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Evolutionary game theory has been successful in describing phenomena from

bacterial population dynamics to the evolution of social behaviour. However,

it has typically focused on a single game describing the interactions between

individuals. Organisms are simultaneously involved in many intraspecies and

interspecies interactions. Therefore, there is a need to move from single games

to multiple games. However, these interactions in nature involve many

players. Shifting from 2-player games to multiple multiplayer games yield

richer dynamics closer to natural settings. Such a complete picture of multiple

game dynamics (MGD), where multiple players are involved, was lacking.

For multiple multiplayer games—where each game could have an arbitrary

finite number of players and strategies, we provide a replicator equation for

MGD having many players and strategies. We show that if the individual

games involved have more than two strategies, then the combined dynamics

cannot be understood by looking only at individual games. Expected

dynamics from single games is no longer valid, and trajectories can possess

different limiting behaviour. In the case of finite populations, we formulate

and calculate an essential and useful stochastic property, fixation probability.

Our results highlight that studying a set of interactions defined by a single

game can be misleading if we do not take the broader setting of the inter-

actions into account. Through our results and analysis, we thus discuss and

advocate the development of evolutionary game(s) theory, which will help

us disentangle the complexity of multiple interactions.
1. Introduction
Evolutionary game theory [1–4] has been used to study phenomena ranging

from the dynamics of bacterial populations to the evolution of social behaviour.

In evolutionary games, individuals are cast as players that interact with each

other in ‘games’, which are metaphorical summaries of interactions. For

example, in the classical Prisoners’ dilemma, individuals can either cooperate

or defect, and each pairwise interaction results in a payoff for the players

involved [3,5]. Over time, players adopt a strategy which either performs

better or worse than the average of the population and thus increases or

decreases in frequency. Tracking the change in their frequencies over time, evol-

utionary dynamics can provide insight into the eventual fate of the strategies in a

game, e.g. whether they dominate, coexist, or go extinct from the population [3].

Considerable effort has gone into making games more realistic (with inter-

actions among multiple players and allowing players to adopt strategies from a

large set [6,7]) shown by the solid blue rectangle in figure 1. As an example

from the micro-scale, we discuss the interactions between microorganisms.

One bacterium interacts with its neighbours. Assuming that a bacterium

would interact only in a pairwise fashion is clearly an assumption. When

more players are involved, dynamics can change not just quantitatively but

qualitatively [9–11]. Multiplayer games in bacterial dynamics can better explain

the coexistence of avirulent ‘cheaters’ and virulent ‘cooperators’ in populations

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.0900&domain=pdf&date_stamp=2019-06-26
mailto:gokhale@evolbio.mpg.de
http://dx.doi.org/10.6084/m9.figshare.c.4536677
http://dx.doi.org/10.6084/m9.figshare.c.4536677
http://orcid.org/
http://orcid.org/0000-0002-5633-9594
http://orcid.org/0000-0002-5749-3665
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


d

N

m

2

1

pl
ay

er
s

games

stra
tegies

2

Figure 1. Scope of this study. Typical evolutionary game dynamics focuses on
2-player games with two strategies (solid yellow square). Extensions to multi-
player games (d) and multiple strategies (m, solid blue rectangle) expands
the domain of study to public goods games and other social dilemmas. How-
ever, this is still limited to a single game. Hashimoto [8] has extended 2-
player multi-strategy games in a novel direction of multiple games (N,
dotted red cuboid). Our work generalizes this approach and develops a
method for analysing multiple games, where each involved game could be
a multiplayer (and multi-strategy) game. Thus, this approach enables us to
study the entire space of multiple games (N) with multiple strategies (m)
consisting of multiple players (d). (Online version in colour.)
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of the pathogen Salmonella Typhimurium [12]. Likewise, in

Pseudomonas fluorescens communities, the seemingly destruc-

tive cheating cells can promote evolution of collectives [13],

an inherently multiplayer interaction. The dynamics between

the microbes constituting the microbiome are nonlinear,

lending themselves to multiplayer games [14]. A constituent

of the microbiome may not be playing a single multiplayer

game with the other constituents but is also interacting

with the host. The complete interaction in the holobiont

would then be a collection of several multiplayer games [15].

Do we consider all the different games singly or as one

massive game with a large number of complex strategies?

