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Sperm velocity is a key determinant of competitive fertilization success in

many species. Selection is therefore expected to favour the evolution of

faster sperm when the level of sperm competition is high. However, several

aspects can determine the direction and strength of selection acting on this

key performance trait, including ecological factors that influence both

sperm competition and the strength of selection acting on correlated traits

that may constrain evolutionary responses in sperm velocity. Here, we deter-

mine how a key ecological variable, the level of predation, shapes sperm

swimming speed across 18 Trinidadian populations of guppies (Poecilia
reticulata). We use performance analysis, a statistical tool akin to the familiar

methods of multivariate selection analyses, to determine how the level of

predation influences sperm velocity (modelled as a performance trait)

when accounting for correlated pre- and postcopulatory traits that are also

impacted by predation. We show that predation affects the combination of

pre- and postcopulatory traits that ultimately predict sperm performance.

Overall, we report evidence for disruptive relationships between sperm per-

formance and combinations of ornaments and sperm morphology, but the

specific combinations of traits that predict sperm velocity depended on the

level of predation. These analyses underscore the complex nonlinear inter-

relationships among pre- and postcopulatory traits and the importance of

considering ecological factors that may ultimately change the way in

which multiple traits interact to determine a trait’s performance value. As

such, our results are likely to be broadly applicable across systems where

selection is influenced by ecological conditions.
1. Introduction
Sexual selection represents a powerful selective force shaping reproductive

traits. Importantly, an increasing body of work reveals that the strength and

form of sexual selection are not immutable and can vary according to ecological

variables [1–3]. Ever since Darwin [4], evolutionary biologists have stressed the

importance of considering ecological variation in determining how sexual selec-

tion acts on reproductive traits that function in the competition for access to

mates (i.e. precopulatory sexual selection). For instance, elevated levels of pre-

dation can favour male–male competition (promoting weapon-like traits),

constrain opportunities for female mate choice (selecting against ornaments)

and/or promote sneak matings behaviours over courting tactics [5,6]. Ecologi-

cal variables also have the potential to influence how sexual selection influences

reproductive traits that promote fitness after mating (i.e. postcopulatory sexual

selection). For example, ecologically driven variance in territory quality, food

availability and predation pressure on population densities, sex ratios and

mating systems [1,7] all have the potential to alter rates of female multiple

mating, and therefore how often and strongly sperm competition occurs [8].

However, surprisingly few studies have considered how variation in ecological

factors influences sexual selection operating after mating (i.e. postcopulatory

sexual selection [3]).
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Postcopulatory sexual selection imposes a significant

evolutionary force on ejaculates (reviewed in [8,9]). In par-

ticular, numerous studies have revealed that sperm velocity

is a reliable predictor of fertilization success in competitive

and non-competitive matings [10]. Consequently, selection

imposed through sperm competition is commonly hypoth-

esized to favour the evolution of faster sperm [9,10].

However, the factors that influence sperm velocity are com-

plex [11]. Sperm velocity can be influenced by other

components of the ejaculate, including sperm morphology

and seminal fluid composition, which may constrain evol-

utionary responses in sperm swimming speed [12].

Furthermore, sperm traits commonly exhibit strong phenoty-

pic or genetic covariance with traits targeted by

precopulatory sexual selection (e.g. sexual ornamentation),

many of which are sensitive to prevailing ecological or

environmental conditions [3,13]. Thus, ecological variables

that impact the expression of precopulatory traits may also

influence ejaculate traits [13]. Consequently, to understand

how selection targets sperm swimming velocity, we need to

account for the complex interrelationship among pre- and

postcopulatory sexual traits, all of which may be modified

by ecological factors.

