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Abstract

A power calculation for a study with a quantitative outcome requires information on the outcome 

distribution under the alternative hypothesis. Researchers face challenges when they concisely 

specify alternative distributions in genetic studies because power depends on genotype frequencies 

and the average effect of each genotype. In GWAS, investigators evaluate hundreds of thousands 

of associations; therefore it is unrealistic to specify gene frequencies and gene effects for each test 

and some simplification is needed. Software packages are available to calculate power, but many 

of them have limited flexibility and / or may have a steep learning curve. In this review, we 

describe to researchers and graduate students the essentials of a power calculation for testing for 

an association between a quantitative trait and genotypes. In addition, we provide them with the 

codes of the different available software packages—free and commercial—to calculate this power. 

The calculations can be carried out using virtually any computer language that computes the 

cumulative distribution function of a non-central F-distribution.
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INTRODUCTION

Researchers conduct Genetic-Wide Association Studies (GWAS) to locate genetic variants 

(usually SNPs: single nucleotide polymorphisms) responsible for common and complex 

diseases. An insufficient sample will result in a lack of statistical power, which can prevent 
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researchers from identifying SNPs related to such diseases. Therefore, before conducting a 

GWAS, investigators frequently calculate the ‘required’ sample size to achieve a specified or 

the statistical power of available samples. Many investigators have no information on how to 

calculate the required power to conduct GWAS.

In general, power is calculated by specifying a statistical test, e.g., analysis of variance, an 

effect size to be detected by the test, and the probability of incorrectly rejecting the null (no 

effect) hypothesis. The researcher wishes to reject the null hypothesis when the alternative 

hypothesis (effect of specified size) is true. The statistical power of a test is the probability 

of rejecting the null hypothesis when it is false (accept the alternative hypothesis). In genetic 

association studies, the power calculation depends on genotype frequencies and the average 

effect of each genotype. Because GWAS evaluate hundreds of thousands of associations, it is 

unrealistic to specify gene frequencies and gene effects for each test and some simplification 

is needed. Herein, we describe how to calculate power to test for an association between a 

quantitative trait and genotypes by an analysis of variance (ANOVA). To describe the effect 

size of SNP’s genotypes on quantitative traits, non-centrality parameter (NCP) is used. The 

NCP defines the effect size in an ANOVA (Lehmann, 1986). Once a NCP is computed, the 

power calculation is a function call that computes the cumulative probability of a non-central 

F distribution, a widely available function. Thus, 1) it is easy to compute power for an F-test 

of phenotype differences among genotypes. 2) It is easy to implement this calculation in 

many statistical software packages. If the function is unavailable, there are good numerical 

approximations that are not difficult to program (Abramowitz and Stegun, 1965; Johnson et 

al., 1995).

In this paper, we explain how to compute a NCP based on genetic concepts of phenotype 

heritability, additive allele effects, or dominant/recessive allele effects. We illustrate the 

basic power calculations coded in Mathematica, Matlab, R, SAS and Stata. We outline 

algorithms to plot power as a function of heritability and implement the algorithm in SAS. 

We outline algorithms to plot the effect size detected with power of 0.8 as a function of 

minor allele frequency and implement the algorithm in Matlab. Our approach relates the 

statistically relevant NCP to genetically relevant parameters to provide better insight into the 

power of a study to identify genetic variants associated with quantitative traits.

Although there are several stand-alone packages that can compute power (Dupont and 

Plummer, 1990, 1998; Faul et al., 2007; Feng et al., 2011; Gauderman, 2002; Purcell et al., 

2003; Spencer et al., 2009), learning how to use them takes time and they tend to lack 

flexibility. Our goal is to make the power calculation straightforward for someone who is 

familiar with any of the common statistical packages.

METHODS

We assume that associations between a continuous phenotype, e.g., blood pressure, and 

many genetic markers will be tested one at a time by analysis of variance (ANOVA). Table 1 

is a generic ANOVA summary of the analysis for a single marker. Several terms of interest 

to the discussion of the statistical power of these analyses are symbolized in this table. The 

table assumes that phenotypes and genotypes are measured in n subjects. The degrees of 
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freedom for genotypes, d, will depend on how we evaluate the genotypes, but typically d 
will be 1 or 2.

