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Abstract

Parkinson’s disease is the second most common neurodegenerative disease. In the vast majority of 

cases the origin is not genetic and the cause is not well understood, although progressive 

accumulation of α-synuclein aggregates appears central to the pathogenesis. Currently, treatments 

that slow disease progression are lacking and there are no robust biomarkers that can facilitate 

development of such treatments, or act as aids in early diagnosis. Therefore, we have defined 

metabolomic changes in the brain and serum in an animal model of prodromal Parkinson’s 

disease. We biochemically profiled the brain tissue and serum in a mouse model with progressive 

synucleinopathy propagation in the brain triggered by unilateral injection of preformed α-

synuclein fibrils in the olfactory bulb. In total, we accurately identified and quantified 71 

metabolites in brain and 182 in serum using 1H NMR and targeted mass spectrometry, 

respectively. Using multivariate analysis, we accurately identified which metabolites explain the 

most variation between cases and controls. Using pathway enrichment analysis, we highlight 

significantly perturbed biochemical pathways in the brain and correlate these with the progression 

of the disease. Further, we identified the top 6 discriminatory metabolites and were able to develop 
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a model capable of identifying animals that developed the pathology from healthy controls with 

high accuracy (AUC (95% CI) = 0.861 (0.755–0.968)). Our study highlights the utility of 

metabolomics in identifying elements of Parkinson’s disease pathogenesis and for the 

development of early diagnostic biomarkers of the disease.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease after 

Alzheimer’s disease 1 and the most common movement disorder in the aging human 

population 2. Generalized prevalence rates estimate that 1 to 2 people per 1000 are affected 

by PD in unselected populations 3 and that 1% of the population over 60 years of age is 

affected 4. The main motor symptoms of PD include tremor, rigidity, postural instability and 

bradykinesia 5–6. Non-motor symptoms are a major source of morbidity and some of them 

precede the development of the classical motor symptoms by several years, during the 

prodromal phase of PD 7. At the neuropathological level, PD is characterized by intra-

neuronal inclusions known as Lewy bodies (in somata) and Lewy neurites, mainly composed 

of misfolded α-synuclein (α-syn) and lipids 8–9. In the brain, α-syn pathology progresses 

spatially during the course of the disease, and follows a stereotypical pattern in the brain 

where additional brain regions are involved the longer the disease progression. The α-syn 

pathology has been divided into 6 stages by Braak and coworkers depending on which brain 

regions are affected 10–12. In stage 1, during the prodromal phase (i.e. before motor 

symptoms have developed), pathology is present in the olfactory bulb and the dorsal motor 
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nucleus of the vagus nerve. Neuropathology then spreads to additional brain regions and 

motor deficits appear only when the substantia nigra is affected, at stage 3, when a diagnosis 

for PD can be made 13.

There are no disease-modifying treatments for PD and the underlying etiopathogenesis is 

poorly understood 14. In addition, no biomarkers are available which can track disease 

progression or accurately predict the development of PD in the prodromal phase, when 

neuroprotective and disease-modifying strategies potentially would be most effective 15. Our 

group has recently developed a mouse model of prodromal PD which mimics the 

progression of α-syn pathology beginning in the olfactory bulb 15–16. We believe that this 

model can be used to identify markers of pathology and to test therapeutics aimed at 

preventing or slowing PD development.

Metabolomics or metabolic profiling, is the one of the newer “omics” technologies which 

comprehensively studies metabolic pathways in biological systems with the focus on 

metabolites 17. Metabolomics encompasses high-throughput identification and elucidation of 

the small molecule metabolites that are produced by cells, tissues and microorganisms 18–19. 

This technique has been employed previously in attempts to identify individuals who have 

PD. Using high performance liquid chromatography coupled with electrochemical 

coulometric array detection, Bogdanov et al., (2008) could distinguish plasma samples 

between controls and patients with idiopathic PD 20. In a second study, this group 

demonstrated that plasma profiling can distinguish patients with PD due to G2019S LRRK2 
mutation from idiopathic PD patients 21. Metabolomics has also been used in animal models 

of PD. Chen et al., longitudinally profiled the brain from A53T transgenic mice before (3 

months) and after (18 months) the development of α-syn pathology in the brain. Multivariate 

analyses of brain metabolomics profiles in 3 and 18 month-old A53T and control mice have 

revealed perturbed biochemical pathways at the various stages of the disease 22. More 

recently, LeWitt et al., (2017) demonstrated that gas chromatography mass spectral profiling 

of plasma and cerebrospinal fluid (CSF) can predict disease progression in un-medicated 

patients and those mildly affected by PD 23.

