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Abstract

We hypothesize that our smartphone-based arrhythmia discrimination algorithm with data 

acquisition approach reliably differentiates between normal sinus rhythm (NSR), atrial fibrillation 

(AF), premature ventricular contractions (PVCs) and premature atrial contraction (PACs) in a 

diverse group of patients having these common arrhythmias. We combine Root Mean Square of 

Successive RR Differences (RMSSD) and Shannon Entropy (ShE) with Poincare plot (or turning 

point ratio (TPR) method) and pulse rise and fall times to increase the sensitivity of AF 

discrimination and add new capabilities of PVC and PAC identification. To investigate the 

capability of the smartphone-based algorithm for arrhythmia discrimination, 99 subjects, including 

88 study participants with AF at baseline and in NSR after electrical cardioversion, as well as 7 

participants with PACs and 4 with PVCs were recruited. Using a smartphone, we collected 2-

minute pulsatile time series from each recruited subject. This clinical application results show that 

the proposed method detects AF with sensitivity of 0.9836, and discriminates PVCs and PACs 

from AF with sensitivities of 0.9680 and 0.9750, respectively.
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I. Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia. Over 5.2 million 

Americans have been diagnosed with AF, and the prevalence of AF is increasing 

concomitant with the aging of the U.S. population [1-3]. AF exerts a significant negative 

impact on the longevity and quality of life of a growing number of Americans, 

predominantly through its association with increased risk for heart failure and stroke. 

Effective AF treatments reduce risk for complications from AF. A major challenge facing 

clinicians and researchers is the early detection of AF, because particularly in its early 

stages, AF can be intermittent and asymptomatic [4]. While the population with 

undiagnosed AF is substantial [5], studies have shown that more intensive cardiac 

monitoring can improve AF detection and enable timelier institution of treatment [6]. 

Automated AF detection algorithms offer real-time realizable AF detection but often suffer 

from the fact that common benign causes of rhythm irregularity, most notably premature 

atrial (PAC) and ventricular (PVC) contractions, can cause false positive AF detection. [7, 
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8]. There is a pressing need to develop a continuous arrhythmia monitoring device that can 

accurately and reproducibly distinguish between AF, NSR, and premature beats (PACs and 

PVCs) in order to improve patients’ cardiovascular health and reduce the costs associated 

with treating AF [9].

A mobile cardiac monitoring device that is readily accessible, inexpensive, and simple to 

operate is needed to enhance rhythm monitoring. As smartphones have become prevalent, 

they meet the criteria of ready access and acceptance by the general public for monitoring 

their health [10]. Moreover, the use of pulsatile signals from smartphones has recently 

attracted the attentions of many researchers [8, 11, 12]. In prior studies, we have 

demonstrated that a smartphone camera recording of a fingertip yields pulsatile signals that 

are similar to heart-rate fluctuations. One of the major advantages of our approach is that it 

does not require extra hardware. The optical video monitoring of the skin with the standard 

digital camera embedded in smartphones is sufficient to extract information related to the 

variability in heart rate signal. We tested our smartphone-based AF detection application in 

76 individuals with AF undergoing cardioversion and showed that it was able to distinguish 

between AF (pre-cardioversion) and NSR (post-cardioversion) with 96% accuracy [11]. 

However, in pilot work, we discovered that PACs and PVCs resulted in false positive AF 

detection.

Premature atrial contractions occur when an ectopic focus originating in the atrium leads to 

premature activation of the atria prior to typical sinoatrial node activation [13] whereas a 

PVC occurs when a similar process occurs in the ventricle [14]. PACs and PVCs can cause 

symptoms similar to AF, e.g., the sensation of an irregular pulse or having skipped beats. In 

contradistinction to AF, the clinical course of patients with PACs or PVCs is typically 

benign [15]. PACs and PVCs commonly occur in patterns, e.g., occurring every 2nd, 3rd, or 

4th beat, termed bigeminy, trigeminy, and quadrigeminy. There are PAC and PVC 

discrimination algorithms that have been developed to distinguish these benign arrhythmias 

from AF, but such algorithms require an electrocardiographic signal [16, 17]. One limitation 

of existing approaches is that many templates of PAC/PVC waveforms need to be stored in 

memory since the approach is based on template matching. More importantly, this approach 

is only suited for ECG signals, not for pulsatile signals, such as those obtained from camera-

enabled smartphones. Pulsatile signals have different characteristics and lower time 

resolution compared to ECG signals. Hence, there is a need to develop a new arrhythmia 

discrimination algorithm for a smartphone, which can differentiate between NSR, AF, PACs 

and PVCs.