The p covariates are incorporated to adjust for non-genetic factors that may affect the 

phenotype. In the case of blood pressure for example, these might be covariates that adjust 

for age, blood pressure medication, and population stratification. The same covariate 

adjustment is applied to the analysis of each genetic marker. So operationally the phenotype 

measurements are initially adjusted by these covariates and the marker-specific 

computations are usually run on the residuals after the covariate adjustment. An ANOVA 

test of ‘no gene association’ tests the null hypothesis that there are no phenotype differences 

among genotypes, i.e., η2 = 0. Here, η2 symbolizes the effect size, which is a summary of 

the magnitude of the phenotype differences among genotypes. The power of this F-test can 

be computed using functions that are widely available in statistical software packages. 

Power depends on the magnitude of a so-called non-centrality parameter (NCP), λ = η2 ∕ σ2, 

the degrees of freedom, d and ν, and the significance level, a. In particular, the power of this 

test is computed as the probability that the F-ratio will exceed a value, Power = Pr[F(d, ν, λ) 

≥ c], where F(d, ν, λ) denotes a random variable with a non-central F distribution and c 
denotes the value of an F-ratio that is statistically significant at the a–level, i.e., c such that a 
= Pr[F(d, ν, λ = 0) ≥ c]. These two values, Power and c, can be calculated in many software 

packages, e.g., SAS or Matlab. Thus, it is straightforward to compute power for an F-test of 

phenotype differences among genotypes when we specify a NCP. Unfortunately a NCP does 

not provide an insightful interpretation of the effect size in the context of a GWAS that seeks 

to identify differences in a continuous phenotype associated with single nucleotide 

polymorphisms (SNP).

NCP as a Function of Heritability

Our initial aim is to relate the non-centrality parameter to the proportion of variation that is 

explained by the SNP, R2. When the computations are run on the residuals after covariate 

adjustment, R2 is simply the R-squared associated with adding genotype. With respect to 

entries in Table 1, this is the observed proportion of the phenotype variation that is explained 

by the SNP genotypes after adjusting for the covariates,

R2 =
SSgenotypes

SSgenotypes + SSresidual

The expected value of a non-central F-distribution is:

μF = v(d + λ)
d(v − 2)

The expected F is a one-to-one function of the non-centrality parameter,λ, and consequently 

specifyingμFis equivalent to specifying the non-centrality parameter, specifically

λ = d(v − 2)
v μF − d
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The ‘true’ proportion of the phenotype variation (after adjustment for covariates) that is 

explained by the genotypes is denoted πR. Replacing the F-ratio in Table 1 with the 

expectations,

μF = v
d

πR
1 − πR

yields a relationship that specifies the non-centrality parameter as a function of the expected 

proportion of the phenotype variation that is explained by the genotypes, i.e.,

λ =
(v − 2)πR

1 − πR
− d (1)

Genetic Models

The entries in Table 1 assume a simple model for phenotype heritability where each 

genotype yields a phenotype that has a normal distribution with genotype-specific mean and 

a variance that is the same across genotypes. For our purpose here, it is convenient to assume 

that there are two alleles, one of which has an allele frequency less than or equal to the other, 

a.k.a. minor allele. The genotype frequencies of SNPs are usually unknown at the 

experimental design stage. However for power calculations, we approximate genotype 

frequencies in terms of their minor allele frequency (MAF), and further assume that 

genotypes are in Hardy-Weinberg equilibrium. That is, genotype frequencies for the 

genotype with 0, 1, or 2 minor alleles, {f0, f1, f2}, are approximated by {(1 − q)2,2q(1 − q), 

q2} where q is the MAF. Under this model, η2 = n∑a = 0
2 f a μa − μ 2, where μadesignates 

the mean value of the phenotype distribution for a genotype with ‘a’ minor alleles. In this 

general setting, the task of specifying μa for every marker is too tedious to be useful, and we 

recommend the preceding approach for obtaining the NCP. However, there are two genetic 

models which provide straightforward interpretations.