The answer in short is that under certain conditions, the

single games studied individually do not provide the same

results as when we infer single games from the combined

dynamics. Across scales of organization, single games fail

to satisfactorily capture dynamics ranging from bacterial

dynamics (as above) to human behaviour. Envision the inter-

actions in public goods games such as climate change issues

[16]. When nations’ leaders discuss strategies to improve the

global climate status, they also need to take into account the

interests of the people they are representing. If the leaders

agree to contribute towards achieving the goals of the climate

summit, it often comes at a cost to the private interests of the

nation. Using a different set of strategies, the leaders have to

then appease the electorate. Thus, political leaders are play-

ing at least two multiplayer games: one with other nations

and another within their nation. Therefore, we need to shift

from single game dynamics (SGD) to multiple game

dynamics (MGD) as shown by the dotted red cuboid in

figure 1. Previous studies on MGD have shown that a combi-

nation of games with more than two strategies is inseparable

into its constituent SGD [8]. However, this result is valid only

for 2-player games as shown in the figure. It ignores the com-

plexity of multiplayer games as discussed above. We have

developed a method for analysing multiplayer MGD.
Besides ecological examples, formal analysis of evolution-

ary games in finite populations implies the role of multiple

games. The assumption of weak selection, where the game

has a weak effect on an organism’s fitness, typically is done

not only for mathematical ease but also assuming that, the

payoff differences are small, the strategies are similar, or the

individuals are confused about the strategies [17]. Multiple

games provide a simpler alternative where each game has a

small effect on an individual’s fitness.

A complete picture of MGD, where multiple players are

involved, is lacking. Nonlinearity in the replicator dynamics

increases with increasing number of players. As a result, mul-

tiplayer games can have multiple internal equilibria as

opposed to 2-player games that have at most one internal

equilibrium solution [10]. An initial condition within the

MGD space can converge to another equilibrium solution

than expected from the SGD. Thus, if we are aware that the

dynamics are composed of a set of different games, then is

the simplified use of a single bigger game justified? In

other words, can the MGD be decomposed into its constitu-

ent SGDs? If yes—the conclusions drawn from individual

games are valid. If not—it will be necessary to use MGD to

obtain realistic results.

To answer this question, we first present a complete and

general method to study multiple games with many strat-

egies and players, all at once (figure 1). When the games

have more than two strategies, we find that the MGD do

not correspond to the dynamics of its constituent single

games, in line with previous findings, while we also extend

the analysis to finite populations. Then we discuss a specific

model on how the inclusion of two different games (territor-

ial defence and hunting) can result in the observed division of

labour in lionesses [18,19]. Further, we show that for some

initial conditions the MGDs and SGDs differ not only in the

dynamics but the resulting equilibria as well.
2. Model
(a) Single game dynamics
2-player games with two strategies have been studied exten-

sively, both in infinite as well as finite populations. A game

between two individuals can be represented by the following

payoff matrix:

! 1 2

1 a1,(1,0) a1,(0,1)

2 a2,(1,0) a2,(0,1)

: (2:1)

The matrix represents a symmetric 2-strategy 2-player game. We

do not study asymmetric games [20]. The two individuals, focal

and co-player are represented by a row and a column, respect-

ively. Each player adopts one of the two strategies, 1 or 2. We

write the elements of the matrix in the form ai,a, where i is the

strategy of the focal (or row) player. The vector a is written as

a ¼ (a1, a2) where ai indicates the number of strategy i
individuals the focal individual interacts with. For example, in

a 3-player game with two strategies, the payoff entry a2,(1,1)

corresponds to a focal player with strategy 2 interacting with

two other players with strategies 1 and 2, respectively.

The average payoff obtained from the game is the repro-

ductive success of that strategy [21]. This analysis has been

extended to interactions having multiple strategies [22] as

well as multiple players [23,24]. To make our notation clear,
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Figure 2. From SGD to MGD. The population after combination is divided into four types: playing strategy 1 in game A1 and game A2, strategy 1 in A1 and 2 in A2,
strategy 2 in A1 and 1 in A2. And finally, strategy 2 in A1 and A2. Thus, we have four types of strategies, A1

1A2
1, A1

1A2
2, A1

2A2
1, and A1

2A2
2. Their respective frequencies are

x11, x12, x21, and x22. Since there are four ‘categorical types’, the dynamics is shown in an S4 simplex. (Online version in colour.)
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we illustrate a payoff matrix for a multiplayer (d player) game

with two strategies as
190900
no: of opposing
strategy 1 players d� 1 d� 2 . . . k . . . 0

1 a1,ðd�1,0Þ a1,ðd�2,1Þ . . . a1,ðk,d�1�kÞ . . . a1,ð0,d�1Þ
2 a2,ðd�1,0Þ a2,ðd�2,1Þ . . . a2,ðk,d�1�kÞ . . . a2,ð0,d�1Þ

(2:2)
Even when extending the number of strategies, the

dynamics of this complicated system can still be analysed

by the replicator dynamics [25,26]. For a d player game with

m strategies, the replicator dynamics is given by a set of m
differential equations: _xi ¼ xi(fi � f) where xi is the frequency

of strategy i, and fi is the average payoff of the strategy i. The

average payoff of the population is given by f ¼
Pm

j¼1 xjfj.
This simple evolutionary game framework has been used to

describe a wide range of phenomena from chemical reactions

of prebiotic elements to the evolution of social systems [27].