In this paper, we propose a real-time comprehensive accurate arrhythmia discrimination 

algorithm for iPhone 4S/5S, which can discriminate between NSR, AF, PACs and PVCs 

using pulsatile time series collected from a smartphone’s camera. To increase the sensitivity 

of AF detection and add the new capabilities of PVC and PAC identification, our arrhythmia 

discrimination algorithm combines Root Mean Square of Successive RR Differences 

(RMSSD), Shannon Entropy (ShE) and turning point ratio (TPR), used in the previous AF 

detection algorithms, with the Poincare plot, and utilizes the features of pulse amplitude, and 

rise and fall times for arrhythmia discrimination. The RMSSD, ShE, Poincare plot and pulse 

amplitude, and rise and fall times features have been widely used in analyzing heart rhythms 
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[18-27] while the TPR was proposed to be applied to heart rhythm analysis [28]. Here, we 

modified the conventional Poincare plot (or TPR) to discriminate bigeminy, trigeminy and 

quadrigeminy patterns of PACs/PVCs as well as detect PAC/PVC rhythms themselves 

among non-NSR subjects. Moreover, the use of pulse amplitude, and rise and fall times is 

especially well-suited for differentiating between the PAC and PVC. In this work, we 

evaluate our arrhythmia discrimination algorithms’ performance with data from patients 

with NSR, AF, PACs and PVCs who were recruited after consenting for our study and a 

clinically indicated electrical cardioversion at the University of Massachusetts Medical 

Center (UMMC). The main contributions of this paper is summarized as follows:

• Smartphone-based pulsatile time series analysis: We analyze NSR, AF, PAC and 

PVC pulsatile time series obtained from smartphones to characterize their 

features. We consider i) pulse amplitude/times and ii) their RMSSD, ShE and 

TPR values, and iii) Poincare plot. A paired t-test is performed to verify 

significant differences between the features of NSR, AF, PAC and PVC.

• PAC/PVC and its pattern discrimination: Using Poincare plot or turning point 

ratio (TPR), we discriminate PAC/PVC and its patterns, e.g. bigeminy, trigeminy, 

quadrigeminy, among non-NSR subjects which are classified from NSR by 

RMSSD and ShE. We begin by characterizing Poincare plot trajectory or TPR 

statistics of each specific PAC/PVC pattern. Here, the characterization is based 

on observation of pulsatile time series from smartphones. We then evaluate the 

performance of Poincare plot and TPR methods in terms of PVC/PAC 

classification accuracy.

• PAC and PVC differentiation: We derive pulse amplitude, and rise and fall times 

near PAC/PVC episodes to estimate if they have complete compensatory pause 

or not. This pulse amplitude/time are used to differentiate between PAC and PVC 

episodes.

II. Materials and Methods

A. NSR, AF, PVC, and PAC Databases and Clinical Data Collection

For the iPhone data collection, 88 subjects with recordings were obtained before and after 

cardioversion, as well as 7 with PACs and 4 with PVCs were recruited at UMMC. The 

subjects all gave their informed consent (H#14490 and #14-261) (IRB numbers for the 

studies). Our data collection protocol was approved by the Institutional Review Boards of 

UMMC and Worcester Polytechnic Institute. Participants were instructed to place their first 

(index) or second (middle) finger on a standard smart phone camera with the flash turned on 

(the flash will be automatically invoked by the application software) for two minutes. Data 

were recorded with participants in a supine position with spontaneous breathing. Fig 1 

shows a current prototype of arrhythmia discrimination application for iPhone 4S.

B. Preprocessing

Videos of their fingertip blood flow intensity were taken with 640×480 pixel resolution at a 

sampling rate of 30 frames per second and processed in real time. Only the green band from 

the RGB video was used as our recent results indicate this gives the best signal fidelity [29]. 
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An average is made of the intensity values of the upper 320×480 pixels in each frame, i.e. 

the upper half of the fingertip on the green video signal, as our systematic analysis showed 

this region provided the best signal quality. Once the clean green signals are identified, pulse 

beat-to-beat detection from the green signals was performed incorporating interpolation, 

sudden DC change elimination, two stages of band pass filter, derivative rank filter and 

matching of original peaks. Specifically, the sudden DC change elimination is performed by 

removing differential changes larger than a predefined threshold value while the filters are 

designed to remove the high frequency noise and the DC component.