NCP in an Additive Genetic Model

An additive genetic model assumes that alleles have an additive effect on the phenotype and 

our assumptions allow us to relate the NCP to the trend in the phenotype means, β, with the 

number of minor alleles. To model this, we count the number of a specified allele in the 

genotype, Xa = 0, 1, 2, and write the phenotype means as μa = μ0 + βxa. Note that this 

formulation implies that μ = μ0 + βx and μa − μ = β(xa − x). The test for a trend in the 

phenotype with increasing count of minor alleles is a test that β = 0. In the context of Table 

1, this trend test corresponds to d = 1 and

η2 = nβ2 ∑
a = 0

2
f a xa − x 2
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where fa is the genotype frequency and β is the slope of the trend (change in phenotype 

mean per minor allele). These assumptions allow us to relate the effect size, β/σ, to the NCP,

λ = η2

σ2 = n β/σ 2 ∑
a = 0

2
f a xa − x 2 (2)

NCP in dominant/recessive models—We can co-opt the previous results to apply to 

dominant genetic models. If the minor allele is dominant, let

xa = 0 if a = 0
1 otherwise,

and if the minor allele is recessive let

xa = 1 if a = 0
0 otherwise.

with either off these changes to the definition of xa, the NCP can be computed using the 

same formulae as the additive genetic model. However the interpretation of the slope 

parameter, β, changes to the difference between the phenotype means of the dominant 

genotypes and the recessive genotype, respectively. Note that the power is the same whether 

the minor allele is dominant or recessive since β computed under the dominant assumption 

simply becomes −β under the recessive assumption; both yield the same NCP power is the 

same whether the minor allele is dominant or recessive since β computed under the 

dominant assumption simply becomes −β under the recessive assumption; both yield the 

same NCP.

RESULTS

Power is the probability of a significant ANOVA under the alternative hypothesis, i.e., Pr(F 
≥ c) where F denotes a random variable with a non-central F-distribution, F(d, n-p-d, NCP), 

and c is the value that is significant at the a-level : Critical Value. Power and c can be 

calculated in many software packages. Figure 1 illustrates the fundamental power 

calculation coded in several well-known computer packages. The codes in Figure 2 outlines 

the basic power calculation. The user specifies the type 1 error (significance level), sample 

size (n), number of adjusting covariates (p), the numerator degrees of freedom (d), and the 

NCP. Typically a marker SNP has two alleles and a minor allele frequency (MAF) exceeding 

5%. In a large sample, n = 1000, at least a few individuals of the three possible genotypes 

should be present in the sample giving the degrees of freedom for genotypes, d= 2. The code 

in Figure 1 can be embedded in a loop that varies the NCP as a function of the expected 

proportion of the variation that is explained by the genotypes (Eqn 1) or as a function of β/σ 
(Eqn 2). Figure 2 plots power curves based on the expected proportion of the variation that is 

explained by the genotypes. This figure iterates the preceding code for sample sizes, n = 

500, 1000, 2000, 4000, 8000, and NCP defined by Eqn 1 with πR = 0 to 0.01 by 0.001. 
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Figure 2 was produced using Matlab as the authors are more adept at plotting using this 

programming language. SAS code that will reproduce the essential features of Figure 2 are 

included in the appendix. Because the NCP in Eqn 2 also depends on the MAF, we report 

the effect size, β∕σ, that has a power of 0.8 as a function of the MAF. Conceptually, this 

could be computed by adding another loop that varies the MAF and saving the effect sizes 

with a power of 0.8. Figure 3 plots the effect size detectable with a power of 0.8 as a 

function of the MAF for the sample sizes used in Figure 2. This was computed using a 

Matlab program. The calculations can be finessed to express power in the context of a 

disease locus that is observed via linked markers. The appended Matlab program 

incorporates an adjustment for the correlation between a disease locus and the markers.

DISCUSSION

In this paper, we described computer codes that calculate the required statistical power for 

detecting a significant association between a genetic variant and a quantitative trait in 

GWAS under additive, dominant and recessive models for the phenotype — Power 

Calculation for SNPs and quantitative trait Association (PCSQT). These codes, i.e. PCSQT, 

were implemented in five widely used commercial statistical packages. The other statistical 

methods do not explicitly include this parameter while calculating study power. Our 

approach relates the statistically relevant NCP to genetically relevant parameters to provide 

better insight into the identification of genetic variants associated with quantitative traits. If 

the NCP is specified it is easy to compute statistical power for an F-test of phenotype 

differences among genotypes that can easily be implemented in many statistical software 

packages. The calculations can answer the following question: if a Single Nuclear 

Polymorphism (SNP) explains % of the variation i.e. Heritability, with sample size n, what is 

the statistical power of the proposed study?

