
A Cloud-Based Metabolite and Chemical Prioritization System 
for the Biology/Disease-driven Human Proteome Project

Kun-Hsing Yu1,2, Tsung-Lu Michael Lee3, Yu-Ju Chen4, Christopher Ré5, Samuel C. Kou2, 
Jung-Hsien Chiang6,*, Michael Snyder7,*,‡, and Isaac S. Kohane1,*,‡

1Department of Biomedical Informatics, Harvard Medical School

2Department of Statistics, Harvard University

3Department of Information Engineering, Kun Shan University, Taiwan

4Institute of Chemistry, Academia Sinica, Taiwan

5Department of Computer Science, Stanford University

6Department of Computer Science and Information Engineering, National Cheng Kung University, 
Taiwan

7Department of Genetics, Stanford University

Abstract

Targeted metabolomics and biochemical studies complement the ongoing investigations led by the 

Human Proteome Organization (HUPO) Biology/Disease-driven-Human Proteome Project (B/D-

HPP). However, it is challenging to identify and prioritize metabolite and chemical targets. 

Literature mining-based approaches have been proposed for target proteomics studies, but text 

mining methods for metabolite and chemical prioritization is hindered by a large number of 

synonyms and non-standardized names of each entity. In this study, we developed a cloud-based 

literature mining and summarization platform that maps metabolites and chemicals in the literature 

to unique identifiers and summarizes the co-publication trends of metabolite/chemicals and B/D-
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HPP topics using the Protein Universal Reference Publication-Originated Search Engine 

(PURPOSE) scores. We successfully prioritized metabolites and chemicals associated with the 

B/D-HPP targeted fields, with the results validated by checking against expert-curated associations 

and enrichment analyses. Comparing with existing algorithms, our system achieved better 

precision and recall in retrieving chemicals related to B/D-HPP focused area. Our cloud-based 

platform enables queries on all biological terms in multiple species, which will contribute to B/D-

HPP and targeted metabolomics/chemical studies.
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INTRODUCTION

The Human Proteome Organization (HUPO) Biology/Disease-driven-Human Proteome 

Project (B/D-HPP) is a coordinated comprehensive proteomics profiling effort that focuses 

on human biology and diseases1–3. Investigations of metabolites and chemicals associated 

with human biology and diseases can enhance and complement the ongoing studies on B/D-

HPP1. With the advancement of targeted assays, researchers can quantify hundreds of 

metabolites or chemical compounds simultaneously4. These high-throughput approaches 

have the potential to characterize the chemical landscape of human biology in various organs 

and identify the metabolomics disturbance under disease conditions5, 6, which will 

contribute to a holistic understanding of biology and diseases.

Similar to proteomics studies, target prioritization is crucial for targeted metabolomics and 

chemical investigations7. There are more than tens of thousands of metabolites and hundreds 

of thousands of exogenous and endogenous chemicals8; however, many modern targeted 

assays can only handle hundreds to thousands of targets at a time9. In order to maximize the 

utility of the targeted approaches, it is crucial to prioritize the metabolites and chemicals 

relevant to the study. Previously, researchers have proposed computational approaches to 

prioritize proteins using literature mining algorithms10–12. Nevertheless, due to the plethora 

of metabolites and chemicals, a comprehensive tool for their prioritization is lacking. In 

addition, many metabolites and chemicals have a great number of synonyms and non-

standardized names13, 14, which hindered the development of automated approaches for their 

identification15.

Recent studies present efficient algorithms that summarize the strength and specificity of 

protein-topic co-publication patterns in the PubMed literature11, 12. Such methods prioritized 

the associations between any topic and any protein in the PubMed abstract. With the 

ongoing curation efforts of the Human Metabolome Database (HMDB)8, Chemical Entities 

of Biological Interest (ChEBI)16, and updates in the Medical Subject Headings (MeSH)17, 

there is an opportunity to extend the literature mining algorithms to characterize the relations 

between metabolites/chemicals and any search topic systematically.
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In this study, we implemented a cloud-based system for prioritizing metabolites and 

chemicals for the B/D-HPP targeted fields and any custom search terms. Our system 

employs the state-of-the-art approach of bio-entity tagging and PubMed literature mining18, 

searches the PubMed database in real time, compiles the results automatically, and ranks the 

retrieved metabolites and chemicals within a few seconds using an efficient co-publication 

summarization algorithm12. Our system will enable the comprehensive investigations of 

metabolites and chemicals in all targeted areas of B/D-HPP, complementing the ongoing 

efforts on proteomic profiling in these areas of interest.