While this extension to multiple players and strategies is

not trivially obtained [28], it still belongs to the domain of a

single game. The framework lacks the ability to incorporate

interactions which have differential impacts on fitness. There-

fore, we now incorporate multiple games and measure their

cumulative impact on individual fitness.
(b) Multi-game dynamics
Individuals may employ different strategies in various games

(e.g. division of labour scenarios [29]) and their (average)

payoffs will depend on their performance in all such

games. Switching between such socially driven games is rea-

listic and not only a matter of theoretical interest but has been

experimentally explored as well [30]. This section generalizes

the multi-game approach by Hashimoto [8] to an arbitrary

number of players. To contrast MGD with the previously

discussed SGD, consider a simple example of two, 2-player

games, each having two strategies:

A1 ¼
! A1

1 A1
2

A1
1 a1

1,(1,0) a1
1,(0,1)

A1
2 a1

2,(1,0) a1
2,(0,1)

and A2 ¼
! A2

1 A2
2

A2
1 a2

1,(1,0) a2
1,(0,1)

A2
2 a2

2,(1,0) a2
2,(0,1)

:

Combining the strategies from the above two games results in

four categories of individuals. The frequencies of the four cat-

egories are given by x11, x12, x21, and x22 where the first and
second positions (in the subscript) denote the strategies

adopted in games 1 and 2, respectively (figure 2).

For a combination of N games, each game j can be

described by a payoff matrix Aj. Each game j could be a dj

player game with mj number of strategies. The categorical

frequencies would then be given by xi1i2 ...ij...iN , where ij is

the strategy being played in game j. The frequencies of the

individual strategies for all N games can be written down as

p jij ¼
Xk¼N

k¼1,k=j

Xmk

ik¼1

xi1i2 ...ij...iN , (2:3)

which allows us to compute the fitness of strategy ij as

f jij ¼
X
jaj¼dj�1

dj � 1

a

� �
paa j

ij ,a: (2:4)

As before, amj is the number of strategy mj players. Using

multi-index notation, we have a ¼ (a1, a2, . . . , amj ) which

gives us the multinomial coefficient, with the absolute value

jaj ¼ a1 þ a2 þ � � � þ amj and the power pa ¼ pa1

j1 pa2

j2 . . . p
amj

jmj
.

The average fitness of the population is given by, fj ¼ (pf )j.

Using this, we can write down the time evolution of all the

categorical strategies as

_xi1 i2...ij...iN ¼ xi1i2 ...ij...iN

XN

j¼1

(f jij � fj)

0
@

1
A: (2:5)

This system of equations is reminiscent of the replicator

equation for the SGD. The summation in the MGD replicator

equations is due to an assumption of additive fitness effects

from all games [8]. In the following sections, we will explore

the use of this formulation for multiple games where each

game can have a different number of players. Through the

examples of specific cases, we aim to highlight the general

principles of multiple games.
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3. Results
(a) Multiplayer game(s) with multiple strategies
Combining multiplayer games, frequency feedback between

strategies is possible. Moreover, an individual can take part in

different interactions. A lioness can be part of forming the defen-

sive line (tragedy of the commons) and hunting (stag–hunt

game). Strategies in game 1 would be Cooperator, Defector,
Loner, etc. Strategies in game 2 could be hunting positions

Wing, Centre, and so on. Thus in our framework, an individual

can have utterly different strategy sets for each game.

(i) 2-player game with 2-strategiesþ3-player game with 2-
strategies.

To illustrate games with two strategies, we shall use the

payoff matrices shown in (3.1).

A1 ¼
! 1 2

1 �1 1

2 0 0
and A2 ¼

! 11 12 22

1 �2 3 �2

2 0 0 0
:

(3:1)

Here, A1 is a 2-playercoexistence gameand A2 is a 3-player game.