These codes permit investigators to employ heritability as an effect size, instead of the mean 

of a quantitative trait, which is often unavailable in genetic studies. To calculate power, we 

use the following parameters: (2) Total sample size; (2) Heritability (the range is 0~1); (3) 

type 1 error rate: (4) number of SNPs in the genetic study: (5) number of covariates; 6) 

linkage Disequilibrium (LD) r2 (Pritchard and Przeworski, 2001): investigators input a LD 

value between a genetic marker and a hypothesized causative variant. When the LD between 

the genetic and causative markers is r2, the sample size (N) is increased to be N/r2. In other 

words, to achieve approximately the same power with the genetic marker as is achieved with 

the causative variant, the sample size must be increased by a factor of 1/r2. (Pritchard and 

Przeworski, 2001).

The output information include: (1) statistical power; (2) a family of power curves plots with 

different heritability and sample size combinations, as shown in Figure 1. The suggested 

statistical approach has some limitations. First, population stratification is not considered 

while calculating statistical power using these codes. Nevertheless, it can be added as one of 

the covariates while estimating the required power calculation. Second, the effect of the 

interaction between genetic variants, and environmental factors on the power determination 

cannot be included in the power calculation. In a GWAS that examines a million SNPs, a 

Bonferroni adjustment for multiple comparisons implies that the critical value, c, is 

Delongchamp et al. Page 6

Eur J Environ Public Health. Author manuscript; available in PMC 2019 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computed for a significance level on the order of 10−8 (Klein, 2007). The numerical 

algorithm implemented in the software to approximate c may or may not be adequate for the 

task. For the five packages. the software packages in Figure 1, we could not find 

documentation for the algorithm or the error in the numerical approximation. Mathematica 

allows one to specify the number of significant digits; we set this to 20 and use this as a 

standard in Table 2. Table 2 presents an example of critical values computed to 6 decimal 

places for examined software packages and where the values are computed, all agree except 

for α = 10−12. SAS was the only software package that failed to compute the critical values 

for α > 10−5. Differences among critical values in Table 2 have little practical importance. In 

practice, the F-distribution will only approximate the actual distribution of the ratio statistic 

in an analysis of variance (Table 1). The approximation is satisfactory at conventional 

significance levels such as 0.05 or 0.01, and p-values computed from the F-distribution are 

generally accepted as ‘good’ by the scientific community. However, very small p-values, 

such as 10−8, imply a degree of approximation to the distribution of the test statistic that is 

unlikely to be achieved.
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Key Points

• Statistical power calculation should be performed before conducting genetic 

association studies.

• Several stand-alone software packages are available to do power calculations. 

Many researchers are unfamiliar with these packages while they are familiar 

with standard statistical packages.

• We demonstrated how to code power calculations in several standard 

statistical packages—Mathematica, Matlab, R, SAS, Stata—that employ an F-

test to determine the required statistical power to detect a statistical 

relationship between genetic variants and a continuous trait in genetic 

association studies under additive, dominant and recessive models’ 

assumptions.
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Figure 1. 
Computer code in SAS, Matlab, R, Stata, and Mathematica that compute power for an 

ANOVA (Table 1)
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Figure 2. 
Power of an ANOVA for several sample sizes as a function of the proportion of the 

phenotype variation that is explained by the genotypes
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Figure 3. 
Effect size detectable with a power of 0.8 in the dominant/recessive genetic model as a 

function of the minor allele frequency for several sample sizes
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Table 1.

ANOVA table testing for changes in phenotype associated with the genotypes of a SNP

Source of Variation Degrees of Freedom Sum of Squares Expected Mean Squared Error F-ratio

Covariates p − 1 * * *

Genotypes d SSgenotypes σ2 + η2

F =
v SSgenotypes
d SSresidual

Error v = n − p − d SSresidual σ2

Total n − 1
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Table 2.

Software packages and Critical value for F-distribution with 1, 1000 degrees of freedom

Significance level
Critical value for F-distribution with 1, 1000 degrees of freedom

Mathematica SAS Matlab R Stata

1E-03 10.891865559 10.891866 10.891866 10.891866 10.891866

1E-04 15.259521389 15.259521 15.259521 15.259521 15.259521

1E-05 19.712947049 19.712947 19.712947 19.712947 19.712948

1E-06 24.228934152 . 24.228934 24.228934 24.228933

1E-07 28.794927827 . 28.794928 28.794928 28.794928

1E-08 33.403406313 . 33.403406 33.403406 33.403408

1E-09 38.049531722 . 38.049532 38.049532 38.049530

1E-10 42.730026564 . 42.730026 42.730026 42.730026

1E-11 47.442581611 . 47.442581 47.442581 47.442581

1E-12 52.185519872 . 52.185566 52.185566 52.185520
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