The guppy Poecilia reticulata provides an ideal model system

for testing how variation in a key ecological variable—

predation risk—influences sperm traits among natural

populations [14]. Guppies are small livebearing fish that

inhabit rivers and streams that are bisected by waterfalls

that limit the migration of guppies and impede the move-

ment of predatory fish species. Typically, upstream

populations are characterized by low levels of predation

(imposed only by small Cyprinodontidae) and downstream

populations are characterized by high levels of predation

(mainly from Characidae and Ciclidae, [14]). This difference

in predation risk between up- and downstream populations

generates predictable differences in the strength of natural

and sexual selection between predation regimes, with well-

known consequences for male ornamentation, female mate

choice, male–male competition, antipredator behaviour,

mating behaviour, population demography, life-history evol-

ution and, possibly, the level of multiple mating by females

(reviewed in [15–17]). In general, where predation is limited

(upstream), males are more coloured and tend to rely more

on courtship displays to obtain matings. In these upstream

populations, relative to high-predation (downstream) sites,

the level of multiple mating by females is marginally lower

and precopulatory sexual selection is stronger [15,16]. By con-

trast, in high-predation (downstream) populations, natural

selection has a stronger impact on trait evolution [15,16],

and males tend to be less coloured and rely more on forced

copulations (termed gonopodial thrusts) to achieve matings

[14,15]. While multiple paternity, and thus sperm compe-

tition, is generally high in both type of populations, broods

exhibit relatively higher levels of multiple paternity in high-

predation populations, possibly reflecting higher levels of

sperm competition [18].

In guppy populations subject to high-predation males

have lower sperm production (as estimated from stripped

ejaculate size) but produce faster-swimming sperm [19], com-

pared to their low-predation counterparts [20]. In guppies, no

linear relationships between sperm morphology and fitness

have been described [21,22]. Sperm velocity instead plays

an important role in sperm competition [22,23], predicting
male reproductive fitness [24]. Sperm velocity exhibits com-

plex relationships with a range of sexual and somatic traits

in guppies. For example, sperm velocity is positively phenoty-

pically correlated with orange coloration [25,26] but negatively

genetically correlated with both courtship rate and the area of

iridescent coloration [27]. Importantly, these relationships

between sperm velocity and male sexual and somatic traits

are likely to be influenced by predation, which, as described

above, can shape selection on coloration, sexual behaviour

(and consequently the level of sperm competition) and life-

history traits [15,16]. Accordingly, we should expect complex

relationships between the level of predation and patterns of

(pre- and postcopulatory) trait variation. Yet despite this pre-

diction, only one study on guppies has considered multiple

natural populations for testing the effect of predation on post-

copulatory traits [19], and we know nothing about how

ecological factors shape interrelationships between pre- and

postcopulatory sexual traits.

In this study, we examine how predation influences

patterns of trait variation that ultimately determine sperm

‘performance’ across multiple guppy populations. We over-

come the approach of studying only linear relationship

between sperm velocity and other sexually selected traits by

also considering nonlinear relationships between sperm vel-

ocity (which can be seen as a performance parameter, i.e. the

ability to perform key tasks or functions [28]) and other phe-

notypic traits [29]. Despite the widespread use of this method

for describing performance [29], this approach has never been

employed to describe sperm performance. Here, we adopted

part of a classical analytical framework [29] to evaluate how

predation regime shapes variation in sperm performance

while accounting for phenotypic covariance with other sexu-

ally selected traits [29,30]. Our analyses generate sperm

performance surfaces [31] for low- and high-predation popu-

lations in order to understand how trait combinations interact

to produce high (sperm) performance phenotypes and how

predation intensity shapes these patterns. We predict that,

given the relative differences in the strength of natural and

sexual selection, as well as the relative costs and benefits of

male traits in the different environments, the shape of per-

formance surfaces will have different features in

populations subject to low- and high-predation regimes.
2. Material and methods
Males used in this study are a subsample of those used for the

analysis described by Grueber and colleagues [32] and include

all populations that were sampled in both high- (downstream

populations) and low- (upstream populations) predation sites

(electronic supplementary material). The methods used for fish

collection and the characterization of male traits are the same

as those described previously [32] and are therefore only briefly

summarized here.

(a) Populations sampling
Male guppies were collected in Trinidad’s Northern Range

Mountains in May–June 2011 from nine rivers spanning the

Caroni, Oropouche and Northern drainages (electronic sup-

plementary material and [32] for details). We sampled 60 males

from each of nine rivers (total n ¼ 540 males), where for each

river, 30 males came from a low-predation site (upstream

populations) and 30 were taken from a high-predation site

(downstream populations). Fish were then returned to the
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laboratory at the University of the West Indies, in St Augustine,

and kept in tanks containing conditioned freshwater. Three to

four days after collection, morphological measurements of

males and analyses of ejaculate traits were performed.

