Skip to main content
. Author manuscript; available in PMC: 2019 Jun 30.
Published in final edited form as: J Proteome Res. 2018 May 25;17(7):2460–2469. doi: 10.1021/acs.jproteome.8b00224

Table 2.

Summary of each feature used to develop the logistic regression predictive algorithm for prodromal Parkinson’s disease in serum.

Estimate Std. Error z value Pr(>|z|) Odds
(Intercept) 0.981 0.723 1.357 0.175 -
PC ae C36:4 3.34 4.863 0.687 0.492 28.23
t4-OH-Pro 2.768 1.414 1.958 0.05 15.93
PC ae C38:5 −1.326 4.027 −0.329 0.742 0.27
PC aa C34:2 −1.076 1.306 −0.824 0.41 0.34