophobic residue on loop 1 (Ile-19, Fig. 2 D). If Ile-19 does indeed interact with 

membrane, it is positioned differently from other loop 1 binding residues. To ensure that the 

Ca2+-binding pockets remained intact after mutagenesis, we measured the Ca2+-binding 

properties of mutant dysferlin C2A and mutant myoferlin C2A. When we mutated Ile-19 on 

dysferlin C2A to an alanine residue (I19A), in addition to M75A, Ca2+-binding of the 

domain was abrogated (Fig. S5). It is likely that this residue may affect the overall shape of 

the calcium ion binding pocket; therefore, Ile-19 was excluded from further consideration. 

These results cannot, however, completely exclude Ile-19 as a membrane interacting residue 

without further experimentation. Our Ca2+-binding measurements confirmed that the Ca2+-

binding pockets of the mutant C2 domains that we tested (dysferlin M75A and myoferlin 

F17A/I75A) remained functional and displayed similar binding values to that of the wild 

type C2 domains (Table 2). To test the membrane-anchoring potential of the loop residues of 

myoferlin and dysferlin C2A, we used a co-sedimentation assay to compare wild type and 

alanine mutations of the possible membrane-anchoring residues.

Dysferlin C2A did not significantly bind uncharged 100% PC (phosphotidylcholine) vesicles 

either with or without Ca2+ (Fig. 6). Upon exposure to a phospholipid surface with a large 

fraction of phosphoserine (60:40 PC:PS, phosphatidylcholine:phosphatidylserine), the Ca2+-

dependent component of binding appears. Thus, the Ca2+-dependent enhancement, in the 

presence of Ca2+, is ~ 5X greater relative to the Ca2+-independent binding activity of the 

domain in 60:40 PC:PS (Fig. 6). The binding of the dysferlin C2A M75A mutation was 

reduced in 60:40 lipids with or without Ca2+, suggesting that Met-75 is essential for 

membrane anchoring (Fig. 6). Myoferlin C2A, on the other hand, showed negligible binding 

throughout the range of phospholipids with or without Ca2+ (Fig. 6). Consistent with 

previously published data on the membrane binding specificity of myoferlin C2A [11], we 

did notice a minor component of Ca2+-dependent phospholipid binding; however, in only 

very negatively-charged phospholipid mixtures (50%:50% PC:PS). We did not observe 

significant binding of myoferlin C2A to membranes containing up to 5% PIP2 

(phosphatidylinositol 4,5-bisphosphate) (data not shown). The F17A/I75A mutation of 

myoferlin C2A displayed a minor Ca2+-dependent effect relative to its Ca2+-independent 

phospholipid binding component in the 50%:50% PC:PS lipid mixture; however, the effect 

was weak in this assay (Fig. 6).
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2.4. Kinetics of Ca2+-Dependent Phospholipid Binding by Dysferlin C2A

To study the kinetics of Ca2+-dependent phospholipid binding in dysferlin C2A, we used 

stopped-flow fluorescence spectrometry to determine the rate of binding of the C2 domains 

to a lipid surface in the presence of Ca2+ [42]. Similar to our co-sedimentation results, 

myoferlin C2A did not show appreciable binding to phospholipid by this method. Mixing of 

either Ca2+/dysferlin C2A with liposomes, or lipids/dysferlin C2A with Ca2+, resulted in 

changes in the fluorescence signals between the FRET acceptor incorporated into the vesicle 

and the donor Trp of dysferlin C2A (Fig. 7). Raw data traces from the stopped-flow 

spectrometer were fitted with single exponentials to obtain kinetic values for either the lipid-

dependence or Ca2+-dependence of membrane binding by dysferlin C2A (Fig.7A,C). 