C. Arrhythmia Discrimination

Fig. 2(a)-(c) shows three cases of PPI sequences of 60 beat-to-beat segments with ten, six, 

and three PAC quadrigeminy patterns, respectively. The previous algorithm [11] which is 

based on RMSSD and ShE classifies 60 beat-to-beat segments with at least 4 PAC patterns 

to be AF (see Figs. 2(a) and 2(b)) while classifying those with less than 4 PAC patterns to be 

NSR (see Fig. 2(c)). Our algorithm includes PAC and PVC discrimination capability which 

will further improve AF detection accuracy. The proposed arrhythmia discrimination 

algorithm is detailed in our flowchart, which is shown in Fig. 3.

1) Feature Extraction—Our discrimination algorithm extracts features of the PPI signal, 

e.g., peak-to-peak interval (PPI) and trough-to-trough interval (TTI), rise time (DRISE) and 

fall time (DFALL) from the measured pulsatile time series. As shown in Fig. 4, the PPI is 

calculated by the difference between two successive peak times, TPEAK,n - TPEAK,n-1, and 

TTI is obtained by the difference between two successive trough times, TTROUGH,n - 

TTROUGH,n-1. DRISE is defined by the difference between the peak and the trough of the nth 

pulse, TPEAK,n - TTROUGH,n while DFALL is the difference between the trough of the nth 

pulse and the peak of the n-1th pulse and, TTROUGH,n - TPEAK,n-1. Similarly, ARISE is 

YPEAK,n - YTROUGH,n while AFALL is YPEAK,n-1 - YTROUGH,n.

2) NSR Discrimination from AF, PAC and PVC subjects using RMSSD and ShE
—We first derive the RMSSD and ShE from the PPI. The RMSSD is to measure the 

variability in a time series sequence and is calculated as follows:

RMSSD ai, …, ai + L − 1 = 1
L ∑

j = 0

L − 1
ai + j − ai + j − 1

2 . (1)

The RMSSD of NSR is expected to be small compared to those of AF, PAC and PVC.

The ShE is to quantify the regularity of pattern in a time series and ShE on the time series ai, 

…, ai+L−1 is derived as:

ShE ai, …, ai + L − 1 = − ∑
k = 1

NBIN p ai, …, ai + L − 1, k log p ai, …, ai + L − 1, k
log 1 NBIN

(2)
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where NBIN denotes the number of bins, of which each has lower (BLOW,k) and upper 

(BUP,k) bin boundaries for k ∈ {1,NBIN} and p(ai, …, ai+L−1,k) is expressed as:

p ai, …, ai + L − 1, k = ∑
j = 0

L − 1
U ai + j, k L − Noutliers for U ai + j, k =

1, BLOW, k < ai + j < BUP, k
0, otherwise

The ShE of NSR is expected to be small compared to those of AF, PAC and PVC. The TPR 

is to measure a degree of independence in a time-series. A turning point (TP) is usually 

defined as a point having larger or smaller value than two nearest neighbor points [4]. The 

TPRs of NSR and AF are expected to be within in a range since they are from random PPIs 

while those of PAC and PVC are expected to be out of the range due to their regularities.

Our algorithm compares the RMSSD, ShE and TPR of PPI to their corresponding 

thresholds, respectively. If they are less than their thresholds, the pulsatile time series is 

classified as NSR without PAC or PVC (see the first condition in the flowchart in Fig. 3). 

Otherwise, the algorithm goes to next step and checks if the pulsatile time series is AF or 

PAC/PVC.