In A2, the values a1,(k,d212k) 2 a2,(k,d212k) and a1,(kþ1,d2k) 2

a2,(kþ1,d2k) have different signs forall k. Thus solving for this scen-

ario using our replicator-like equation (2.5), we have two interior

fixed point solutions: a stable and an unstable. The equilibrium

solutions for strategy 1 in the two SGDs in (3.1) are q�1 ¼ 0:5 for

A1 and q�2 ¼ (q�21
, q�22

) ¼ (0:27, 0:73) for A2. Since A2 is a 3-

player game, it has at most two internal equilibrium solutions

[10]. The result of combining these games, i.e. their MGD, is

shown in electronic supplementary material, figure A.4. The

first panel shows the SGD of both the games A1 and A2. We

choose three initial conditions ic1, ic2, and ic3 to understand the

difference between SGD and MGD by following those trajec-

tories’ dynamics in the SGDs and MGD. After combining the

two games with two strategies, we obtain the MGD that has

four (categorical) strategies x11, x12, x21, and x22. The dynamics

are plotted in a three-dimensional simplex. All trajectories that

start above the unstable equilibrium in A2 end up in the line

given by E, the evolutionarily stable (ES) set. As shown in the

third panel of electronic supplementary material, figure A.4,

one can recover the SGD back from their combined game

dynamics to compare the MGD and SGDs, i.e. re-obtain p11 (¼

x11 þ x12), p12 (¼ x21þ x22), p21 (¼ x11 þ x21), and p22 (¼ x12þ
x22). As shown by the dynamics in this figure, the MGD is the
same as the separate SGDs. So the MGD can be separated back

into its constituent games when both games have two strategies.

(ii) 2-player game with 3-strategiesþ3-player game with
2-strategies.

Next, we increase the number of strategies in the 2-player

game:

A1 ¼

1
CCA

0
BB@

1 2 3

1 0 �1 2

2 2 0 �1

3 �1 2 0

and A2 ¼
! 11 12 22

1 10 1 5:5

2 4 10 3
:

(3:2)

Now A1 is a Rock–Paper–Scissor game. Trajectories starting

from any internal initial conditions converge to a unique

stable equilibrium, q�1 ¼ (1=3, 1=3, 1=3) [3]. For A2, the equili-

brium solutions are q�21
¼ 0:127 (stable) and q�22

¼ 0:740

(unstable). The MGD takes place in a six-dimensional space,

thus to compare the MGD with their SGDs we project them in

the SGD space as shown in figure 3. The SGD for A1 and A2

are shown in the first panel. Since the two games, A1 and A2

have three and two strategies; respectively, their combined

MGD will have six categorical strategies. The bottom panel dis-

plays the plots that compare the SGDs recovered from the MGD

(dashed lines) with the original SGDs (solid lines). The recov-

ered dynamics do not match that of the individual games.

Thus, increasing the number of strategies in at least one game

shows that the MGD differs from the SGDs. Therefore, while

modelling multiplayer game scenarios with more than three

strategies that involve individuals participating in multiple

interactions simultaneously, one must look at their combined

game dynamics to study the full picture [8]. We extend the

domain of such multiplayer, multiple games analysis where

both games have three strategies in the next section.

(iii) 2-player game with 3-strategiesþ4-player game with
3-strategies.

Finally, we illustrate a case of having three strategies in both

games (shown in matrices (3.3)). A1 is a Rock–Paper–Scissor

game like the one discussed in the previous example. A2 is a 4-

player 3-strategy game used previously in [10]. In the SGDs of

the individual games, A1 has a stable equilibrium

q�1 ¼ (1=3, 1=3, 1=3) and A2 has in total nine interior equilibrium

solutions: four stable, one unstable, and four saddle points. The

SGDs of A1 and A2 and their MGD are shown in figure 4.
A1 ¼

1
CCA

0
BB@

1 2 3

1 �1 10 �10

2 �6 �1 6

3 2 �2 �1

and A2 ¼

1
CCA

0
BB@

111 112 113 122 123 133 222 223 233 333

1 �9:30 3:83 3:86 �1:03 �1:00 �0:96 0:10 0:33 0:16 0:20

2 0:10 �1:03 0:13 3:83 �1:00 0:16 �9:30 4:06 �0:96 0:2

3 0 0 0 0 0 0 0 0:20 0 0

:

(3:3)
The results show that in the MGD it is even possible

for an initial condition to end up in a completely different

equilibrium as opposed to the SGD.
Consider A2 which has four stable internal equilibria. In

figure 4 top row, the three initial conditions go to three of the

stable equilibria. After combining with A1 and then recovering



0 5 10 15 20 25 30

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30
fr

eq
ue

nc
y 

of
 

st
ra

te
gy

 1
 in

 g
am

e 
2

time

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

ie
s 

in
 M

G
D

x11

x12

x21

x22

x31

x32

x32

x12

x22

x11 x21 x31

x12 x22

x32x31 x21 x11

time timetime

recovered dynamics (dashed)
as compared to the SGD

ic1

p11

p12 p13

ic3

ic1

ic2 ic3 ic2

ic3

ic1 ic2 ic3

p 21
 f

re
qu

en
cy

 o
f 

st
ra

te
gy

 1
 in

 g
am

e 
2

single game dynamics

multi-game dynamics

recovering single game dynamics from MGD

game 1 game 2

p13 p12p12

p11

p13

ic2

ic1

p11

q*22

q*21

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1.0

time

ic1

ic2

ic3

q*22

q*21

x2 x3

x1

q*
1

q*1

q*1
q*1
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refers to playing strategy 1 in game 2 and so on. All recovered trajectories (dashed) go to the same equilibria of the SGD in game A1 and in game A2 (solid). While
the equilibria of the MGD correspond to that of the SGD, the dynamics can follow different routes. The initial conditions used for (x11, x12, x21, x22, x31, x32) are:
ic1 ¼ (0.3, 0.1, 0.1, 0.05, 0.4, 0.05), ic2 ¼ (0.4, 0.1, 0.2, 0.1, 0.1, 0.1), and ic3 ¼ (0.2, 0.3, 0.1, 0.1, 0.2, 0.1). (Online version in colour.)
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the dynamics of A2, we see that ic2 switches its long-term equi-

librium behaviour (figure 4 bottom row, recovered dynamics).

Multiplayer games offer the possibility of multiple internal

equilibria and combined games can allow the trajectories to

switch between them. Thus, the constituent games of an

MGD, especially involving multiplayer games should be

studied with scrutiny since their long-term evolutionary trajec-

tory cannot be predicted by the basins of attractions of the SGD.

In a previous study of 2-player games with two strategies

[31], it was shown that the SGD can be obtained back from

their MGD. The dynamics lie on the generalized invariant mani-
fold [25,32] in the S4 simplex which is given by WK ¼ fx [ S4j x11

x22¼ K x12x21g for K . 0. When K ¼ 1, we have W ¼ fx [ S4j
x11 x22¼ x12x21gwhich is the Wright manifold. On this manifold,

MGD can be separated back into the SGDs of the constituent
games (see the electronic supplementary material for details).

The attractor for a combination of two 2-player games having

two strategies each is a line E, an ES set [31]. The point where

the line E intersects the Wright manifold indicates a rest point.

All the trajectories in the simplex depicting the MGD fall onto

an attractor given by a line (ES set) on WK. The dynamics on

WK and the trajectories on each WK were analysed in the same

study [31] and the conditions when they are qualitatively the

same as on the Wright manifold. However, for multiple games

having more than two strategies in at least one game, the

MGD cannot be separated even into a linear combination of

the constituent SGDs unless they are on W [8]. Increasing the

number of games and strategies increases the dimension of

MGD simplex and also that of the Wright manifold. Only on

the Wright manifold can the MGD be separated back into its
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nine interior equilibrium solutions: four stable (dark circles), one unstable (open circle), and four saddle points (grey circles). The asterisks in the triangular S3

simplex denote the initial conditions (ic1, ic2, and ic3) of interest, whereas the grey trajectories are other random initial conditions. When both games contain
three strategies, nine categorical types are possible. For visualizing the MGD, we show the time evolution of the nine strategies. Retrieving the distribution of
frequencies of strategies in the SGDs from the MGD, for A1 again, while the equilibrium values are all the same q�1 , the dynamics are different. However, for
A2, ic1 and ic3 end up in the same equilibria in the MGD as in their respective SGDs, ic2 changes equilibrium. The initials conditions used for (x11, x12, x13,
x21, x22, x23, x31, x32, x33) are : ic1 ¼ (0.01, 0.166, 0.038, 0.002, 0.176, 0.102, 0.3251, 0.111, 0.070), ic2 ¼ (0.058, 0.005, 0.029, 0.027, 0.205, 0.212, 0.050,
0.190, 0.224), and ic3 ¼ (0.176, 0.066, 0.024, 0.002, 0.176, 0.002, 0.225, 0.111, 0.218). (Online version in colour.)
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SGDs (see the electronic supplementary material for details).

Therefore, it is important to know on which manifold the initial

conditions are, for only if they start from the Wright manifold W,

will the dynamics be a perfect match to the SGDs [8].