So far, no studies have defined metabolomic differences in brain and serum of an animal 

model of prodromal PD. In this study, we employ both 1H NMR and DI-LC-MS/MS to 

biochemically profile the brain and serum, respectively, in our new prodromal model of PD. 

We aim to uncover previously unreported biochemical pathways that might be relevant to 

early disease pathogenesis in brain, and which correlate with changes in serum. Therefore, 

we hypothesize that the biochemical changes in the brain will be mirrored by biochemical 

changes in the serum.

EXPERIMENTAL PROCEDURES

Animals

C57Bl/6J mice from Jackson laboratory were housed 5 to 6 per cage under regular 12-h 

light/ 12-h dark cycle. Mice had access to food and water ad libitum. The housing and all the 

procedures follow The Guide for Care and Use of Laboratory animals (National Research 
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Council), and were validated by the Van Andel Research Institute’s Institutional Animal 

Care and Use Committee.

Purification of recombinant α-syn and assembly of pre-formed fibrils

Recombinant α-syn purification and fibril assembly was based on a previously published 

protocol 24. Briefly, human α-syn was expressed in BL21 E.coli, pelleted, and lysed by 

sonication. The lysates were boiled for 10 min and centrifuged. The supernatant was 

dialyzed overnight in 10 mM Tris, pH 7.5, 50 mM NaCl, and 1 mM EDTA, and then 

subjected to chromatographic separation by a Superdex 200 Column (GE Healthcare Life 

Sciences) and a Hi-trap Q HP anion exchange column (GE Healthcare Life Sciences). 

Fractions containing α-syn were identified by SDS-PAGE and Coomassie staining before a 

final dialysis into PBS buffer (Life Sciences). The concentration of purified recombinant α-

syn was determined using a NanoDrop 2000 (Thermofisher) and concentrated if needed. 

Aliquots were stored at −80 °C until use. For amyloid fibril assembly, purified recombinant 

α-syn was thawed and diluted to 5 mg/ml in PBS. An aliquot of protein was subject to 

continuous shaking at 1,000 r.p.m at 37 °C in a Thermomixer (Eppendorf) for 7 days. Fibrils 

were aliquoted and frozen at −80 °C until use.

Stereotactic injections

Before injection, human α-syn fibrils (PFFs, 5 ug/uL) were thawed at RT and sonicated at 

RT in a waterbath sonicator (Misonix XL2020 sonicator with cup horn; 50 % power, 60 

pulses of 1 s ON, 1 s OFF). Human α-syn monomers (huMonomers) were thawed at RT and 

spun down at 100,000 g for 30 min. The supernatant was collected and used for injections. 

We performed stereotactic unilateral injection of PFFs (n=20) or huMonomers (n=20) (0.8 

uL, 5 ug/uL) in the OB of 2 months-old wild type mice as previously described 15, 25. Two 

mice injected with huMonomers were euthanized after developing severe dermatitis, 

unrelated to the surgical procedure.

The nature of the fibrils post-sonication was verified by transmission electron microscopy. 

Human fibrils (after sonication) were diluted to 0.1μg /uL into sterile PBS, absorbed onto 

carbon coated 200-mesh grids (Electron Microscopy Science, ref #CF200-CU-UL) and were 

negatively stained with 2% uranyl formate (Electron Microscopy Science, ref #22400). 

Grids were imaged using a FEI Tecnai G2 Spirit TWIN transmission electron microscope 

(FEI Company) at 120kV (Supplementary Figure 1).

Brain and serum collection

Three months post-injection, mice were deeply anesthetized with sodium pentobarbital. We 

collected blood at final bleed by cardiac puncture and the brain was then freshly dissected. 

The cerebellum was cut out, and the forebrain was sectioned at the midline. The left 

(contralateral to the injection) and right (ipsilateral to the injection) hemispheres including 

the olfactory bulbs were collected separately and frozen immediately on dry ice, and stored 

at −80 °C. The blood was collected in BD red top –vacutainer tubes for serum collection, 

and kept at RT for 20–30 minutes to allow blood clot formation. Tubes were then 

centrifuged at 4,500 g for 10 min at 15 °C. The serum was collected and transferred to pre-
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cooled vials, vortexed, aliquoted and frozen on crushed dry ice. Samples were then stored at 

−80 °C.