METHODS

Data Retrieval for Literature Mining

The targeted areas of B/D-HPP are retrieved from the B/D-HPP website19. The identified 

B/D-HPP topics are brain, cancers, cardiovascular, diabetes, extreme conditions, eyeOme, 

food and nutrition, glycoproteomics, immune-peptidome, infectious diseases, kidney and 

urine, liver, mitochondria, model organisms, musculoskeletal, PediOme, plasma, protein 

aggregation, and rheumatic disorders. Table S-1 shows the PubMed search terms for the 

B/D-HPP targeted fields.

To systematically identify metabolites and chemicals from the PubMed literature, the 

chemical and species tags from PubTator was obtained for each PubMed article18. The 

retrieved tags were intersected with the Medical Subject Headings (MeSH) subtrees17 of 

known chemicals. Through obtaining the PubTator taggings and filtering them by the MeSH 

ontology tree, the unique identifier of each chemical was identified. This approach 

effectively mapped the synonyms of chemicals to unique identifiers. To ensure that the most 

updated metabolite, chemical, and species tags were retrieved, an automated downloader 

was implemented to retrieve PubTator data files from its File Transfer Protocol (FTP) site 

periodically. To enable metabolite prioritization, the list of human metabolites was retrieved 

from the HMDB8. The chemicals included in the HMDB list were employed in the 

metabolite prioritization tasks.

For each PubMed article with relevant tags, the NLM Entrez Programming Utilities (E-

utilities)20 were used to obtain the title, authors, journal, year of publication, and the number 

of citations.

Metabolite and Chemical Prioritization through PURPOSE score

The Protein Universal Reference Publication-Originated Search Engine (PURPOSE) score 

was used to prioritize metabolites and chemicals for each of the B/D-HPP targeted area12. 

The score is defined as:

1 + log10nTC + log10
Sum Cit

Yr + 1
10 × 1 + log10

nU
nT + log10

nU
nC ,

where nTC denote the number of papers associated with both the topic and the chemical/

metabolite (TC), Sum(Cit/Yr) is the sum of yearly citation numbers of TC, nU is the number 
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of PubMed publications, nT is the number of publications related to the topic, and nC is the 

number of publications associated with the chemical/metabolite. This scoring scheme 

accounts for the strength and the specificity of topic-chemical associations. In particular, the 

first parenthesis of the formula summarized the frequency of the topic-chemical co-

publication, and the number of annualized citations was included in the algorithm to put 

higher weights to seminal papers and landmark studies12. The second parenthesis of the 

formula takes into account the overall popularity of the queried topic and the chemicals. 

This scoring formula is related to the term frequency-inverse document frequency statistic21, 

and a similar approach achieved superior performance in proteomics literature mining12.

Enrichment Analyses and Pathway Visualization

In order to identify the biological pathways associated with the retrieved chemicals and 

metabolites, the Search Tool for Interactions of Chemicals (STITCH) tool was employed to 

identify the known associations among chemicals, metabolites, genes, and proteins22. The 

STITCH tool conducts enrichment analysis on an open-sourced database containing 500,000 

chemicals, 9.6 million proteins, and 1.6 billion interactions22. The database is maintained by 

the European Molecular Biology Laboratory, the Swiss Institute of Bioinformatics, and the 

Center for Protein Research22. Gene Ontology enrichment analyses, KEGG pathway 

analyses, and network analyses were performed by the STITCH tool22. Network statistics of 

the gene-metabolite and gene-chemical interaction networks, including centralization, 

Krackhardt efficiency, transitivity, and connectedness scores, were computed by the R ‘sna’ 

package23. The centralization of a network was evaluated by Freeman’s centrality score24; 

the Krackhardt efficiency score computed the proportion of necessary edges that could not 

be removed without disconnecting the nodes in the network; the transitivity score assessed 

the proportion of connections where transitivity holds (whether node A is directly connected 

to node C when node A is connected to node B and node B is connected to node C); and the 

connectedness score identified the proportion of connected node pairs in the networks23. The 

Metscape app25–27 in Cytoscape28 was used to visualize the interactions among metabolites, 

genes, and enzymes. All analyses were conducted on May 20, 2018.