3) PAC/PVC Discrimination from non-NSR subjects using Poincare Plot or TPR
—Our discrimination algorithm uses Poincare plot or TPR to determine if the non-NSR 

subject has PAC/PVC interspersed with NSR. Moreover, the algorithm gives information of 

PAC/PVC patterns, e.g., bigeminy, trigeminy, and quadrigeminy.

a) Poincare Plot: Shown at the bottom panel of Fig. 5 is an iPhone recording of a PAC 

subject and the top panel represents its corresponding ECG data. When a PAC episode 

occurs as noted by an arrow on the top panel of Fig. 5, the rising phase of iPhone’s PPI 
recording is markedly prolonged. Hence, taking the difference between the iPhone peak 

times of a normal beat and a PAC beat following another normal beat (ΔPPI), a “long” pulse 

interval is obtained (noted by a red interval). The difference between two consecutive normal 

pulse beats is termed the “short” pulse interval. The occurrences of PAC and PVC episode at 

every 2nd, 3rd and 4th pulse beats are known as bigeminy, trigeminy and quadrigeminy, 

respectively. We adopt a Poincare plot, which is widely used to quantify the similarity in 

time series xi for i = 2, …, N [30] by drawing a two-dimensional plot (xi−1, xi), to 

characterize ΔPPI dynamics and to discriminate PAC/PVC episodes from those of AF and 

NSR. To facilitate the discrimination among bigeminy, trigeminy and quadrigeminy patterns 

of the PAC and PVC, the Poincare plot was divided into six regions as shown in Fig. 6. The 

six regions represent permutations of all possible sequences of “long” and “short” based on 

3 consecutive pulse intervals which are derived from 4 consecutive pulse beats as detailed in 

Table I. The region boundary was set optimally based on experiment results. The Poincare 

plot trajectory patterns of NSR, AF, PAC and PVC are respectively detailed in Table II. 

Moreover, the PAC and PVC are further classified into bigeminy, trigeminy, and 

quadrageminy patterns. Note that the trajectory pattern associated with NSR is expected to 

be “0-0-0-0-0-0-…” while AF is irregular at all 6 possible regions. Moreover, the various 

Chong et al. Page 5

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2019 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combinations of trigeminy and quadrigeminy associated with the PAC or PVC are distinct 

from either the NSR or AF. Combinations of PAC and PVC patterns have more orderly 

patterns (since the phase trajectory patterns will largely be confined to regions 0, 1, 2, 3 and 

4 as shown above) than the random trajectory patterns associated with AF (trajectory 

patterns are evident in all regions of the Poincare plot). For bigeminy rhythm, the difference 

between NSR and PAC/PVC bigeminy is that the bigeminy has larger PPI value than NSR. 

Hence, the PAC/PVC bigeminy can be appropriately discriminated by the mean and 

variance.

a) Turning point ratio (TPR): To apply TPR in discriminating PAC/PVCs, we redefine a 

TP as a point where a specific pattern starts, e.g. bigeminy, trigeminy and quadrigeminy 

patterns. If an unknown time series has similar number of TP (or TPR), related to a specific 

pattern, to that of an independent time series, the unknown series is expected to be 

independent. Otherwise, the time series is expected to be dependent.

To detect a quadrigeminy, we define TPQUAD as a starting point of “Short – Short – Long – 

Short – Short – Long – Short - Short (SSLSSLSS)” in a PPI sequence. Considering an 

independent time sequence Xi, the probability of a point being quadrigeminy TP is given by:

Pr Xi − 2 < Xi, Xi − 1 < Xi, Xi > Xi + 1, Xi > Xi + 2, Xi + 3 > Xi + 1, Xi + 3 > Xi + 2, Xi + 3 > Xi + 4, Xi + 3 > Xi + 5

= ∫x = − ∞
∞

Pr x > Xi − 1 Pr x > Xi − 2 Pr x > Xi + 1, x > Xi + 2, Xi + 1 < Xi + 3, Xi + 2 < Xi + 3, Xi + 4 < Xi + 3, Xi + 5 < Xi + 3 f x dx

= ∫x = − ∞
∞ 1

3F x 4 − F x 7
30 f x dx = 1

16

Using the stochastic theory, the expectation μTP,quad and standard deviation σTP,quad of the 

number of quadrigeminy TPs in a segment ℓ are given by

μTP, QUAD = ℓ − 7
16 , σTP, QUAD ≈ 0.0601ℓ − 0.4255

For example, an independent pulsatile time series with ℓ = 45 has μTP,QUAD and σTP,QUAD of 

1.435 and 1.1737, respectively. A pulsatile time series segment is considered independent if 

the number of TPs (or TPR) falls within some threshold confidence interval TpThresh (or 

TprThresh) of the expected TP (or TPR). Otherwise, a pulsatile time series segment is not 

considered to be dependent. For example, the TPR method determines Figs. 7(a) and 7(b) to 

be non-quadrigeminy and quadrigeminy, respectively.