Brain Sample Preparation

All brain samples were prepared using a modified version of the protocol previously 

described by Graham et al. (2013) 26 and Bahado-Singh et al. (2016) 27. In brief, all brain 

specimens were weighed and defrosted on ice. Subsequently, samples were milled and 

extracted in 50 % methanol/water (1 g/ml) in a sterile 2 ml Eppendorf tube. Samples were 

mixed for 20 min, sonicated for 15 min and the protein removed via centrifugation at 13,000 

g at 4 ºC for 30 min. Supernatants were collected and dried under vacuum using a Savant 

DNA Speedvac (Thermo Scientific, USA) and reconstituted in 285 μL of 50 mM potassium 

phosphate buffer (pH 7.0), 30 μL of Sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) 

and 35 μL of D2O 28. 200 μL of the reconstituted sample was transferred to a 3 mm Bruker 

NMR tube for NMR analysis. All samples were housed at 4°C in a thermostatically 

controlled SampleJet autosampler (Bruker-Biospin, USA) and heated to room temperature 

over 3 min prior to analysis by NMR.

1H NMR Analysis

All 1H NMR data were acquired using a pulse sequence developed by Ravanbakhsh et al. 

(2015) 28. In brief, all samples were analyzed in a randomized order and all data acquired at 

300 (±0.5) K on a Bruker Avance III HD 600 MHz spectrometer (Bruker-Biospin, USA) 

coupled with a 5 mm TCI cryoprobe. For each analysis, 256 transients were collected as 64 

k data points with a spectral width of 12 kHz (20 ppm), and inter-pulse delay of 9.65 sec. In 

addition, the data collection protocol included 3-dimensional shimming using the z-axis 

profile of the deuterium solvent signal, receiver gain adjustment and acquisition. The free 

induction decay (FID) signal was zero filled to 128 k and exponentially multiplied with a 0.1 

Hz apodization factor. The zero and first order phase constants were manually optimized 

following Fourier transformation and for accurate quantification a polynomial baseline 

correction of the FID (degree 5) was applied. All acquired data were analyzed using a 

custom library encompassing 71 metabolites using NMR Profiler v8.1 (Chenomx, Alberta, 

Canada).

DI-LC-MS/MS Analysis

All targeted quantitative metabolomics analysis of the serum was performed by combining 

direct injection (DI) mass spectrometry with a commercially available reverse phase LC-

MS/MS kit (BiocrateIDQ p180™; Biocrates Life Sciences, Innsbruck, Austria) as 

previously reported by our group 29. In brief, data were acquired on a Waters TQ-S 

spectrometer coupled with an Acquity I-Class ultra-pressure liquid chromatography (UPLC) 

system. All serum specimens were acquired in accordance with the protocol as described in 

the AbsoluteIDQ manual. All data analysis was completed using the Biocrates MetIDQ 

software.
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Statistical Analysis

All data were analyzed using MetaboAnalyst (v3.0) 30. A Students T-test was performed on 

all data acquired using both 1H NMR (brain) and DI-LC-MS/MS (serum) to determine if 

there were any significantly different metabolites between prodromal PD and age matched 

controls (p<0.05). In the case where data were considered non-normally distributed a Mann-

Whitney U test was used to calculate significance. Bonferroni corrected p-values were used 

to correct for multiple comparisons.

Prior to multivariate analyses all data were normalized to the sum and autoscaled. The data 

were analyzed using principal components analysis (PCA) and partial least squares 

discriminant analysis (PLS-DA). The multivariate models were validated using permutation 

testing (2000 repeats) to determine if the observed separation was significant. This was 

accomplished by randomly relabeling the data and running the PLS-DA analysis again. The 

most discriminatory metabolites were identified from the variable importance in projection 

(VIP) plots.

To select the predictor variables used in the logistic regression analyses, Least Absolute 

Shrinkage and Selection Operator (LASSO) and stepwise variable selection were utilized for 

optimizing all the model components 31. A k-fold cross-validation (CV) technique was used 

to show the models were not over fit and to assess potential predictive accuracy in an 

independent sample 32. Area under the curve (AUC (95% confidence interval)), sensitivity 

and specificity values were calculated to estimate the performance of the logistic regression 

and ROC analyses. For the ROC analysis of the brain data we implemented a linear support 

vector machine algorithm and for the serum data we used a logistic regression algorithm for 

the analyses.