(b) Male size and ornamentation
For morphological measurements, each male was euthanized in

iced water and photographed on his left side under standard

lighting on a white background using a digital camera (Nikon

D70s with Nikon 105 mm macro lens; Nikon Corporation,

Tokyo, Japan). Each image included a measurement scale. We

subsequently used the software IMAGEJ (https://imagej.nih.gov/

ij/) to measure each individual’s body size (lateral fish area,

caudal fin included, in mm2; hereafter body area) and ornamenta-

tion. Briefly, the area (mm2) of the fish covered by carotenoid and

pteridine pigments (orange/red and yellow, hereafter orange),

structural colours (from white to green, hereafter iridescence)

and melanic (black) spots was measured using the polygon selec-

tion tool in IMAGEJ. We measured size and ornamentation for a

total of 539 males (photograph was missing for one male).

(c) Sperm assays
Ejaculates were obtained using standard procedures [32] and

subsequently used for measuring sperm velocity and sperm mor-

phology (electronic supplementary material). Computer-assisted

sperm analysis (CASA) was performed using a CEROS Sperm

Tracker (Hamilton Thorne Research, Beverly, MA, USA) to quan-

tify sperm velocity for 480 males (i.e. the reduced sample size

reflects cases where ejaculates could not be extracted, there

were technical difficulties in obtaining velocity data, or the

number of motile sperm cells was less than 10). Sperm velocity

was estimated with 70.6+1.3 (mean+ s.e.) sperm per male.

To estimate sperm morphology, we photographed preserved

sperm cells under a 400� magnification microscope (Leica

DM750) and then used IMAGEJ to measure sperm head, midpiece

and flagellum length of 264 males.

(d) Statistical analysis
We compared male traits (size, orange, iridescent, black, sperm

velocity and the sperm length measures) between low- and

high-predation populations using a series of linear mixed-effects

models fit by REML, using the lmer function in lme4 R package

(see electronic supplementary material for details).

We used multiple regression analyses to explore the relation-

ship between sperm velocity and the various morphological,

ornamental and sperm traits [29–31]. In these analyses, we trea-

ted sperm velocity (measured using the average path velocity,

VAP; which is highly correlated with the other measures of

sperm velocity obtained using CASA: all p-values ,0.001) as

an estimate of ‘performance’ (dependent variable) and included

sperm morphology (measured as the length of the sperm head,

midpiece and flagellum), male ornamentation (measured as

size of orange, iridescent, and black spots) and size (male body

area) as predictor variables. Importantly, each of these perform-

ance predictors covaries with sperm velocity [25–27,33,34]. Our

modelling is based on full quadratic multiple regression [35],

where the performance estimate (sperm velocity) is the depen-

dent variable, and traits, quadratic transformed traits and

cross-trait combinations were fitted as predictors. Sperm velocity

was standardized to a mean of one (i.e. divided by observed

population mean) whereas the predictor variables were standar-

dized to a mean of zero and s.d. of one (i.e. subtracted the

observed population mean and divided for the observed popu-

lation s.d. [35]). The regressions were used to obtain the

average slope (bp) and curvature (gp) coefficients of the perform-

ance surface (hereafter ‘performance gradients’), and returned an
estimate of linear and nonlinear (quadratic and correlational)

relationships between traits and performance [29]. We estimated

bp separately with a linear regression and then estimated gp with

a full quadratic regression [36]. For the performance analysis, we

used only males for which we obtained measures of all traits and

performed the analysis on low- and high-predation populations

separately (n ¼ 240 males; n ¼ 122 high-predation males and

n ¼ 118 low-predation males).