For trigeminy, we defined the TPTRI as a starting point where “Short-Long-Short-Long-

Short (SLSLS)” PPI pattern begins. Hence, the probability of being TPTRI is similarly given 

by:
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Pr Xi − 1 < Xi > Xi + 1 < Xi + 2 > Xi + 3

= ∫−∞
∞

Pr Xi − 1 < x Pr x > Xi + 1 < Xi + 2 > Xi + 3 f x dx

= ∫−∞
∞ F x 2

2 − F x 4
6 f x dx = 2

15

The μTP,TRI and σTP,TRI are given by:

μTP, TRI = 2 ℓ − 4
15 , σTP, TRI ≈ 0.0826ℓ − 0.2527

For bigeminy, TPs are defined as a starting point where “Long-Long (LL)” PPI pattern 

starts. PAC/PVC bigeminy is appropriately discriminated by the mean and variance than 

TPR since the TPR of PAC/PVC is expected to be similar to that of NSR.

4) Differentiation between PVC and PAC using pulse amplitude, and rise and 
fall times—The PVC and PAC have similar Poincare plot trajectories and TPR values for 

the same pattern type (bigeminy, trigeminy, and quadrigeminy). To discriminate between 

PAC and PVC, our arrhythmia discrimination algorithm utilizes the physiological difference 

between PAC and PVC explained in the followings.

A PAC is an abnormal beat initiated in the atria before sinoatrial (SA) node triggers and the 

PAC usually interrupts the SA node and resets its timing. Hence, the PAC mostly generates a 

QRS complex similar to the NSR episode. Moreover, the NSR episode following a PAC 

usually occurs at time rescheduled by the PAC (called incomplete compensatory pause) as 

shown in Fig. 8(a). On the other hand, a PVC is a beat initiated in the ventricle before 

atrioventricular (AV) node triggers and the PVC does not usually interrupt the SA node. 

Hence, the NSR episode following a PVC usually occurs at previously scheduled time by 

SA node (called complete compensatory pause) as shown in Fig. 8(b). Moreover, the PVC 

usually generates a wider QRS complex compared to that of an NSR episode.

The completeness and incompleteness are distinguished by the rise and fall times of the 

pulse signals. PAC episodes are usually expected to have similar rise and fall times similar to 

those of NSRs while PVC episodes have different fall times compared to those of NSRs. We 

define the difference (ΔDRISE) between the rise times of current and previous beats, i.e., 

ΔDRISE = DRISE,n - DRISE,n-1. Similarly, we define the difference between the fall times as 

ΔDFALL,n = DFALL,n - DFALL,n-1. For the ectopic beat of n, we derive the rise and fall time 

differences between ectopic beat and a normal beat following the ectopic beat which are 

ΔDRISE,n+2 and ΔDFALL,n+2, respectively. If ΔDRISE,n+2 and ΔDFALL,n+2 are within 

ΔDRISE,th-quad and ΔDFALL,th-quad, the ectopic beat is determined to be a PAC. Otherwise, it 

is considered as a PVC. For trigeminy beat of n, we utilize the differences between peak 

times between a normal before an ectopic beat and another normal beat after the ectopic 

beat, i.e., ΔPPIn+1 =PPIn+1 - PPIn. If the difference is less than ΔPPIth-tri, the ectopic beat is 

determined to be a PAC. Otherwise, the beat is considered as a PAC.
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III. Results

We evaluated the performance of the arrhythmia discrimination algorithm with iPhone’s 

pulsatile time series data. Two minute pulsatile time series is collected from each subject. 

We compared our new algorithm to the previous arrhythmia discrimination algorithms, 

which are based on RMSSD and ShE. As performance metrics, we considered classification 

accuracy, sensitivity and specificity.