Random Forrest and Logistic Elastic Net

To classify huMonomer vs PFFs a random forest with 2,000 trees was fit to serum 

measurements using R v 3.4.1 (https://cran.r-project.org/) and the package party (http://

party.r-forge.r-project.org/). Due to correlation within predictors, we used a conditionally 

unbiased tree algorithm (https://epub.ub.uni-muenchen.de/9387/1/techreport.pdf). The 

proximity matrix returned from this random forest was used to create a multi-dimensional 

scaling plot (MDS). We then constructed an ROC curve by applying out-of-bag predictions 

and estimated the 95% confidence interval for the area under the ROC curve (AUC) by 

utilizing 2,000 bootstraps. We also assess the predictive capabilities of these data 33 by 

Logistic elastic-net regression via the R package glmnet (https://www.jstatsoft.org/article/

view/v033i01). The ridge/LASSO tuning parameter was set such that they were given an 

even contribution (alpha = 0.5) and the second tuning parameter was set such that deviance 

was minimized based on 10-fold cross-validation and no more than 10 variables were 

selected. From the predictions based on this model, we then established an ROC curve and 

estimated the 95% confidence interval for the AUC by applying 2,000 bootstraps.

Metabolites Pathway Enrichment Analysis

Metabolites pathway enrichment analysis (MSEA) was completed using MetaboAnalyst 

(v3.0) 34. Metabolites names were converted to Human Metabolite Database (HMDB) 
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identifiers and the raw data imported in rows, normalized to the sum and autoscaled. The 

pathway associated metabolite sets was the chosen metabolite library and all compounds in 

this library were used. Pathways with a Holm corrected p-value and a false discovery rate 

(fdr) <0.05 were considered altered due to prodromal PD.

RESULTS

To characterize the biochemical profile of mice developing early α-syn pathology, we used 
1H NMR and DI-LC-MS/MS to analyze brain tissue (hemisphere ipsilateral and 

contralateral to the α-syn PFF injection into the olfactory bulb) and serum, respectively. In 

mice injected unilaterally with PFFs, α-syn pathology develops mainly in brain regions 

located in the ipsilateral hemisphere. Pathology is also present in contralateral hemisphere, 

but to a lesser extent 15–16.

Brain tissue analysis

We first analyzed ipsilateral and contralateral hemispheres of the mice injected with α-syn 

huMonomers (control mice) or α-syn PFFs (prodromal PD model) at 3 months post-

injection. A total of 71 and 182 metabolites were accurately identified and quantified in 

post-mortem brain tissue and serum using 1H NMR and DI-LC-MS/MS, respectively. Using 

these metabolite concentrations, we developed 4 pair wise models for brain tissue and no 

significant differences were observed for each of the recorded metabolites between the 

ipsilateral and contralateral regions (P<0.05; fdr<0.05). Of the 71 measured metabolites, 

none reached statistical significance when compared between HuMonomer and PFF mice 

(P<0.05; fdr<0.05; Supplementary Table 1). Multivariate analysis of the data, acquired from 

the different hemispheres also revealed no significant differences between brain regions; as a 

result, we pooled the data for each individual mouse based on the results of the univariate 

and multivariate analyses.

Subsequently, we performed multivariate analysis of the 1H NMR acquired data from the 

pooled brain specimens. The Scores plot and its respective VIP plot highlighting which 

metabolites are responsible for the observed separation is presented in Figure 1. We observe 

a clear separation between the two groups and following permutation testing (2000 repeats) 

the PLS-DA model produced a p-value = 0.001, indicating that the observed separation is 

indeed significant and not due to overfitting. Additionally, following a 10-fold cross 

validation of the model we determined that it had 87 % predictive power. Figure 1b lists the 

metabolites responsible for the observed separation of which taurine has the greatest impact.