We first tested if performance gradients within low and high-

predation populations differed from the same gradients obtained

when removing predation regime grouping. To do this, and to

avoid an overparametrized model where predation would have

been a fixed factor together with all two-way interactions with

covariates (i.e. the regression predictors), we compared linear

bp and quadratic gp coefficients obtained with full regressions

performed within predation regime (i.e. for low- and high-

predation populations separately) with a distribution of

coefficients obtained with regressions performed on 10 000 simu-

lated populations. Simulated populations consisted of n ¼ 120

individuals (i.e. similar sample size as the observed populations)

randomly chosen (without replacement, i.e. shuffled) from the

original dataset (all measured males, n ¼ 240). Simulated popu-

lations thus varied in predation depending on the number of

individuals randomly chosen from each regime. Observed coeffi-

cients that were greater or smaller than the 95% CI obtained

with the simulated population were considered to be affected

by predation regime. With a similar procedure, we tested if the

absolute difference observed for each gradient between low-

and high-predation populations was greater than the 95 upper

percentile of a distribution of 10 000 differences obtained by

regressions performed in simulated populations (see results

and electronic supplementary material, tables S5 and S6, and

figures S1 and S2).

As we found that the observed performance gradients of dis-

tinct traits in low- and high-predation populations were different

from the null distribution (see results), we performed nonlinear

analyses in low- and high-predation populations separately by

performing canonical analyses (see electronic supplementary

material for a detailed description). This approach reveals non-

linear relationships on axes that represent combinations of

multiple traits, thus simplifying interpretation of correlational

coefficients [37]. These axes are represented by eigenvectors

with associated loadings of the original traits. Each vector eigen-

value (lp) represents the curvature of the performance surface

along this vector, whereas theta (up) represents the steepness of

the vector. The significance of the curvature on these vectors

was tested statistically using a permutation approach [38].

Finally, we visualized the performance surface with non-para-

metric thin-plate splines [39] using the Tps function in the fields
package of R. This method avoids the quadratic assumptions in

the construction of the surface based on the major eigenvectors

[37,40]. As eigenvectors (surface axes) are loaded by different

predictors (traits) based on predation regime (see results), our

analyses generate performance surfaces of individuals of low

and high predations populations separately and restrict our com-

parison of low- and high-predation performance surfaces to a

qualitative level. All analyses described were performed in R

(version 3.4.3) and EXCEL (Microsoft Corporation).
3. Results
(a) Differences in male traits between low- and

high-predation populations
Males from low-predation populations (upstream popu-

lations) tended to be larger, with more orange, black and

iridescent (albeit a statistical trend) coloration than males

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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from high-predation populations (downstream populations;

electronic supplementary material, table S3), which is consist-

ent with previous research [15]. Sperm velocity (VAP) did not

differ between high- and low-predation populations (elec-

tronic supplementary material, table S3). Flagellum length

was greater in low-predation populations than in high-

predation populations, whereas sperm head and midpiece

length did not differ between predation regimes (electronic

supplementary material, table S3).

(b) Predation regime and performance gradients
Four observed nonlinear performance gradients in low- and

high-predation populations, involving six traits, differed

from the simulated null distribution (electronic supplemen-

tary material, table S5 and figure S1). Specifically, two

performance gradients in low-predation populations

(iridescent � sperm head gp and midpiece � flagellum gp)

and two in high-predation populations (black gp and

orange � black gp) significantly differed from the correspond-

ing simulated values. Linear performance gradients did not

differ significantly from the simulated linear gradients (elec-

tronic supplementary material, table S5 and figure S1). Ten

differences in nonlinear performance gradients between

low- and high-predation populations, involving all the traits

considered, differed from the simulated null distribution

(electronic supplementary material, table S6 and figure S2),

with differences in size gp and coloration (orange gp and

orange � black gp) being the most pronounced, and

suggesting that performance surfaces of low- and high-

predation populations have different features. Given these

results, we performed nonlinear analyses and generated

sperm performance surfaces for low- and high-predation

populations separately.

(c) Performance analysis in low- and high-predation
populations

We found no significant linear performance gradients

(bp coefficients) between sperm velocity and the measured

traits in low-predation populations. However, correlational

performance gradients (gp coefficients) between orange area

and black area and between sperm head length and irides-

cent area were positive and significant (electronic

supplementary material, table S4). This suggests that males

producing faster sperm had either large carotenoid and

black spots or small carotenoid and black spots and either

large iridescent spot and long sperm head or small iridescent

spot and short sperm head.