A. Detection of NSR

Fig. 9 compares the RMSSD (left), ShE (middle) and TPR (right) values of NSR, AF and 

PAC/PVC subjects. We performed paired t-test to determine if there are significant RMSSD 

differences between NSR, AF and PAC/PVC. The p-values between NSR and each 

arrhythmia indicate that RMSSD values are significantly different (p<0.05 at 95% CI) 

between NSR and each of other arrhythmias. However, RMSSD differences between AF and 

PAC/PVC are not significant. Similarly, ShE and TPR values of NSR, AF and PAC/PVC 

subjects are also found significantly different between NSR and each of arrhythmia, 

resepectively. Based on this observation, we applied RMSSD, ShE and TPR thresholds to 

classifying NSR subjects from others rhythms. The optimal RMSSD and ShE threshold 

values are derived as 0.09275, 0.3800 and 0.3600, respectively. As a result, the proposed 

method detects NSR with accuracy of 0.9788 which is higher than accuracy of 0.9577 from 

the conventional algorithm based on a combination of Rmssd and ShE [11].

B. PAC/PVC Discrimination among non-NSR Subjects: Poincare Plot vs. TPR

1) Poincare Plot—The Poincare pattern for NSR is largely confined within the region “0” 

as shown in Fig. 10(a) while the Poincare patterns of AF are random and their trajectories 

cross all six regions as shown in Fig. 10(b). For both PVC and PAC’s quadrigeminy, the 

Poincare plot shows repeating triangle patterns spanning the regions 1, 2 and 3, as shown in 

Fig. 10(c) as expected in Table II. On the other hand, the trigeminy of the PVC in Fig. 10(d) 

shows repeating patterns spanning the regions 2 and 4 as described in Table II.

Fig. 11 shows Poincare plots of PAC, PVC and AF subjects before (left) and after (right) 

removing patterns. For the Poincare plots of PAC and PVC subjects after removing patterns, 

it is similar to NSR as shown in Figs. 11b and 11d. On the other hand, the Poincare plot of 

AF after removing patterns remains similar (see Fig. 11f) to that before removing patterns 

(see Fig. 11e).

2) TPR—The TPRTRI and TPRQUAD of NSR are below μTPRTRI ± σTPRTRI and μTPRQUAD 
± σTPRQUAD boundaries, respectively, as shown in Figs. 12(a) and (b). For AF, the TPRTRI 

and TPRQUAD cross their corresponding boundaries but are within the ranges for 50% of the 

entire time as shown in Figs. 12(c) and (d). Interestingly, the TPRTRI of PVC-trigeminy is 

larger than its corresponding upper bound, μTPRTRI + σTPRTRI, for 50 % of the time as 

shown in Fig. 12(e) while the TPRQUAD of PAC-quadrigeminy is much larger than 

μTPRQUAD + σTPRQUAD for most of the time as shown in Fig. 12(h). However, both the 

TPRTRI of PAC-quadrigeminy and TPRQUAD of PVC-trigeminy are mostly confined to be 
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lower than μTPRTRI + σTPRTRI and μTPRQUAD + σTPRQUAD, respectively, as shown in Figs. 

12(f) and 12(g).

C. Differentiation between PAC and PVC based on Complete and Incomplete 
Compensatory Pauses

Representative PAC and PVC recordings are shown in Fig. 13. From these PAC and PVC 

recordings, rise and fall amplitudes (ARISE, AFALL) and their durations (DRISE, DFALL) near 

PAC or PVC episode are calculated. Fig. 14 compares DRISE, DFALL, ARISE and AFALL of 7 

PACs (left) to those of 4 PVCs (right). Note the clear difference in the rise and fall time 

ratios between PAC and PVC. The paired-t test was performed to determine if there is a 

significant difference in the rise and fall time ratios between PAC and PVC subjects. Based 

on the our observation of measurement data, we set both of the thresholds ΔDRISE,th-quad, 

ΔDFALL,th-quad, ΔPPIth-tri to be 0.0667, 0.0667 and 0.0334 seconds. The proposed 

discrimination algorithm discriminates PAC from PVC subjects with accuracy of 1.000.

D. Multiclass Classification Accuracy: NSR, AF, PAC, and PVC

The test characteristics of our multiclass arrhythmia discrimination algorithm are shown in 

Table IV. We describe the sensitivity, specificity, and accuracy values of the algorithm 

running on an iPhone 4S in 99 participants with AF (pre-cardioversion) and NSR (post-

cardioversion) who were recruited at the UMMC. For PVC and PAC identification, our 

results are based on 7 subjects from UMMC with PACs and 4 subjects with PVCs. As shown 

in Table 4, when we combine our AF detection algorithms (RMSSD and ShE) with the 

Poincare plot (or TPR) and pulse rise and fall times, the accuracy of detection of PVCs and 

PACs is 100% and discrimination between the two rhythms is nearly 97%.