We then performed a logistic regression analysis on the 1H NMR acquired brain data (Figure 

2). Using the concentrations of serine, taurine, 3-hydroxybutyrate and threonine as chosen 

using the LASSO method for model optimization and following cross validation (1000 

permutations), we observe significant separation (p < 0.001) between HuMonomer and PFF 

treated mice. We developed a logistic regression algorithm with an AUC (95% CI) = 0.942 

(0.874–1.000) with corresponding sensitivity and specificity equal to 0.923 (0.923–1.000) 

and 0.970 (0.911–1.000) respectively, following 10-fold cross validation. Table 1 lists the 

summary of each feature used to develop the following predictive algorithm:
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logit P = log P / 1 − P = 0.399 − 1.824 Serine + 1.902 Taurine − 2.232 3
− Hyderoxyisobutyrate + 2.164 Threonine

where P is Pr(y=1|x). The best threshold (or Cutoff) for the predicted P is 0.53.

Original Label: HuMonomers/PFFs --> Labels in Logistic Regression: 0/1

Note. The class/response value is recommended as (Case:1 and Control:0)

Serum samples analysis

We analyzed the serum of mice 3 months after injection of α-syn huMonomer or α-syn 

PFFs. Of the 182 metabolites measured in serum using DI-LC-MS/MS only 5 metabolites 

were found to be at statistically significantly different concentrations (P<0.05; fdr<0.05). 

These include 3 acylcarnitines (decadienylcarnitine, tetradecenoyl carnitine and 

hydroxytetradecadienylcarnitine), 1 glycerophospholipid (PC ae C34:0) and trans 4-

hydroxypoline. The serum data acquired using DI-LC-MS/MS were examined by PLS-DA 

analysis (Figure 3). Modest separation can be observed between the serum from PFF mice 

and HuMonomer mice, however following permutation testing (2000 repeats) the model was 

found not to be significant (p=0.1035).

We subsequently analyzed the serum data by logistic regression analysis (Figure 4). Using 

the concentrations of 3 glycerophospholipids, namely PC ae C36:4, PC ae C38:5, PC aa 

C34:2 and trans 4-hydroxyproline, we developed a predictive algorithm with an AUC (95% 

CI) = 0.836 (0.696–0.977) with corresponding sensitivity and specificity equal to 0.800 

(0.800–0.975) and 0.889 (0.744–1.00) respectively, following 10-fold cross validation. All 

metabolites were recorded at concentrations above the limits of detection (LOD) and limits 

of quantification (LOQ) except for trans-4-hydroxyproline which fell slightly below the 

LOQ of 10 μM (average value = 7.6 μM). No zero values were recorded for any metabolite 

used in the logistic regression model. We have provided scatter plots for the individual 

biomarkers used to create the logistic regression model in Supplementary Figure 2. Table 2 

lists the summary of each feature used to develop the following predictive algorithm:

logit P = log P / 1 − P = 0.981 + 3.34PC ae C364 + 2.768 t4 − OH − Pro − 1.326 PC ae
C385 − 1.076PC aa C342

where P is Pr(y=1|x). The best threshold (or Cutoff) for the predicted P is 0.53.

Original Label: HuMonomers/PFFs --> Labels in Logistic Regression: 0/1

Note. The class/response value is recommended as (Case:1 and Control:0)

Serum data were then analyzed by Random Forrest and logistic elastic net analysis (Figure 

5). Multidimensional scaling plot enables the visualization of the separation between the 

serum from α-syn PFF and α-syn HuMonomers mice. The distance between the individual 

groups is based on the Random Forrest fit and was developed using the concentration of all 

the metabolites (AUC (95% CI) = 0.869 (0.760–0.979). The top metabolites responsible for 
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the observed separation are presented in Figure 5b. The Random Forrest analysis was then 

repeated using the top 5 metabolites identified using the Random Forrest method, namely 

trans 4-hydroxypoline, C14:1, C12:1, PC ae C34:0 and C14:2-OH. We used the 

concentration values of these metabolites to develop a predictive model with an AUC (95% 

CI) = 0.864 (0.754–0.974). We then used the concentration values of the top 6 metabolites 

identified by Elastic Net Regression to develop a predictive model evaluated using an ROC 

curve (Figure 5d). The model produced an AUC (95% CI) = 0.861 (0.755–0.968). As 

previously for the logistic regression model, all metabolites were at concentrations above the 

limits of detection (LOD) and limits of quantification (LOQ) except for trans-4-

hydroxyproline. No zero values were recorded for any metabolite used in the logistic 

regression model. We have included scatter plots for the individual biomarkers used in this 

model as Supplementary Figure 3.