After canonical analysis, we detected two major axes

(m2 and m4) where the curvature was significantly different

from zero (table 1a). The eigenvector m2 was mainly posi-

tively loaded by body size and sperm head length, whereas

m4 was mainly positively loaded by the area of orange and

black spots and by flagellum length (table 1a). The perform-

ance surface based on these two vectors shows two sperm

performance peaks close to positive m4 and extreme

(positive and negative) m2 values (figure 1a). Overall, in low-

predation populations, males with faster sperm have either

small or large body size and small or large sperm head

but tend to be more coloured and to have a longer flagellum.

As in low-predation populations, we found no significant

bp coefficients between sperm velocity and the measured
traits in high-predation populations (electronic supplemen-

tary material, table S4). However, we detected a significant

positive quadratic gp coefficient for carotenoid coloration,

together with a negative correlational coefficient between

orange and black coloration. A significant negative correla-

tional performance gradient was also present between

sperm head and sperm flagellum length. After canonical

analysis, we obtained two significant vectors (m1 and m2),

both with significant positive lp eigenvalues in high-

predation populations (table 1b). The eigenvector m1 was pri-

marily loaded by the area of orange (positive loading) and

black (negative loading) spots whereas the m2 vector was pri-

marily and positively loaded by iridescent spot size and

flagellum length (table 1b). The surface built on these vectors

revealed two distinct peaks at extreme m2 values and high

and average m1 values (figure 1b). Thus, in high-predation

populations, males with faster swimming sperm tend to

have either a short flagellum, low iridescence and black color-

ation, and high orange coloration, or a long flagellum and

high iridescent coloration with intermediate orange and

large black coloration.

In both low and high-predation populations, a dip in the

surfaces (representing the lowest sperm velocity) was present

close to the average value of the vectors (corresponding to

average traits values). This suggests a common disruptive

relationship between sperm performance and other traits.

Accordingly, positive eigenvectors are slightly more numer-

ous, have bigger absolute values and are the only significant

vectors in both low- and high-predation populations. Differ-

ences, however, are present as the contribution of traits to

the main vectors varies between predation regimes, in the

strength, sign and combination.
4. Discussion
Our results reveal that the predation regime can shape sperm

performance surfaces in guppies and underscore the impor-

tance of considering ecological and environmental factors

when evaluating how phenotypic traits interact to influence

performance and possibly fitness. Specifically, observed

quadratic and correlational, but not linear, performance gradi-

ents differed from those generated by simulated populations,

where predation effect was removed. Low- and high-

predation populations, however, did not share the same

differences, suggesting that predation can generate different

sperm performance surfaces. Moreover, when directly com-

pared, gradients in low- and high-predation populations are

broadly more different than expected by chance. Within the

predation regime, low- and high-predation populations

differ in how precopulatory (colour, body size) and postcopu-

latory (sperm morphology) traits interact to determine sperm

performance. Despite these differences, there was a general

trend for disruptive relationships in sperm performance

surfaces. Males with intermediate trait values in both low-

and high-predation populations exhibited slower-swimming

sperm.

Theories suggest that the extent of sexual ornamentation

displayed by males can reflect underlying variation in ejacu-

late quality, such that males in good condition advertise

either their fertility (fertility-linked sperm hypothesis [42])

or genetic quality (good sperm hypothesis [43]). Accordingly,

we found that the area of orange pigmentation was
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Figure 1. Two-dimensional contour plots and three-dimensional surfaces showing the relationship between sperm velocity (VAP, mm s21) and significant vectors in
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associated with peak sperm velocity in both low- and high-

predation populations, which is consistent with previous

findings [25] and explains why colourful male guppies

have been shown to be successful sperm competitors [44].

A possible explanation for this finding, which is consistent

with evidence from other taxa [45,46], is that the size of the

male’s orange spots may be an indicator of genetic quality

[47], and good-quality males may be able to both allocate

more carotenoids (which are costly to obtain) to sexual sec-

ondary characters and produce better-quality sperm [25,26].

However, the way in which orange coloration combined

with other sexually selected traits to predict sperm perform-

ance was complex and differed between predation regimes,

possibly as a consequence of underlying differences in

patterns of genetic covariance between populations [48].