Metabolites/Chemicals-B/D-HPP Linkage Visualization

To summarize the linkages among B/D-HPPs and metabolites/chemicals, the correlations 

among B/D-HPP targeted fields and the associations between the most prominent 

metabolites/chemicals and the related B/D-HPP areas were visualized. For each pair of B/D-

HPP targeted areas, pairwise Spearman’s correlation coefficient was computed for the 

associated metabolites’ or chemicals’ PURPOSE scores, and one minus the Spearman’s 

correlation coefficients were defined as the distance between the B/D-HPP fields. 

Multidimensional scaling (MDS)29 was employed to map the distances among B/D-HPP 

fields into a two-dimensional graph. The most prominent metabolites and chemicals were 

added to the resulting graph. The pairwise distances among the B/D-HPP areas reflected 

their correlations in the PURPOSE scores, and the connections between metabolites/

chemicals and B/D-HPP areas visualized the most prominent linkages (metabolites and 

chemicals were shown in the graphs if their PURPOSE scores in the respective B/D-HPP 

area were in the top 2.5 percentile and the scores were greater than 20). For metabolites/

chemicals strongly associated with only one B/D-HPP, the distances between the 
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metabolites/chemicals and the B/D-HPP areas were inversely proportional to their 

PURPOSE scores. For metabolites/chemicals strongly correlated with two or more B/D-HPP 

areas, the distances between the metabolites/chemicals and the associated B/D-HPP areas 

reflected both their PURPOSE scores in the associated B/D-HPP areas as well as the general 

correlations among the associated B/D-HPP areas. The figures were generated by R version 

3.3 on the Extreme Science and Engineering Discovery Environment (XSEDE) platform30.

Evaluation of the Prioritization Results

Curated chemical-topic associations in the Comparative Toxicogenomics Database (CTD) 

database31 were employed as the ground truth for evaluating chemical prioritization results. 

The precision, recall, and the F1 measure (the harmonic mean of precision and recall) of the 

PURPOSE algorithm and those of the Finding Associated Concepts with Text Analysis 

(FACTA+) tool32, 33 and the Biomedical Entity Search Tool (BEST)34 were compared. 

MeSH terms were used to aggregate the synonyms of a chemical. B/D-HPP areas of cancers, 

diabetes, rheumatic, and liver were selected as the topics for evaluation, due to the 

availability of the curated annotations and their clean MeSH organization.

Cloud-based User Interface

To facilitate user interaction, a user interface is built with the “shiny” package in R. The 

system is deployed to a cloud server, allowing researchers to access the system with ease. 

All statistical analysis was conducted using R version 3.3. The source codes of the cloud-

based system, the literature mining backend, and the automated updater for PubTator data 

files, are available at http://rebrand.ly/metapurposesourcecode.

RESULTS

Summary of Metabolites and Chemicals Published in the PubMed Literature

At the time of evaluation, there were 27 million PubMed articles. PubTator tagged 79,948 

chemicals in 9.04 million PubMed articles. 7,508 chemicals (9.39%) are labeled as human 

metabolites by the HMDB and are mentioned in 7.29 million articles in PubMed. The 

publication trend of all PubMed articles and articles associated with at least one chemical or 

metabolite since 1950 is shown in Figure 1A. The number of publications per year on 

human, chemicals related to human, and human metabolites increased steadily since 1950. 

The annualized number of publications on human is strongly correlated with the annualized 

number of papers describing human metabolites (Spearman’s correlation coefficient = 

0.998) and the annualized number of publications mentioning chemicals related to human 

(Spearman’s correlation coefficient = 0.996).