Concerning the differences between experimental conditions, several features emerge from 

our kinetic measurements compared to similar experiments performed using synaptotagmin 

C2 domains. Ca2+-dependent membrane binding by dysferlin C2A was markedly slower 

than that of the C2A domains of synaptotagmins 1 and 7, but was roughly comparable to 

that of the C2 domain from cytosolic phospholipase A2 [41, 43]. Surprisingly, the observed 

rates (kobs) for dysferlin C2A were almost invariant with respect to liposome concentration; 

however, kobs exhibited a robust, linear dependence on [Ca2+], suggesting a first-order 

dependence of lipid binding on [Ca2+] in the concentration range measured. In this range of 

[Ca2+] concentrations, the kon for [Ca2+] was 1.32 × 105 M−1s−1. This observation 

represents a striking contrast with other C2 domains, such as the C2A domain of 

synaptotagmin 1, which binds Ca2+ with very rapid, diffusion-limited kinetics, i.e., ~108 M
−1s−1 [44]. Lipid binding, not Ca2+ binding, is the rate-limiting step in the case of 

synaptotagmin 1 C2A. Therefore for dysferlin C2A, Ca2+-binding appears to be kinetically 

limiting, a feature that distinguishes it from C2 domains of other proteins.

3. Discussion

Dysferlin (237 kDa) and myoferlin (230 kDa) participate in membrane fusion at different 

stages of muscle development and physiology. Dysferlin has been implicated in maintaining 

the integrity of cell membranes [45], while myoferlin is instrumental in the early stages of 

muscle development[46]. Overall dysferlin and myoferlin are 68% similar (56% identical) at 

the primary sequence level. Indeed, the first C2A domains of both proteins are 57% similar 

(42% identical). Given the sequence identity shared between these two large proteins, one 

would naturally expect that they should function similarly or at least complement each 

other’s function. However based on our results, the C2A domains of myoferlin and dysferlin 

share relatively few biophysical properties. Here we show that the C2A domain of dysferlin 

has slow Ca2+-dependent phospholipid-binding kinetics compared to other C2 domains. 

Further, both myoferlin and dysferlin not only bind Ca2+ differently, but they also have 

distinct lipid-binding avidities that likely reflect their different roles in muscle physiology.

The overall tertiary structure of myoferlin C2A is similar to other Type-2 (P-type) ferlin C2 

domains. Both myoferlin and dysferlin C2A domains bind two calcium ions; however, each 

domain utilizes calcium ions for different purposes. Dysferlin C2A possesses one high 

affinity site and one low affinity site (Table 2). The high affinity Ca2+ site in dysferlin C2A 

is primarily structural, and its occupancy at this locus increases the likelihood of proper 
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domain folding in C2A [35]. The lower affinity site in dysferlin C2A responds to 

environmental Ca2+, as it alters the surface electrostatics of the domain, and prepares the 

domain for peripheral membrane attachment [35]. C2 domains coordinate calcium ions 

through a hexadentate arrangement of oxygen atoms contributed by both main-chain 

carbonyl oxygen atoms and side-chain oxygen atoms [47]. Most Ca2+-binding C2 protein 

motifs have evolved to provide four equatorial and one axial oxygen atom. The sixth 

coordinating atom is typically contributed by phospholipids [48]; hence, providing a link 

between Ca2+ binding and phospholipid binding. Dysferlin C2A has this property; however, 

myoferlin is different. The affinity for Ca2+ of the myoferlin C2A domain is surprisingly low 

(KD=128 μM), and its low Ca2+-binding affinity can be explained by two unique structural 

features. First, myoferlin C2A has substituted a glycine residue for the negatively-charged 

residue that is typically located on loop 1. In fact, glycine at this locus on loop 1 is 

conserved in the vast majority of sequences labeled as myoferlin (Fig. S3). In the myoferlin 

C2A crystal structure, the hexadentate arrangement of oxygen atoms for the ”I” calcium ion 

(Fig. 2 C,D) is contributed by the side chains of Asp-21 and Asn-40, and the carbonyl 

oxygen from Lys-19. The remaining coordinating atoms in the crystal structure are provided 

by one water molecule, and/or two residues (Asp-94 and Gln-95) from symmetry-related 

molecules. The coordination of calcium ion ”II” is similar to the lower affinity calcium ion 

in dysferlin C2A.

The second adaptation of myoferlin can be explained by the rigidity of loop 1. The 

substitution of the first serine with a proline residue in the conserved …SDPYVK… motif 

likely contributes to the reduced calcium ion affinity. Since loop 1 in myoferlin C2A does 

not contribute side chain oxygen atoms to Ca2+ binding, the change in the conformation of 

loop 1 cannot be linked to Ca2+ binding as with other C2 domains. To bind calcium ion at 

all, the protein must, therefore, conserve the overall shape of the Ca2+ binding pocket via an 

alternative mechanism. Indeed, the entire loop 1 sequence is flanked by proline residues. 