Multiple multiplayer games can give rise to numerous rest

points, and they can criss-cross with the Wright manifold

which for multiple strategies would be of a dimension

S
N
i¼1(mj � 1), where N is the number of games and mj is the

number of strategies in game j (see the electronic supplementary

material). Future work on multiple d-player games with many

strategies could involve finding traversable paths in this complex

space as is shown by some unusual trajectories (figure 4). Differ-

ing from the earlier work on 2-player multiple games [8,31], we

show that MGDs cannot always be trivially separated into their

constituent SGDs in multiplayer games with multiple strategies.
Furthermore, including multiplayer games in combined games

can lead to the SGD and the recovered dynamics differing not

just in the dynamics of trajectories but also in their eventual

end points. We have a generalized method that looks at a combi-

nation of many multiplayer games having diverse strategy sets.

Until now, the analysis firmly rested on the deterministic

dynamics and on the derivation and analysis of the replicator-

like equation. This assumes an infinitely large population.

To understand combined games in realistic finite populations,

we turn our attention to stochastic methods.
(b) Finite population
Evolutionary dynamics in finite populations has the poten-

tial of having qualitatively different dynamics than their
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deterministic analogues [33]. In finite populations, the size of

the population controls the balance between selection and

drift with smaller populations showing higher levels of sto-

chasticity. We use a birth–death Moran process to model a

finite population of size Z in our framework [33,34]. An indi-

vidual is chosen (proportional to its fitness) to reproduce an

identical offspring. Another individual is chosen randomly

for death. Thus, the total population size remains constant.

Earlier we assumed that the fitness of a strategy was its aver-

age payoff. Besides the population size, we can control the

effect of the game on the fitness via a particular mapping

of payoff to fitness. The mapping could be a linear function

f ¼ 1 2 w þ wp where w is the selection intensity [3]. If w ¼
0, selection is neutral whereas for w ¼ 1 selection is strong

and the payoff determines the fitness completely. However,

since negative fitnesses in this framework are meaningless,

there are restrictions on the range of w. Alternatively, to

avoid this restriction, we can use an exponential function

f ¼ ewp [35]. Under any mapping scenario but weak selec-

tion, the fixation probability of strategy 1 in a population

of Z 2 1 strategy 2 players playing a d-player game, is [10],

r1 �
1

Z
þ w

Z2

XZ�1

m¼1

Xm

g¼1

(p1 � p2), (3:4)

wherepi is the fitness of strategy i and the payoffs depend on the

number of mutants g. We have generalized this result to mul-

tiple games. The strategies in a multiple game are categorical

ones. For instance, a two game system with each game contain-

ing two strategies, has four categorical strategies as shown in

figure 2. If one of the categorical strategies takes over the entire

population, we term it as the fixation of the strategy defined

by the category. If in a population of size Z playing N games,

there is a single individual playing strategy A1
i1 A2

i2 . . . AN
iN in a

population of Z 2 1 individuals playing strategy

A1
h1

A2
h2

. . . AN
hN

then we are interested in the probability that

this single individual takes over the population. First we need

to map the payoffs to fitness and there are two ways of imple-

menting any kind of mapping for multiple games: Method I.
For each game, the payoffs are mapped to fitness and then the

cumulative fitness is calculated. Here, the fixation probability

of a single individual of type A1
i1 A2

i2 . . . AN
iN in a population of

A1
h1

A2
h2

. . . AN
hN

is given by (see the electronic supplementary

material for details)

rA1
i1

A2
i2

...AN
iN

, A1
h1

A2
h2

...AN
hN
� 1

Z

þ w
NZ2

XZ�1

m¼1

Xm

g¼1

XN

j¼1

(p jij � p jhj )

0
@

1
A

2
4

3
5: (3:5)

Method II. The payoffs can be added first and then mapped to fit-

nesses. The fixation probability through this method is (see the

electronic supplementary material for details)

rA1
i1

A2
i2

...AN
iN

, A1
h1

A2
h2

...AN
hN
� 1

Z

þ w
Z2

XZ�1

m¼1

Xm

g¼1

XN

j¼1

(p jij � p jhj )

0
@

1
A

2
4

3
5: (3:6)

For illustration, let us consider a combination of two

games with two strategies each. For instance, the games in

(3.1). We make pairwise comparisons between all categorical

types, i.e. all the edges of the S4 simplex in electronic
supplementary material, figure A.4. Using these comparative

fixation probabilities, we can determine the flow of the

dynamics over pure strategies. Let us focus on the edge

A1
1, A2

1
�! �A1

1, A2
2, where game 1 does not change and only

game 2 matters. Hence, the fixation probabilities should be

the same as if only game 2 exists. The single game fixation

probability of game 2 is shown in electronic supplementary

material, figure A.5. As given in equations (3.5) and (3.6),

when game 2 is combined with game 1, there can be two

ways of mapping payoffs to fitness. The results from these

two methods in multiple games in finite populations are

also plotted in electronic supplementary material, figure A.5.