Finally, we performed pathway enrichment analysis for both brain tissue (Figure 6A) and 

serum (Figure 6) samples. In the brain samples, 14 biochemical pathways were identified as 

being significantly perturbed (Holm adjusted p<0.05; fdr<0.05) in PFF mice. The top 4 

biochemical pathways include: taurine and hypotaurine metabolism, bile acid biosynthesis, 

glycine, serine and threonine metabolism and the citric acid cycle. A list of all the 

biochemical pathways that were considered significantly perturbed in the brain of mice 

injected with α-syn PFFs into the olfactory bulb is available as Supplementary Table 2. 

Contrastingly, in serum samples, only phospholipid metabolism was found to be 

significantly disturbed between α-syn HuMonomer and α-syn PFF mice (Holm adjusted 

p<0.05; fdr<0.05).

DISCUSSION

This is the first study to employ quantitative, global metabolomics approaches to profile 

post-mortem brain and serum from a validated mouse model of prodromal PD. We 

demonstrate changes in brain and serum biochemistry of mice that develop progressive brain 

synucleinopathy.

Statistical Models

Contrary to what we initially hypothesized, no differences were observed between the 

ipsilateral and contralateral hemispheres of the brain. The absence of difference between the 

ipsilateral and the contralateral side is consistent with the fact that pathology induced by an 

injection of α-syn PFFs unilaterally into one OB spreads to both hemispheres, ipsilaterally 

and contralaterally, albeit to a greater extent on the ipsilateral side 15. Because the two sides 

of the brain did not differ in our initial analysis, subsequently we pooled the data from both 

hemispheres. Evident from the scores plot, we observed significant separation between the 

α-syn huMonomers and α-syn PFFs with the major metabolites responsible for the 

separation being taurine, propylene glycol, creatine, serine and adenine. Taurine and adenine 

were found to be upregulated in α-syn PFF mice while propylene glycol, creatine and serine 

were downregulated when compared with α-syn HuMonomer mice.

Using logistic regression analysis, we developed a model which accurately distinguished 

between the two treatment groups. We developed a predictive algorithm using the pooled 1H 
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NMR acquired data which had an AUC (95% CI) = 0.942 (0.874–1.000) with corresponding 

sensitivity and specificity equal to 0.923 (0.923–1.000) and 0.970 (0.911–1.000). To our 

knowledge, no model currently exists which accurately distinguishes between control and 

prodromal PD mouse brain with such a high degree of accuracy.

While we are able to distinguish controls from the α-syn PFF-mice brains using 1H NMR, 

we ideally wanted to develop a statistical test using less invasive biomatrices, such as serum, 

to predict those entering the early stages of PD, which is viewed as the ideal stage at which 

to apply neuroprotective and disease-modifying strategies 35. Using multivariate analyses, 

we demonstrated modest separation between the two groups, however following cross 

validation (2000 permutations) the model was found not to be statistically significant 

(p=0.1035). Also, we demonstrated that the metabolites accounting for the differences 

between the groups were all phospholipids except for trans-4-hydroxyproline. While verging 

on statistical significance, we believe that we have an underpowered sample set, and that 

with increased numbers, we would indeed see significant separation between the two groups.

Using logistic regression analysis and data acquired from serum, we developed an accurate 

predictive algorithm capable of discriminating between the two experimental groups (α-syn 

PFF and α-syn huMonomers) with an AUC (95% CI) = 0.836 (0.696–0.9777) with high 

sensitivity and specificity values (0.800 (0.800–0.975) and 0.889 (0.744–1.00), respectively) 

following cross validation.

In an aid to be more stringent in our attempts to distinguish between the two groups, we 

employed machine-based learning which applies more rigorous criteria for predicting 

groups. We employed Random Forrest and Logistic elastic-net for the development of 

predictive models. Logistic elastic-net functions extremely well at variable selection for 

binary variables when some, or many, of the potential predictors are correlated. Further, it 

has been suggested that Logistic elastic-net out performs LASSO when it comes to 

predictive accuracy 33. Using Random Forrest, we achieved complete separation on the 

multidimensional scaling plot, in which the distances are directly related to the Random 