Publication Patterns of Metabolites and Chemicals Related to the B/D-HPP Targeted Areas

To prioritize the metabolites and chemicals associated with the B/D-HPP targeted area 

through literature mining, we implemented the PURPOSE algorithm to summarize the topic- 

metabolite/chemical co-publication strength in the PubMed literature. For each targeted area 

of the B/D-HPP, the numbers of associated metabolite/chemical, publications, total citations, 

and citations per year are summarized in Figures 1B and 1C. The total number of 

metabolites associated with each B/D-HPP areas is between 405 (rheumatic) and 2,483 

Yu et al. Page 5

J Proteome Res. Author manuscript; available in PMC 2019 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://rebrand.ly/metapurposesourcecode


(plasma), whereas that of chemicals is between 705 (rheumatic) and 14,070 (model 

organisms). Across the B/D-HPP topics, the Spearman’s correlation coefficient between the 

number of identified chemical and that of metabolites is 0.98. The targeted areas with the 

greatest number of metabolite-related publication are cancers (310,537 publications), plasma 

(281,874), model organisms (172,860), PediOme (153,053), and glycoproteomics (137,234). 

The areas with the most chemical-related publications are also cancers (378,929 

publications), plasma (321,201), model organisms (205,747), PediOme (181,353), and 

glycoproteomics (172,064). For the 19 B/D-HPP topics, the Spearman’s correlation 

coefficient between the number of publications associated with metabolites and the number 

of publications associated with chemicals is 0.998, and the correlation coefficient between 

the annualized citation numbers associated with metabolites and that of chemicals is 0.875. 

All B/D-HPP topics have at least 2,150 publications associated with any metabolites or 

chemicals, indicating the rich information in the published literature.

Prioritizing Metabolites in the B/D-HPP Targeted Fields

To prioritize metabolites related to the B/D-HPP targeted areas, a list of human metabolites 

were identified from the HMDB8, where a number of drugs, drug metabolites, and chemical 

compounds were annotated as metabolites. The metabolites associated with each B/D-HPP 

were ranked by the PURPOSE score, which balanced the strength (quantified by the number 

of co-publications in PubMed and the citation numbers of the papers per year) and the 

specificity (accounted for by the number of publications associated with the topics and that 

of the proteins in general) of the associations12. As an illustration, L-tyrosine (PURPOSE 

score = 43.44), sirolimus (43.13), 17a-ethynylestradiol (41.67), docetaxel (41.62), and 

progesterone (41.32) were the metabolites with the highest PURPOSE score in cancers 

(Figure 2A). These metabolites were enriched in the epidermal growth factor receptor 

signaling pathway, protein autophosphorylation, and Fc receptor signaling pathway (Figure 

2B). Metscape revealed that these metabolites participated in the metabolism of 

phosphatidylinositol phosphate and purine (Figure S-1). For diabetes, metabolites D-glucose 

(44.95), 1,1-dimethylbiguanide (39.80), cholesterol (37.59), adenosine monophosphate 

(36.64), and creatinine (36.43) had the highest scores (Figure 2A). These metabolites and 

chemicals were enriched in the PPAR signaling pathway and a number of biological 

processes including the regulation of cellular ketone metabolic process (Figure 2B). 

Metscape showed that the prioritized metabolites were involved in glycolysis, 

gluconeogenesis, cholesterol biosynthesis, and de novo fatty acid biosynthesis pathways 

(Figure S-1). Metabolites L-tyrosine (39.49), adenosine triphosphate (39.08), D-glucose 

(37.05), hyaluronan (36.47), and N-acetylneuraminic acid (36.37) attained the highest scores 

in glycoproteomics (Figure 2A). These metabolites participated in the aminosugars 

metabolism, fructose and mannose metabolism, and glycerophospholipid metabolism 

pathways (Figures 2B and S-1). Calcium (39.97), L-tyrosine (38.05), tartaric acid (37.06), 

adenosine triphosphate (36.74), and D-glucose (36.63) were the metabolites most relevant to 

the musculoskeletal system (Figure 2A). Pathway analysis revealed that these metabolites 

were associated with the metabolism pathways of carbohydrates (including fructose, 

mannose, and galactose) and amino acids (such as tyrosine, arginine, proline, glutamate, 

aspartate, and asparagine) (Figures 2B and S-1). The results indicated that our methods 

successfully retrieved many known associations between metabolites and the B/D-HPP 
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areas. Network analysis across the four areas revealed that these gene-metabolite interaction 

networks (Figure 2B) were highly connected (connectedness scores (the proportion of 

connected node pairs in the network) > 0.93) and moderately centralized (centralization 

scores 0.40–0.51). In addition, there were multiple interactions connecting the nodes, 

resulting in moderate connectivity efficiency (efficiency scores (the proportion of edges that 

could not be removed without disconnecting the nodes) 0.54–0.72) and transitivity 

(transitivity scores (when node A is connected to node B and node B is connected to node C, 

the probability that nodes A and C are directly connected in the network) 0.53–0.65; Figure 

S-2A). We further computed the scores of all related metabolites for each of the B/D-HPP 

targeted areas, with the results summarized in Data S-1. Figure 2C shows the correlations 

among the B/D-HPP targeted areas and highlights metabolites strongly associated with each 

B/D-HPP. Biologically-related concepts, such as cardiovascular, diabetes, as well as food 

and nutrition, formed a cluster in the figure.