The fixation probabilities of a strategy in a single game

changes when ‘adding’ just one more game to it. Even on

the edge A1
1, A2

1
�! �A1

1, A2
2, where game 1 is neutral and

only game 2 matters, there is an effect of game 1 on game

2. With increasing selection intensity, the fixation probability

of a single individual playing A1
1A2

1 strategy on the edge

A1
1A2

1
�! �A1

1A2
2, i.e. rA1

1
A2

1
, A1

1
A2

2
is expected to decrease (elec-

tronic supplementary material, figure A.5). However, this

decrease is different for the two methods and for the fixation

probability of an individual with strategy 1 playing only

game A2, i.e. rA2
1
, A2

2
. Method I gives a higher value of

rA1
1
A2

1
, A1

1
A2

2
as compared to rA2

1
, A2

2
, whereas Method II shows

that rA1
1
A2

1
, A1

1
A2

2
is lower than rA2

1
, A2

2
with increasing selection

intensity. This means that while in general the fixation prob-

abilities for the categorical type A1
1 A2

1 decrease, it is even

harder for A1
1 A2

1 to reach fixation in the scenario where all

the payoffs are first added and then converted to fitness as

opposed to if the payoffs are first mapped and then added

together. The difference can be explained by the difference

in the baseline fitness between the two methods. The baseline

fitness is provided by the game which the edge is indepen-

dent of, in the case of electronic supplementary material,

figure A.5, game A1. In the electronic supplementary

material, we calculate the difference between the two

methods and show how this difference changes according

to the different baseline fitness. For a large number of

games, the difference is independent of the number of games.

Fixation probability is a crucial property of stochastic evol-

utionary game dynamics. Instead of merely looking at the

fixation probabilities of certain types or strategies in a game,

we have expanded the method for analysing the ‘categorical

types’ in the MGD. Therefore, even for multiple games in

finite populations, it might be possible to derive the long-term

average dynamics [28,36] of entities playing a combination of

different roles (strategies) in various interactions (games).
(c) Territorial defence versus group hunts
We can find numerous applications of the multiple games con-

cept not only in economics and cultural evolution [37] but also

in classical ecology and evolutionary biology. As an illustration

of our methodology, we choose to focus on the lioness example

described in the Introduction. An explanation involving mul-

tiple games was already hypothesized in [18]. We shall

consider two games: the territorial defence and a hunting

game. The first game is a public goods game (PGG) with

loners (Lo, not participating in the defence), leaders (Le, coop-

erators), and laggards (La, defectors). The cooperators patrol

the territory together and thus provide an enhanced benefit of

better protection via numbers. The loners can protect the terri-

tory only by themselves and get limited benefit out of it (less
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than the cooperators). The defectors take part in patrolling but

lag thus benefiting from the interaction without contributing.

The payoffs for these strategies are

pLe ¼
r1c1k

d1
� c1; pLa ¼

r1c1k
d1

; pLo ¼ c1s: (3:7)

For territory defence, we set the numberof individuals patrolling

d1, with the cost of cooperation c1. The parameter k is the number

of leaders (or cooperators). Here, r1 (1 , r1 , d1) is the common

pool’s interest rate oran enhancement factorands (0 , s , r1 2

1) is the small and fixed payoff of loners. The SGD for d1 ¼ 12,

r1 ¼ 3, c1 ¼ 1, ands ¼ 1 is shown in figure 5 as in [38]. The homo-

clinic cycles show the coexistence of all the types: leaders,

laggards, and loners as discussed in the Introduction.

The second game is a hunting game (stag–hunt game) with

cooperators and defectors. In cooperative hunting among lion-

esses, the ‘wings’ attack a prey and force them to move forward.

The prey ends up running towards the lionesses called ‘centres’

lurking to catch it [39]. Clearly, two players are not enough for

these games. For the two strategies of this multiplayer stag–

hunt game, the payoffs are calculated as per [9]

pC ¼
r2c2j
d2

u(j�M)� c2 and pD ¼
r2c2j
d2

u(j�M), (3:8)

where u(z) is the Heaviside step function, i.e. u(z , 0) ¼ 0 and

u(z � 0) ¼ 1. The number of cooperators j each pay a cost c2.