Forrest fit. This separation is much better than we originally viewed using the PLS-DA 

technique. We identified the top metabolites responsible for the variation between the two 

groups using this methodology, with the major group consisting of acylcarnitines and 

trans-4-hydroxyproline. Using the Logistic elastic-net method we developed a model with a 

high AUC (0.864 (0.754–0.974), however it is not ideal to use a panel of biomarkers 

consisting of 182 compounds. To overcome this issue, we developed a Logistic elastic-net 

model with the top 6 performing metabolites to include C10:2, C12:1, C14:1, C14:2-OH, PC 

ae 34:0 and trans 4-hydroxyproline. The model performed exceedingly well with an AUC = 

0.861 (0.755–0.968). To our knowledge, no test currently exists which can accurately 

diagnose prodromal PD mice using serum with such sensitivity and specificity.

Pathway Enrichment Analysis of the Brain Data

When we analyzed the pooled brain data, we found only 14 metabolic pathways to be 

significantly perturbed (Holm adjusted p<0.05; fdr<0.05) in PFF mice and these include (but 

not limited to) taurine and hypotaurine metabolism, bile acid biosynthesis, glycine, serine 

and threonine metabolism and the citric acid cycle.
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Most notably, taurine and hypotaurine metabolism was the major pathway found to be 

significantly perturbed in the brain of PFF treated mice. Taurine has several biologic 

functions within the brain and interestingly its role in conjugating bile acids to form water 

soluble bile salts such as tauroursodeoxycholic acid (TUDCA) from ursodeoxycholic acid 

(UDCA), play pivotal neuroprotective roles within the brain [9]. A disruption in the pathway 

could signal that the brain is producing more secondary bile acids to defend against the 

aggregation of α-syn.

Another important biochemical pathway to be perturbed due to triggering of widespread α-

syn pathology by injection of α-syn PFF into the olfactory bulb was bile acid metabolism. 

Bile acids have long been used as therapeutic agents in medicine, yet for all the evidence 

supporting a neuroprotective role in neurodegenerative disorders, very little is known about 

their molecular mechanisms in the central nervous system 36. Secondary bile acids, UDCA 

and its taurine-conjugated form, TUDCA may function in part as chaperones, reducing the 

formation of toxic aggregates in protein folding diseases 37–38. As mentioned, their actual 

biologic roles are poorly understood and may be multifactorial, with evidence being reported 

for reducing reactive oxygen species formation 39, inhibition of apoptosis 40 and the 

prevention of mitochondrial dysfunction 41.

We also identified glycine, serine and threonine metabolism and the citric acid cycle to be 

significantly disrupted pathways in the brain of PFF mice. Threonine is a large neutral amino 

acid which is converted to both glycine and serine in the brain 42. Glycine is in turn 

converted to creatine whose primary function is recycling ADP to produce ATP (the major 

energy source in the brain) by donating phosphate groups 43. The citric acid cycle or 

tricarboxylic acid cycle occurs in the matrix of the mitochondrion and is responsible for the 

release of energy in the form of ATP through the oxidation of Acetyl-CoA 44. A 

combination of these disturbed biochemical pathways (to include bile acid biosynthesis) 

would suggest that energy metabolism and mitochondrial dysfunction in particular, are 

influential in the onset/progression of α-syn pathology in our mouse model of prodromal 

PD. Mitochondrial dysfunction, specifically a deficiency in complex one of the electron 

transport chain, has been associated with PD previously 45–46 and the majority of studies 

suggest that this deficiency is limited to brain regions that are pathologically affected as in 

this study (cerebellum removed as no pathology observed) 47. Our data may also suggest 

that in the brains of α-syn PFF injected mice, where α-syn pathology is beginning to 

propagate, energy metabolism is significantly affected due to α-syn aggregation and the 

development of neurodegeneration 16.

Metabolite Set Enrichment Analysis of the serum of PFFs mice

The results of the serum pathway enrichment analysis highlighted only phospholipid 

metabolism to be significantly perturbed in α-syn PFF injected mice. It has been 

hypothesized that disruption in lipid metabolism contributes to neurodegenerative diseases 
48–49 and lipids can interact with α-syn and promote its aggregation 50–52. However, it is not 

always evident if the changes in lipid concentrations or chemical properties could contribute 

to the aggregation of α-syn via a direct interaction with the protein or via the influence of 

other cellular processes which subsequently lead to an increase in α-syn 53. While these 
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changes have only ever been reported in the brain, we speculate that regions which control 

endocrine and metabolic functions (e.g. hypothalamus) may play a direct role in the 

disruption of this biochemical pathway.