The N-terminus of loop 1 begins with Pro-13 while the C-terminus ends with Pro-20, 

Asp-21, Pro-22. Therefore, the conformation of loop 1 in myoferlin C2A is dominated by 

the restricted ϕ torsional angles accessible by its flanking proline residues. A similar 

conclusion has been made in the ‘RGD’ loop of the HIVZ2 Tat protein [49]. The restricted 

conformational space of loop 1 is also reflected in the thermodynamic values obtained from 

cation binding (Table 2, Fig. 5). In the dysferlin C2A case, the relatively large enthalpic 

penalty for ions to bind at the high affinity site is related to the folding dynamics of the 

domain as a function of Ca2+ occupancy (Table 2). The enthalpic barrier to binding is 

compensated by a net favorable ΔS term. The net favorable ΔS term includes the entropy 

changes due to the ordering of binding loops, in addition to the entropy changes due to the 

displacement of water molecules from the Ca2+ binding site (Table 2, Fig. 5). Indeed, the ΔG 

of unfolding for dysferlin C2A is near 0 kcal/mol without Ca(2+) [35], so; the domain 

samples a larger ensemble of unfolded states without Ca2+. In myoferlin C2A, we measured 

a small enthalpic term complemented by a small, but favorable entropic term upon Ca2+ 

binding. Therefore, the thermodynamic values we measured for myoferlin C2A Ca2+ 

binding are consistent with the relatively small changes to the shape of the binding pocket, 

consistent with a more rigid binding pocket.
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We predicted that myoferlin C2A should associate with phospholipid membranes in a 

similar manner to dysferlin and synaptotagmin C2A domains, as it has hydrophobic side 

chains located in homologous positions on loops 1 and 3. We also predicted that the C2 

domains of myoferlin and dysferlin would prefer binding to negatively-charged 

phospholipids similar to other C2 domains [50]. We measured avid dysferlin C2A 

association with a mixture of 60:40 PC:PS in a Ca2+-dependent manner; myoferlin, on the 

other hand, did not show analogous degrees of binding to any of the phospholipid mixtures 

we tested with or without Ca2+ (Fig. 6). We did measure weak Ca2+-dependent binding of 

myoferlin C2A with 50:50 PC:PS membranes[11](Fig. 6), so a negatively-charged 

phospholipid membrane is a component of myoferlin C2A phospholipid interaction. 

Therefore even weak binding to anionic membranes likely reflects at least some electrostatic 

contribution to membrane docking for myoferlin C2A [41]. Indeed, a surface electrostatic 

representation of Ca2+-bound myoferlin versus Ca2+-bound dysferlin C2A shows a clear 

difference in the strength of the electrostatic surface potential relative to dysferlin C2A (Fig. 

8a, 8b). The relatively weak surface electrostatics of myoferlin C2A is also reflected in the 

myoferlin C2A purification protocol as we could not use ion-exchange chromatography as 

with dysferlin C2A (Fig. 8b). In addition, we could not detect Ca2+-dependent phospholipid 

binding of the myoferlin C2A double-mutant (Fig. 6); hence, these residues may contribute 

to a more tenuous protein:phospholipid association under our experimental conditions. 

Marty, et al. report a moderate Ca2+-dependent, phospholipid-ordering effect of myoferlin 

C2A using a fluorescence polarization technique [51]. It is possible that the exposed basic 

residues on the surface of myoferlin C2A loosely interact with negatively charged 

phospholipids to alter the order of lipids. Indeed, weak, tenuous protein-phospholipid 

interactions have been hypothesized in similar domains [52]. Another possibility to explain 

the anomalously weak interaction of myoferlin C2A with PS-containing membranes is that 

myoferlin C2A may be more selective for a specific membrane curvature or a different 

phospholipid packing arrangement relative to dysferlin C2A. For example, the C2 domains 

of synaptotagmin tend to bind to phospholipid mixtures that accentuate both electrostatics 

and highly-curved surfaces [53].

Dysferlin and myoferlin are the most closely related members of ferlin protein family [54]. 

Despite their similarities, however, they are expressed in different stages of muscle cell 

growth and development and are associated with different diseases. The mechanism by 

which myoferlin interacts with Ca2+ and phospholipids has not been completely elucidated. 