Prioritizing Chemicals in the B/D-HPP Targeted Fields

In addition to metabolites, our algorithm successfully prioritized chemicals associated with 

the B/D-HPP targeted fields (Data S-2). The identified chemicals ranged from endogenous 

chemicals (including hormones and neurotransmitters), drugs, drug metabolites, ions, and 

environmental pollutants, as defined by the PubTator tool18. Based on the DrugBank 

definition, 1,630 chemicals tagged by PubTator are drugs. Drugs tended to have more 

PubMed publications (median number of publications = 1195.5) than non-drug chemicals 

(median number of publications = 4).

Using the PURPOSE score, we identified chemicals implicated with each of the B/D-HPP 

focused area. For instance, gefitinib (PURPOSE score = 44.35), vemurafenib (42.50), 

decitabine (42.38), temozolomide (41.79), and lapatinib (41.73) scored the highest among 

all chemicals in cancers (Figure 3A). These chemicals were enriched in protein 

autophosphorylation and transmembrane receptor protein tyrosine kinase signaling pathways 

(Figure 3B). For diabetes, insulin (44.00), C-peptide (42.61), and blood glucose (41.90) had 

the highest scores (Figure 3A). These chemicals are involved in the PPAR signaling pathway 

and carbohydrate metabolism mechanisms (Figure 3B). Chemicals proteoglycans (39.15), 

alpha 1-antitrypsin (38.62), hyaluronic acid (37.35), and glycosylphosphatidylinositols 

(37.17) scored the highest in glycoproteomics (Figure 3A). The chemicals were highly 

enriched in the cholesterol metabolic process, carbohydrate derivative binding, and ATP 

binding functions (Figure 3B). For the musculoskeletal system, parathyroid hormone 

(39.77), collagen type I trimeric cross-linked peptide (37.85), 1,25-dihydroxyvitamin D 

(35.96), and zoledronic acid (35.82), and diphosphonates (35.74) were the highest-scoring 

chemicals (Figure 3A). Pathway analysis revealed that these chemicals were associated with 

positive regulation of vitamin D 24-hydroxylase activity and the vitamin D catabolic process 

(Figure 3B). Quantitative analyses on the gene-chemical interaction networks (Figure 3B) 

showed that these networks are less well-connected than the gene-metabolite interaction 

networks (Figure 2B) of the same query topic (connectedness scores 0.54–0.87), with low to 

moderate centralization scores (0.33–0.41). In these B/D-HPP targeted fields, many drugs 

had high PURPOSE scores, which is consistent with the fact that there were more 

publications associated with drugs than non-drugs in general. Compared with the gene-
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metabolite interaction networks, the gene-chemical interaction networks had relatively 

sparse edges connections, resulting in higher connectivity efficiency scores in general 

(efficiency score 0.58–0.90) and variable transitivity scores (0.20–0.66; Figure S-2B). Figure 

S-3 visualized the connections among the B/D-HPP targeted areas and illustrates chemicals 

strongly associated with each B/D-HPP.

Our algorithm can also identify the chemicals associated with specific biological or medical 

conditions. As an illustration, when querying “coronary artery disease” in human, our 

method retrieved many well-known chemicals associated with the disease (Figure 3C), such 

as cholesterol (PURPOSE score 40.18), HDL (32.87), triglycerides (32.42), LDL (32.13), 

brain natriuretic peptide (31.54), and homocysteine (29.62). In addition, many drugs related 

to the treatment of coronary artery disease and related comorbidities were identified by our 

system. For instance, clopidogrel (38.39) and aspirin (31.55) ranked among the top ten 

chemicals in this query. These results suggested the extensibility of the PURPOSE algorithm 

to specific biomedical conditions of clinical importance.