Furthermore, it is possible that the level of predation deter-

mines the level of investment in costly sexual coloration and

courtship by males [16], which in turn may expose energetic

trade-offs among traits [49] that differ between low- and

high-predation populations. The complexity of patterns

revealed by our study suggests that no single mechanism

(e.g. signalling functions, trade-offs, changes in genetic archi-

tecture, etc.) can explain the differences in performance
surfaces between populations. Instead, differences in preda-

tion pressure may trigger a number of mechanistic processes

that ultimately determine how sexually selected and repro-

ductive traits combine to influence sperm performance.

Interestingly, a greater disruptive relationship (i.e. positive

eigenvalue) for ornamentation is found in high-predation

populations, where the effect of natural selection against orna-

ments is stronger. This suggests that where predation is higher

males successful in postcopulatory competition may be either

relying on ornaments or on sneaky copulation, whereas in

low-predation populations, this dichotomy is less pronounced.

The way in which sperm length predicted sperm velocity

in association with precopulatory traits also differed between

predation regimes. It is often assumed that sperm velocity

will exhibit a linear positive relationship with sperm length

[12,50]. While we found that in low-predation populations

flagellum length was associated with sperm velocity, this

relationship was moderated by the phenotypic covariance

between sperm velocity and other traits. Specifically, in

low-predation populations, males with longer flagella had

faster-swimming sperm when they had more orange and

black coloration and extreme (both long and short) sperm

head sizes. By contrast, in high-predation populations, we
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observed a stronger positive nonlinear (disruptive) relation-

ship between flagellum length and sperm velocity, also

moderated by correlational patterns of selection on sexual

ornamentation. This latter finding is at odds with the long-

standing assumption of a linear relationship between sperm

length and velocity. Moreover, this result was unexpected

given that stabilizing selection is likely to act on sperm mor-

phology in guppies [51]. Our results suggest that complex

nonlinear relationships between sperm form and function

may be more common than currently appreciated and may

explain the lack of a clear linear correlation between size

and velocity in different taxa [11].

Regardless of the mechanisms underlying the complex

relationships between sperm velocity and other traits, our

results depict a complex scenario where the relationships

between sperm performance and precopulatory (size and

ornamentation) and postcopulatory traits (sperm com-

ponents size) are mainly nonlinear. Moreover, only by

moving beyond the analysis of univariate linear relationships

was it possible to detect the numerous and interdependent

relationships among sexually selected traits. Recently, Tuni

et al. [52] demonstrated in southern field crickets (Gryllus
bimaculatus) that the multiple mechanisms that jointly shape

phenotypic associations (trade-offs or positive correlations)

between pre- and postcopulatory traits can be revealed by

taking into account the hierarchical structure of trait corre-

lations (i.e. at the phenotypic, genotypic and environmental

level). We suggest that not only the direction (positive or

negative) of these correlations but also the shape (linear or

nonlinear) can similarly vary due to multiple interacting bio-

logical mechanisms and that only a multivariate approach

can reveal such patterns (see [53] for other merits in multi-

variate analysis). It is important to stress that the present

analyses do not allow us to infer causation for the various

performance–trait relationships. Nevertheless, such analyses

do enable us to develop a predictive experimental framework

for testing among various putative causal factors. Further-

more, the approaches used here have the potential to be

applied to other systems in order to detect and describe
complex interactions between traits, with or without clear

a priori expectations.

In conclusion, our results demonstrate that variance in

predation risk can affect how pre- and postcopulatory traits

interact to determine sperm performance in wild guppy

populations. Interestingly, males with average precopulatory

and postcopulatory traits tended to exhibit the poorest

sperm performance, suggesting that postcopulatory sexual

selection acts disruptively on precopulatory traits and sperm

morphology simultaneously. As a consequence, the combi-

nation of pre- and postcopulatory selection for sexual traits

may not be directional, as is sometimes assumed [54]. By

comparing sperm performance surfaces between low- and

high-predation populations, our findings reveal that pre-

and postcopulatory sexual selection can vary in their relative

strength and direction within a species and that ecological fac-

tors can be important determinants of such patterns. We

anticipate that future studies that employ similar performance

analyses will advance our understanding of the complex

nature of trait relationships observed in other species.
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