In this study, we investigated the structural and functional characteristics of myoferlin C2A 

and compared it to the more extensively studied dysferlin C2A. We found significant 

differences between these seemingly similar domains that may partially explain the disparate 

physiological activity between dysferlin and myoferlin. We showed that myoferlin C2A 

binds calcium ions, but with 3-fold lower affinity than that of dysferlin C2A. We also 

showed that the phospholipid-binding activity of dysferlin C2A in the presence of Ca2+ is 

much higher than myoferlin C2A. We identified and established the significance of 

phospholipid-interacting residues of the dysferlin (Met-75). Our M75A mutant of dysferlin 

C2A reduced Ca2+-dependent phospholipid-binding activity of dysferlin C2A, while the 

Ca2+-binding activity was preserved. The association of myoferlin C2A to PC:PS (50:50) 

liposomes in the presence of Ca2+ was also reduced in the F17A and I75A mutants, albeit 
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weakly. Further, we studied the kinetics of dysferlin C2A interaction with phospholipids. 

Our stopped-flow spectrometry results indicate that the kinetics of the dysferlin C2A Ca2+-

dependent phospholipid interaction are mainly a function of Ca2+ concentration. In dysferlin 

C2A while increasing lipid concentration provoked only small increases in kobs, we 

observed a steep linear dependence of kobs on [Ca2+]. To the best of our understanding, this 

indicates that formation of the C2A-Ca2+ complex, i.e. Ca2+-binding, is rate-limiting, rather 

than binding of the complex to lipids. Dysferlin C2A represents the first example of a C2 

domain for which membrane association is dependent on the concentration of the C2A-Ca2+ 

complex, though the lipid versus Ca2+ dependence of membrane association kinetics has not 

been formally established for most C2 domains. Presumably, elevated cytoplasmic calcium 

ion concentration is among the stimulatory signals for dysferlin’s action, so the protein 

should be capable of differentiating between the elevation of transient myocyte cytoplasmic 

calcium ion concentration and those transients associated with sarcolemmal damage. A 

“slow” Ca2+ sensor that is only activated by prolonged Ca2+ transients could serve this 

function. The Ca2+-sensitive kinetics that we observed for C2A may allow dysferlin to act as 

a Ca2+ sensor for sarcolemmal damage in an environment where large Ca2+ transients are 

commonplace. Finally, our crystal structure of divalent-bound myoferlin C2A together with 

our thermodynamics analysis suggests that unlike dysferlin C2A, loop 1 in myoferlin C2A is 

less flexible and there is likely a conformational change in its loop 3 upon Ca2+ binding. 

Future studies will include the analysis of the other domains of ferlin family members to 

understand their role in the total activity of these proteins, and why mutations lead to 

disease.

4. Methods and Materials

4.1. Cloning, Expression and Purification of C2A Domains

The cloning of dysferlin C2A was described previously [35]. The myoferlin C2A gene (1–

125) was assembled by Genewiz based on the human myoferlin sequence from 

GENBANK:AAF27176.1. The C-terminus of myoferlin C2A was determined based on the 

alignment of myoferlin with the dysferlin C2A crystal structure (4IHB). The primary 

sequence for myoferlin C2A was reverse-translated and optimized for E. coli expression. 

The resulting nucleotide sequence was cloned into the pET-based p202 expression vector for 

subsequent expression. Dysferlin and myoferlin C2A wildtype and mutant domain 

expression plasmids were transformed into BL21(DE3) competent cells and spread onto LB 

agar plates containing 50 μg/mL kanamycin and incubated at 37 °C overnight. Isolated 

colonies were picked and used to start a 50 mL Luria Broth (LB) containing 50 μg/mL 

kanamycin and the culture was incubated overnight at 37°C while shaking at 250 rpm. 10 

mL of this culture was used to inoculate a 1 L Terrific Broth (TB) culture also containing 50 

μg/mL kanamycin at 37 °C and 250 rpm. At OD600 = 2.0, the culture was cooled to 18 °C 

and the protein expression was induced with the addition of 400 μL of 1 M isopropyl β-D-1-

thiogalactopyranoside (IPTG). After 12 hours of incubation, cells were harvested using a 

Beckman JLA-8.1000 rotor at 5000 rpm (6227 x g) and flash frozen in liquid nitrogen until 

ready for use. Next, cells were thawed in lysis buffer (20 mM HEPES pH 7.4, 150 mM 