IV. Discussion and Conclusion

Accurate real-time arrhythmia discrimination using smartphones has been elusive to date. 

Given that paroxysmal and asymptomatic AF is a growing clinical and public health 

problem, better, cheaper, and more readily available AF detection technology is needed. In 

this paper, we have shown that subjects with AF, PVCs and PACs can be accurately 

distinguished from each other, and one another, using pulsatile signals obtained from the 

human fingertip using the camera of an iPhone 4s. Our proposed arrhythmia discrimination 

algorithm for smartphone was designed based on five parameters: (a) RMSSD, (b) Shannon 

entropy, (c) Poincare plot, (d) turning point ratio, and (e) pulse ampltitude, and rise and fall 

times. We evaluated our arrhythmia algorithm with iPhone pulsatile time series and the 

results demonstrated that our proposed algorithm has offered high classification accuracy, 

sensitivity, and specificity. The paired t-test has shown that there is a significant difference, 

in terms of RMSSD, ShE, TPR, pulse amplitude, and rise and fall time values, between 

NSR, AF, PAC and PVC. Moreover, our algorithm has an advantage in that it is able to 

discriminate with a near pinpoint accuracy when PAC and PVC episodes start and end. The 

potential for the method proposed in this work is directly translated into practical 

applications, and the integration of the designed algorithm with a smartphone may have 

significant implications for real-time clinical applications especially for continuous 

monitoring of arrhythmia. Given the ever-growing popularity of smartphones, our approach 
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to AF detection using a smart phone will give the population as well as health care providers 

the opportunity to monitor for AF under a wide variety of conditions outside of the 

physician’s office. Because our approach does not involve a separate ECG sensor but instead 

uses only standard smart phone hardware, it is cost-effective, thereby leading to better 

acceptance and use by patients. We are not aware of any other algorithms that have the 

accuracy of our arrhythmia algorithm for smartphone applications, that are already 

developed using a moderately sized clinical study, and that have the capability to 

discriminate PVCs and PACs from AF. Since this is an algorithm development study, and the 

fact that there were a limited number of subjects with PACs and PVCs for validation, we will 

need to further test the algorithm in a separate cohort of patients with PVCs and PACs.
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Fig. 1. 
A smart phone application for data recording (the application uses the camera lens and 

illumination to acquire information about heart rate and rhythm).
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Fig. 2. 
Three PPI secquences extracted from 60 beat-to-beat segments. Threshold values are 

RMSSD/meanth=0.115 and ShEth = 0.55 [11]. (a): 10 PACs (RMSSD/mean=0.3758, 

ShE=0.4451), (b): 6 PACs (RMSSD/mean=0.2652, ShE=0.4345), (c): 3 PACs (RMSSD/

mean=0.0997, ShE=0.4438).
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Fig. 3. 
Flowchart of NSR, AF, PVC, PAC detection and discrimination procedure
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Fig. 4. 
Feature extraction of smartphone pulsatile time series. PPI and TTI are used to discriminate 

between AF, PAC/PVC and NSR as well as identify specific patterns (bigeminy, trigeminy, 

and quadrigeminy) of PAC/PVC. DRISE, DFALL, ARISE, and AFALL are for differentiating 

between PAC and PVC.
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Fig. 5. 
Comparison of ECG RR intervals to pulse intervals obtained from an iPhone in a PAC 

episode (a premature atrial contraction results in a longer duration pulse interval and larger 

amplitude pulse beat when compared to a normal pulse beat).
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Fig. 6. 
Poincare plot divided into six regions. AF, NSR, PVC and PAC rhythms will have different 

trajectory patterns and they may be confined to only a single region or multiple regions as 

demonstrated in Fig. 4.
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Fig. 7. 
TPR of independent and dependent processes. (a): Independent process-random (TPR=0.0), 

(b): dependent process-PAC-quadrigeminy (TPR=0.125).
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Fig. 8. 
Heart rhythm timing diagrams of representative (a) PAC and (b) PVC subjects. PAC and 

PVC episodes are interspersed with NSR episodes. (a): incomplete compensatory pause is 

occurred between the PAC episode and the fourth NSR espisode, and (b): complete 

compensatory pause is occurred between the PVC episode and the fourth NSR episode.
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Fig. 9. 
Comparision of statistical values (RMSSD, ShE and TPR) between NSR, AF and PAC/PVC. 