This study demonstrates the potential of metabolomics for identifying potential biomarkers 

of prodromal PD while giving a previously unreported insight into the underlying 

pathogenesis of the disease. Our study is not without its limitations. First, our sample size 

was modest, however following a power calculation of the available data, with 20 

HuMonomers and 20 PFF treated mice, this study was well-powered to detect most, if not 

all, “huge” and “very large” effects after false discovery rate multiple testing adjustments 54. 

We have, however, likely failed to detect the majority of true large and medium effects. 

Therefore, there is likely room to improve upon our estimated predictive accuracy. We have 

included additional information as Supplementary Table 3. To compensate for this, we have 

been extremely stringent in our statistical analyses, employing rigorous cross validation 

techniques such as permutation testing (2000 iterations), 10-fold CV and employing Logistic 

elastic-net and LASSO methods for variable selection.

CONCLUSIONS

We report for the first time, serum biomarkers capable of identifying mice with developing 

synucleinopathy. Further, we have highlighted biochemical pathways which were previously 

unreported to be associated with the underlying pathogenesis of PD. Finally, a more precise 

understanding of PD mechanism as yielded by this approach, will increase the chances of 

the identification of novel pharmacological therapies for the prevention and treatment of PD. 

Our results demonstrate the usefulness of these techniques for the study of synucleinopathy 

in mice and warrant a larger longitudinal study to investigate the biochemical changes in the 

brain as the pathology progresses. Moreover, we need to test the reported biomarkers in 

human cohorts to determine their clinical utility for the identification of those people at 

greatest risk of developing PD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) PLS-DA plots for the 1H NMR acquired brain data. 0 = huMonomer mice; 1 = PFF 

mice; (b) the VIP plot for HuMonomers injected mouse brains vs. PFFs.
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Figure 2. 
The logistic regression curve for the brain panel of biomarkers to include: serine, taurine, 3-

hydroxybutyrate and threonine.
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Figure 3. 
Results of the PLS-DA analysis from the serum data as acquired using DI-LC-MS/MS. Red 

Circles-HuMonomer injected mice; Green Circles-PFF injected mice.
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Figure 4. 
The logistic regression curve for the serum panel of biomarkers to include: 

decadienylcarnitine, tetradecenoyl carnitine, hydroxytetradecadienylcarnitine), PC ae C34:0 

and trans 4-hydroxypoline.
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Figure 5. 
Results of the Random Forest and Logistic elastic net analysis. a) Multidimensional scaling 

plot fit based on the results of the Random Forest analysis; b) Logistic elastic net metabolite 

table listing each in terms of importance to the model; c) ROC analysis from the Random 

Forest analysis using all metabolites to predict which mice are in the prodromal phase; d) 

ROC analysis from the Random Forest analysis using a subset of metabolites to predict 

which mice are in the prodromal phase.
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Figure 6. 
Results of the metabolite pathway enrichment analysis. a) Brain pathway analysis results 

from HuMonomer vs. PFF mice; b) Serum pathway results from HuMonomer vs. PFF 

injected mice.
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Table 1.

Summary of each feature used to develop the logistic regression predictive algorithm for prodromal 

Parkinson’s disease using brain tissue.

Estimate Std. Error z value Pr(>|z|) Odds

(Intercept) 0.399 0.492 0.811 0.418 -

Serine −1.824 0.769 −2.372 0.018 0.16

Taurine 1.902 0.752 2.529 0.011 6.7

3-Hydroxyisobutyrate −2.232 0.662 −3.372 0.001 0.11

Threonine 2.164 0.821 2.634 0.008 8.7
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Table 2.

Summary of each feature used to develop the logistic regression predictive algorithm for prodromal 

Parkinson’s disease in serum.

Estimate Std. Error z value Pr(>|z|) Odds

(Intercept) 0.981 0.723 1.357 0.175 -

PC ae C36:4 3.34 4.863 0.687 0.492 28.23

t4-OH-Pro 2.768 1.414 1.958 0.05 15.93

PC ae C38:5 −1.326 4.027 −0.329 0.742 0.27

PC aa C34:2 −1.076 1.306 −0.824 0.41 0.34
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