NaCl, 5 mM CaCl2), ruptured using a Microfluidizer, and spun using a Beckman JA-20 rotor 

at 19,500 rpm (45.900 x g) for 45 min. The supernatant was passed through a Ni-NTA 
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affinity column which was equilibrated with lysis buffer. The column then was washed with 

150 mL lysis buffer, followed by a wash in lysis buffer plus 30 mM imidazole. Finally, His6-

MBP-C2A was eluted with 80 mL lysis buffer including 300 mM imidazole. The resulting 

fusion protein was cleaved with Tobacco Etch Virus Protease (TEV) overnight at 4°C. At 

this step, all proteins were buffer-exchanged into 20 mM HEPES pH 7.4, 50 mM NaCl, and 

5 mM CaCl2 for further purification using ion-exchange chromatography. In the case of 

dysferlin, SP-Sepharose column was used to separate C2A from MBP, TEV protease, and 

uncleaved fusion proteins. A 0 to 1 M NaCl gradient was applied to the column and 

dysferlin C2A wildtype and mutant domains were eluted in fractions starting at a 

conductivity of 38 mS/cm. In the case of myoferlin, protein solutions were loaded onto 

QAE-Sepharose column and myoferlin C2A wildtype or mutant myoferlin C2A domains 

came off in the flow-through. We tried SP-Sepharose column for myoferlin and still 

myoferlin C2A domain mostly came off in the flow-through. In either case, the solution 

containing the protein of interest was concentrated and loaded onto a Superdex 75 column to 

remove the remaining contaminations. Purity was assessed using SDS PAGE Stain-Free gels 

from BioRad (Fig. S1) and protein concentrations were quantitated by OD280 using each 

proteins calculated extinction coefficient.

4.2. Crystallization and Data Collection

Purified myoferlin C2A domain (10 mg/mL) was crystallized in 0.1 M Bis-Tris, pH 6.5, 

20% PEG 3350, 0.3 M SrCl2. Crystals were grown at 23 °C. The crystals were captured into 

nylon loops and frozen in liquid N2. Initial data sets were collected on a Rigaku 

ScreenMachine. Subsequent data sets were collected at SSRL beamline 7–1. The wavelength 

of the final data sets was 0.9796 Å, and the data were collected at 90 K. X-ray data were 

processed with imosflm [55], and the data were scaled using AIMLESS as a part of the 

CCP4 package [56]. The X-ray crystal structure was solved using molecular replacement 

techniques (Phaser) [57] and subsequently refined using Phenix[58].

4.3. Isothermal Titration Calorimetry

The Isothermal Titration Calorimetry (ITC) buffer, containing 150 mM KCl, and 20 mM 

HEPES pH 7.4, was passed through a Bio-Rad Chelex 100 resin to remove cation impurities 

and filtered using 0.22 μm membrane filter. The Ca2+ stock solution was prepared by 

diluting sterile and filtered 2.0 M CaCl2 stock solution purchased from RPI (Research 

Products International) with the ITC buffer. Additionally, the proteins were buffer exchanged 

into the ITC buffer using PD-10 columns from GE Healthcare. Each experiment was 

repeated at least 3 times with 200 rpm mixing at 15 °C. The best results obtained using a 

protein concentration ranging from 150–400 μM and a titrant (Ca2+) concentration of either 

5 or 10 mM. All experimental repeats corresponding to each protein sample were performed 

using a constant CaCl2 concentration. The analysis was performed using NanoAnalyze 

software. We fitted the raw data using a multiple binding sites model for dysferlin C2A and 

an independent model for myoferlin C2A (with n=2).

4.4. Liposome Preparation

1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phospho-L-serine (POPS), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamineN-(5-
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dimethylamino-1-naphthalenesulfonyl) (dansyl-PE) were purchased fromAvanti Polar 

Lipids. Phospholipids in chloroform were mixed to obtain the desired molar ratio and 

residual chloroform was then evaporated using nitrogen gas. Dried phospholipids were put 

under vacuum overnight to remove the chloroform residues. The phospholipids were then 

resuspended in a buffer(200 mM NaCl and 20 mM HEPES, pH 7.4) that was passed through 

Bio-Rad Chelex 100 resin to remove divalent cations. The phospholipids were allowed to 

rehydrate over 15 minutes while vortexed and then were sonicated. 100nm liposomes were 

prepared by extrusion through 100 nm polycarbonate filters using an Avanti Mini Extruder. 