Evaluation of the Prioritization Results

Comparing with the curated topic-chemical relations obtained from the CTD31, our tool 

successfully retrieved relevant chemicals from the literature. The precision and recall of our 

tool were better than those of the FACTA+32 and BEST34 systems in most B/D-HPP fields 

with CTD annotations (Figure 4). Among the top 500 retrieved chemicals associated with 

cancers, diabetes, or liver, our tool achieved a 5.2–11.4% improvement in precision and a 

2.0–5.7% improvement in recall compared with FACTA+, and 5.2–16.8% improvement in 

precision and 1.6–3.2% improvement in recall compared with BEST. FACTA+ performed 

better than BEST in cancers but had worse performance in liver, and the two systems had 

similar performance in diabetes. For rheumatic diseases, which had the least number of 

PubMed publications, the first 390 chemicals retrieved by PURPOSE attained the highest 

precision and recall among all three tools, but the precision gradually decreased when we 

went further down the retrieved list to include chemicals with lower PURPOSE scores, 

indicating that the PURPOSE algorithm worked better in well-published fields and for well-

studied chemicals. These results validated the relevance of the PURPOSE algorithm in 

chemical prioritization tasks.

Cloud-Based System Deployment

To facilitate real-time metabolite and chemical prioritization, a cloud-based system was 

deployed. In addition to the B/D-HPP targeted areas, our system allows users to input any 

search term of interest and retrieves the results in a few seconds. Modules for enrichment 

analyses, visualization of PURPOSE score distributions, and summarization of highly-cited 

publications are available in the browser-based user interface. Our system is freely-

accessible at http://rebrand.ly/metapurpose.

DISCUSSION

We have presented a novel general-purpose tool for metabolite and chemical prioritization, 

with direct applications to the ongoing B/D-HPP investigations1–3. Our cloud-based system 
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automatically obtained the most updated PubMed literature and bio-entity taggings, 

employed the state-of-the-art literature mining approach to prioritizing metabolites and 

chemicals, and successfully validated the results in the curated CTD database31. Our 

approach will facilitate targeted metabolomics and chemical analyses, which is expected to 

expedite multi-omics integration for investigations on human biology and disease 

states5, 35, 36.

As many metabolites and chemicals possess a number of evolving synonyms13, it was 

difficult to track their publication trends, and there was no available tool that prioritizes 

metabolites for targeted investigations. To address this challenge, our system employed the 

tagged entities from PubTator18, identified tags for chemicals using the MeSH ontological 

structure17, and filtered known human metabolites using the curated information from the 

HMDB8. In addition, we demonstrated the extensibility of the PURPOSE algorithm12, 

which achieved improved precision and recall compared with the previously-proposed 

literature mining methods32, 34. Our system allows users to input any search term of interest, 

queries the most updated PubMed database, retrieves and prioritizes the metabolites and 

chemicals in real time, and summarizes the results to the users. Our cloud-based system 

enables enrichment analyses on the retrieved results14, provides external links to curated 

databases8, and shows the landmark publications describing the relations between the 

queried topic and the prioritized metabolites and chemicals.

Our results demonstrated that there are a great number of publications describing 

metabolites and chemicals associated with each of the B/D-HPP targeted fields, indicating 

the feasibility of building literature mining systems for prioritizing metabolites and chemical 

targets. The number of publications on human metabolites and chemicals increased steadily 

since 1950. In recent years, there are more than 70,000 new publications on human 

metabolites and chemicals (including more than 50,000 papers mentioning drugs) being 

added to the literature each year. The amount of information posed a challenge to manual 

literature curation but a unique opportunity for text-mining algorithms in retrieving and 

aggregating the most updated and relevant information from the literature37. Our system 

showcased a novel way of utilizing such information, and the prioritized metabolites and 

chemicals can guide targeted analysis as well as serve as dynamic summaries of the 

publication trends in the queried fields.

One limitation of our approach is that some newly synthesized chemicals may not have a 

MeSH term or identifier. Such new chemicals could be missed by PubTator tagging and 

hence not prioritized by our system. To address this challenge, we implemented an 

automated updater to obtaining the most recent MeSH entries and PubTator taggings 

regularly. In addition, like all literature mining tools, the undiscovered topic-chemical 

associations would not receive a high PURPOSE score. The ongoing efforts on high-

throughput metabolomics and chemical profiling could mitigate this issue38.