The central mark on each box corresponds to the median; the edges of the box correspond to 

the 25th and 75th percentiles, the whiskers extend to the most extreme data points not 

considered outliers, and outliers are plotted individually.
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Fig. 10. 
Poincare plot with (ΔPPIi-1,ΔPPIi) trajectory for PAC/PVC and its pattern detections. (a): 

NSR: (b): AF, (c): PAC-quadrigeminy, and (d): PVC-trigeminy.
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Fig. 11. 
Poincare plot with (ΔPPIi-1,ΔPPIi) trajectory before (right) and after (left) removing patterns 

(a): PAC-before, (b): PAC-after, (c): PVC-before, (d): PVC-after, (e): AF-before, and (f): 

AF-after.
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Fig. 12. 
TPRTRI(left) and TPRQUAD (right) of arrhythmia pulsatile time series (N=30, 0.13, 0.04,) 

(a): NSR (TPRTRI), (b): NSR (TPRQUAD), (c): AF (TPRTRI), (d): AF (TPRQUAD), (e): PVC-

trigeminy (TPRTRI), (f): PVC-trigeminy (TPRQUAD), (g): PAC-quadrigeminy (TPRTRI), and 

(h): PAC-qudarigeminy (TPRQUAD).
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Fig. 13. 
Representative smartphone data for (a): PAC and (b): PVC.
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Fig. 14. 
Comparision of Drise, Dfall and Ratio between PAC and PVC for (a): Quadrigeminy (p< 

0.05 at 95% CI) and (b): Trigeminy (p < 0.05 at 95% CI).
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TABLE I

Poincare plot sectors corresponding to PAC/PVC patterns which consist of bigeminy, trigeminy and 

quadrigeminy.

PPIi-2- PPIi-1-PPIi Region IDi

Short-Short-Long 1

Short-Long-Short 2

Long-Short-Short 3

Short-Short-Short 0

Long-Long-Long 0

Long-Long-Short 4

Short-Long-Long 5

Long-Short-Long 6
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TABLE II

Arrhythmia with its corresponding trajectory pattern in Poincare plot

Type of Arrhythmia Trajectory Patterns in the Poincare
plot’s six regions
(ΔPPIi-3 − ΔPPIi-2 − ⋯ − ΔPPIi+2)

Premature Atrial
Contraction (PAC)

 Bigeminy 0-0-0-0-0-0-…

 Trigeminy 2-4-2-4-2-4-…

 Quadrigeminy 1-2-3-1-2-3-…

Premature
Ventricular
Contraction (PVC)

 Bigeminy 0-0-0-0-0-0-…

 Trigeminy 2-4-2-4-2-4-…

 Quadrigeminy 1-2-3-1-2-3-…

Normal Sinus
Rhythm (NSR) 0-0-0-0-0-0-…

Atrial Fibrillation
(AF)

irregular patterns with trajectories at all 6
possible regions
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TABLE III

Comparison between Poincare Plot and TPR. Test Characteristics of AF Detection among Non-NSR Subjects

AF Detection
without PAC/PVC

Discrimination [11]

Poincare
Plot

TPR
(ΔPIi-1,ΔPIi)

Sensitivity 0.9775 1.0000 0.6667

Specificity 0.0000 1.0000 0.7879

Accuracy 0.9293 1.0000 0.7934
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TABLE IV

Test characteristics of PVC and PAC detection and discrimination using statistical methods* on a sample of 99 

subjects’ data recorded using iPhone 4s (88 subjects with AF (pre-cardioversion) and NSR (post-

cardioversion), 7 subjects with PAC and 4 subjects with PVC)

Algorithm
PVC PAC

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

1.0000 0.9540 0.9680 1.0000 0.9620 0.9750

*
Test Characteristics of PVC/PAC Detection Statistical Methods Established using the threshold values of RMSDD = 0.1093, Shannon Entropy = 

0.4890, Poincare Plot = 0.2.
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