The size of vesicles was confirmed to be 100 ± 12 nm, as determined using a Malvern 

Zetasizer Nano ZS (data not shown). Liposome concentration was calculated assuming a 

population of unilamellar liposomes of 5 nm thickness and 100 nm outer diameter at .71 

nm2 per lipid headgroup. This resulted in an estimate of 8.0 × 104 lipid molecules per 

liposome, e.g., 10 nm [liposomes] = 0.8 mM [lipid].

4.5. Stopped-flow Rapid Mixing Experiments

Kinetics experiments were carried out using an Applied Photophysics SX.18MV stopped-

flow spectrometer as described [44]. Large (~100 nm) unilamellar liposomes containing 

65% POPC, 30% POPS, and 5% dansyl-PE were prepared, and FRET experiments were 

carried out by excitation of tryptophan at 285 nm and measuring the emission of dansyl-PE 

using a 523 nm band-pass filter. All experimental data represent three independent 

experiments.

4.6. Sedimentation Assay

Co-sedimentation experiments were performed as described previously[24, 59]. In a 100 μL 

total reaction volume, liposomes with various POPC/POPS ratio were mixed with protein 

and either EGTA or Ca2+. The proteins were also buffer exchanged into the Chelex-treated 

buffer used in preparation of liposomes to removes any Ca2+ contamination. The final 

concentration of each component was as follows: 1 mM liposomes, 4 μM protein, and either 

0.2 mM EGTA or 1 mM CaCl2. The samples were allowed to incubate for 15 minutes in 

37 °C and then centrifuged at 65,000 rpm (183,000 x g) using a Beckman TLA-100 rotor for 

45 minutes in a Beckman Optima MAX-E table-top ultracentrifuge. In most cases, analysis 

of the supernatant is preferable to analysis of the pellet because it requires reduced sample 

handling, produces more robust results, and is amenable to large scale comparisons with 

other C2 domains [53]. Therefore, equal amounts of the supernatants were loaded to SDS-

PAGE and were imaged and quantified using a Bio-Rad Criterion Stain Free Imaging 

System Gel Imager and Image Lab software (Fig S4). This technology does not require 

staining and destaining steps, providing a highly sensitive and reliable method in protein 

quantification that is equal or better than Coomassie staining. Each experiment was repeated 

at least 3 times, and the errors are presented as standard deviation.Students t-test statistical 

analysis was performed to test the significance of the difference observed between the 

measurements.

4.7. Equilibrium Co-sedimentation Control Experiment

The co-sedimentation assay has been a common biochemical technique to study protein-

phospholipid interactions, especially in ferlins and synap-totagmins. In co-sedimentation 
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experiments, additional controls need to be considered to assure that the observed interaction 

is a direct result of protein vesicle interaction. We considered three control experiments for 

each protein: the input (protein only), protein+EGTA control, and protein+Ca2+ control (Fig 

S4). These controls lack lipid vesicles and reveal aggregation due to possible interaction of 

proteins with either EGTA or Ca2+. We observed no detectable depletion in the amount of 

protein in the supernatant in our control experiments, which strongly suggests that C2A 

proteins do not aggregate or pellet when combined with Ca2+ or EGTA.

4.8. RMSD calculations

All RMSD (root-mean-square deviation) values were computed using the method as 

implemented in PyMOL [60].

4.9. Accession Numbers

Coordinates and structure factors have been deposited in the Protein Data Bank with 

accession number 6EEL.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The initial C2 domains of dysferlin and myoferlin are 57% similar (42% 

identical). Despite this similarity, myoferlin overexpression does not 

completely rescue the null dysferlin phenotype

• Unlike dysferlin C2A, myoferlin binds two Ca2+ with equivalent affinity.

• Unlike dysferlin C2A, the membrane binding loop 1 of myoferlin C2A is 

relatively rigid

• Unlike dysferlin C2, myoferlin C2A binds lipids with different kinetics than 

other known C2 domains.

• The first X-ray structure of myoferlin C2A bound to divalent cation to 1.9A 

resolution.