In summary, our system successfully identified the relevant metabolites and chemicals 

associated with each of the B/D-HPP focused fields. Together with the previously described 

protein prioritization framework12, our tools can compile lists of proteins, metabolites, and 

chemicals related to the B/D-HPP targeted areas and other human organ-systems or disease 
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states, which will facilitate the design of targeted proteomic, metabolomic, and biochemical 

profiling methods, and expedite integrative multi-omic analyses. The cloud-based 

metabolites and chemicals prioritization platform can accommodate any custom search term, 

enabling scientific investigations of any diseases or organs of interest, and contribute to the 

development of precision medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of metabolites and chemical publication patterns in the B/D-HPP targeted areas. 

(A) The number of all PubMed publications on human, publications associated with any 

chemical, and publications associated with any metabolite since 1950. The number of 

PubMed publications increased exponentially since 1975. (B) The number of publications, 

total citations, citations per year (Sum_Cit/year), and the number of associated metabolites 

in the B/D-HPP fields. Note that the X-axis is log10-transformed. (C) The number of 

publications, total citations, citations per year (Sum_Cit/year), and the number of associated 

chemicals in the B/D-HPP areas. Note that the X-axis is log10-transformed. Abbreviations: 

B: brain; Ca: cancers; CV: cardiovascular; D: diabetes; Ex: extreme conditions; Ey: 

EyeOME; FN: food and nutrition; G: glycoproteins; Im: immune-peptidome; In: infectious 

diseases; K: kidney and urine; L: liver; Mi: mitochondria; Mo: model organisms; Mu: 

musculoskeletal; Pe: PediOme; Pl: plasma; PA: protein aggregation; R: rheumatic disorders.
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Figure 2. 
Metabolite prioritization in the selected B/D-HPP targeted areas. (A) Distribution of the 

Protein Universal Reference Publication-Originated Search Engine (PURPOSE) score of the 

top metabolites associated with cancers, diabetes, glycoproteomics, and the musculoskeletal 

system. X-axis at the top: PURPOSE score; X-axis at the bottom: log10(value) of nC (the 

number of publications associated with the metabolite), nTC (the number of papers 

associated with both the topic and the metabolite (TC)), and Sum_Cit/Year (citations per 

year of TC). (B) Network analysis results using the Search Tool for Interactions of 

Chemicals (STITCH) tool. Metabolites with the highest PURPOSE scores as well as their 

interacting proteins were shown. (C) Multidimensional scaling (MDS) visualization of the 

connections among B/D-HPP targeted fields and their associated metabolites. B/D-HPP 

fields with higher correlation in their associated metabolites’ PURPOSE scores have shorter 

distances on the graph.
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Figure 3. 
Chemical prioritization in the selected B/D-HPP targeted areas. (A) Distribution of the 

Protein Universal Reference Publication-Originated Search Engine (PURPOSE) score in the 

top chemicals associated with cancers, diabetes, glycoproteomics, and the musculoskeletal 

system. X-axis at the top: PURPOSE score; X-axis at the bottom: log10(value) of nC (the 

number of publications associated with the chemical), nTC (the number of papers associated 

with both the topic and the chemical (TC)), and Sum_Cit/Year (citations per year of TC). (B) 

Network analysis results using the STITCH tool. Chemicals with the highest PURPOSE 

scores and their interacting proteins were shown. (C) PURPOSE scores of the top chemicals 

associated with coronary artery disease.
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Figure 4. 
Performance comparison among Protein Universal Reference Publication-Originated Search 

Engine (PURPOSE), Finding Associated Concepts with Text Analysis (FACTA+), and 

Biomedical Entity Search Tool (BEST) tools. Precision-recall curves for chemical 

prioritization for cancers, diabetes, rheumatic diseases, and liver were shown. Biologists-

curated topic-chemical relations from the Comparative Toxicogenomics Database (CTD) 

was used as the ground truth. PURPOSE achieved the best precision and recall in cancers, 

diabetes, and liver, and have similar performance in rheumatic diseases comparing with 

FACTA+ and BEST. BEST performed better than FACTA+ in liver but has worse 

performance in cancers, and the two systems had similar performance in diabetes and 

rheumatic diseases.
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