Harsini et al. Page 18

J Mol Biol. Author manuscript; available in PMC 2020 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
A. Domain schematic of the dysferlin and myoferlin proteins. C2 domains are shown as 

boxes, FerA is depicted as a helical cartoon. The domains highlighted in red are the two 

C2A domains under consideration B. Structure-based alignment of dysferlin C2A and 

myoferlin C2A [31].β-strands are labeled above and highlighted as blue-shaded boxes. 

Residues observed to coordinate Ca2+ are boxed. Hydrophobic residues at the Ca2+ binding 

site that interact with the membrane are shown in red.
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Figure 2: 
A. The asymmetric unit of human myoferlin C2A crystallized with Sr2+. B. Single myoferlin 

C2A domain highlighting Phe-17 and Ile-75 putative membrane-anchoring residues. C. 

Close-up of Ca2+-binding residues of myoferlin C2A. Calcium ion ‘I’ is analogous to the 

calcium ion found in dysferlin C2A bound to the high-affinity Ca2+-binding pocket [35]. D. 
Dysferlin C2A structure (chain E of pdb code: 4IHB) showing the single calcium ion 

observed in dysferlin C2A. The residues that make up the loops 1, 2, and 3 are shown as 

sticks. E. Distance-difference matrix comparing liganded vs. un-liganded myoferlin C2A. 

Loop 3 residues are boxed. F. Superposition of myoferlin 2DMH (yellow, without divalent 

cation) and myoferlin from this X-ray crystal structure (green, with Sr2+). Calcium ion 

binding loops are labeled.
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Figure 3: 
Superimposed structures of myoferlin C2A with and without divalent cation. a. myoferlin 

C2A from the NMR deposited structure (2DMH) b. Superimposed molecules from the 

myoferlin C2A X-ray crystal structure (6EEL).
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Figure 4: 
Representative ITC thermograms and their corresponding fitted curves of Ca2+ binding to 

wild type a. dysferlin C2A (red) and b. myoferlin C2A (green).
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Figure 5: 
Graphical summary from Table 2 of the thermodynamic parameters obtained from the ITC 

analysis of Ca2+ binding in myoferlin C2A and dysferlin C2A and the lipid-binding mutants.
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Figure 6: 
Co-sedimentation assay results for dysferlin C2A and myoferlin C2A versus phospholipid. 

Error bars are standard deviation from at least 4 experiments. The ‘*’ above the myoferlin 

C2A wild type data denotes a significant statistical difference (p<0.05) between the two 

datasets.
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Figure 7: 
A. Representative dysferlin C2A stopped-flow traces; binding was monitored as a function 

of [liposome]. B. Plot of kobs from panel A. C. Same as in panel A, except that binding was 

monitored as a function of [Ca2+]. D. Plot of kobs from panel C. Error bars are the standard 

error from at least three independent experiments.
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Figure 8: 
Electrostatic representation of (a) dysferlin C2A with Ca2+ and (b) myoferlin C2A with 

Ca2+. Blue regions reflect positively-charged zones on the surface of the domain. Red 

regions reflect negatively-charged zones on the surface. Both molecules were contoured to 

± 3 kT/e.
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Table 1:

Crystallographic summary of myoferlin C2A

Resolution Range (Å) 41.14 – 1.93 (1.99 – 1.93)

Space Group P 21 21 21

Unit Cell(Å) 47.35, 83.11, 94.28

Total Reflections 333686 (32892)

Unique Reflections 28689 (2825)

Multiplicity 11.6 (11.6)

Completeness (%) 99.52 (99.82)

Mean I/σI 9.5 (1.7)

Wilson B-factor 20.0

Rmerge 0.112 (0.645)

Rmeas 0.135 (0.777)

Rpim 0.060 (0.348)

CC1/2 0.907 (0.779)

Reflections used in Refinement 28580 (2825)

Reflections used for Rfree 2793 (260)

Rwork 0.181 (0.232)

Rfree 0.192 (0.244)

Number of non-hydrogen atoms 3496

ligands 6

solvent 470

Protein residues 387

RMS (bonds, Å) 0.017

RMS (angles, °) 1.87

Ramachandran favored (%) 97.9

Ramachandran allowed (%) 2.1

Ramachandran outliers (%) 0

Rotamer outliers (%) 0

Clashscore 0.97

Average B-factor (Å2) 29.00

macromolecules (Å2) 26.94

ligands (Å2) 30.82

solvent (Å2) 31.89
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