The enhancement factor for game 2 is given by r2. The value

M is the minimum threshold number of players required to pro-

duce public good. The SGD for this scenario is depicted in figure

5. For specific parameter values, d2 ¼ 20, M ¼ 10, c2 ¼ 1, and

r2 ¼ 12, we observe two internal equilibrium solutions of the

replicator dynamics [9].

Combining the stag hunt with the territorial defence

game, the recovered dynamics from the MGD does not

necessarily reflect the SGDs. Certain trajectories can become

non-oscillatory resulting in the dominance of one of the strat-

egies (ic2) or the coexistence of all but in a static equilibrium

(ic3). For the stag–hunt game, we even see a complete switch

of equilibrium (ic2), as in figure 4. The combination of the two

games can change not just the dynamics but also the equili-

bria of both the games for certain initial conditions (figure 5).

From the MGD shown in figure 5, we see that judging a

lioness by her action in one game does not complete the pic-

ture. An apparent cheater lioness in one game, can be a

cooperator in another. For ic2, xLo D reaches fixation but for

ic1 the timing of observation matters. A lioness’ entire story

can only be told by looking at her ‘categorical type’ which

informs us about the combined effect of playing all games

as postulated by empirical observations [18]. Adding other

games like cooperative breeding, nursing, or mating may

also provide a better comprehension.

4. Conclusion
Nature is composed of many interactions in different contexts

(games) [40]. The games consist of different players and strat-

egy sets. In its lifetime, an individual plays many parts (in

various games). We have devised a method to combine the

various multiplayer multi-strategy games that individuals

play with an aim of developing realistic evolutionary game

theoretic models. For infinite populations, we provide a repli-

cator equation which can encapsulate multiple games with

multiple players and strategies. For finite populations, we
show that the fixation probabilities depend on the details of

the particular model at hand and especially how the payoffs

are converted to fitness.

Just as biological and social analogies of multiplayer evol-

utionary games can be found aplenty, the case for

considering multiple multiplayer games is strong. We have

discussed an application of our theory using the territorial

defence and hunting behaviour of lionesses. The example

highlights the fact that behaviour needs to be analysed in

the light of complex multiple interaction contexts. On a smal-

ler scale, the gut microbiota is a complex system which is

capable of showing a variety of stable states, often a dynamic

stability [14,41]. The different microbes within the gut com-

munity definitely interact in a variety of ways within

themselves but each also interacts with the host in a unique

manner. Within species and between species interactions,

together, have the potential to dictate the evolutionary

course of all involved species [42]. These interactions can cer-

tainly be interpreted as multiple games, each with a number

of strategies and (immensely) multiplayer games. On the

population genetics level, as an extension to previous work

[43], multiple games and multi-strategies can be seen as mul-

tiple loci with several alleles. The case for two loci (or games)

having two strategies [31], and 3-strategy games [8] has been

previously investigated. Now with our inclusion of multi-

player games, we can also investigate polyploidy [44].

Considering recombination at this point would be crucial

since it has been shown that under recombination the

dynamics of multiple games would converge to the Wright

manifold and thus to the SGD as in [45]. Deciphering the

linkage between strategies used across multiple games

could then be an exciting avenue for future research.

In finite populations, we have developed two methods to

map the payoffs to the fitnesses. These two methods produce

different fixation probability values for a particular selection

intensity (electronic supplementary material, figure A.5).

Both methods can have different biological justification. For

example, all the actions leading to a brood produced

during a season could be the culmination of all payoffs con-

verted to fitness and then added to give the lifetime fitness—

this is akin to Method I. On the other hand, in Method II, the

payoffs through all breeding seasons would be summed up

and then mapped to the lifetime fitness. The methods pro-

duce different results as compared with just one game (or

even when the game is combined with another neutral

game). Thus, even under finite populations, MGDs are differ-

ent from SGDs and our formulation can be used to study

multiple games in finite populations.

In a nutshell, our analysis reveals that the outcomes from

multiplayer 2-strategy games are similar to previous results

[31], where the MGD can be characterized by the separate

analysis of the individual games. However, when the

games have at least three pure strategies, different dynamics

emerge [8]. This dynamical (in)consistency has already been

pointed out [31,32] as ‘serious since it goes to the heart of

the evolutionary approach’ [32]. With the diverse use of mul-

tiplayer games in social evolution (e.g. tragedy of the

commons) and in biology, the problem is only exacerbated

due to the potential existence of multiple internal steady

states. For such cases, a fully comprehensive study of the initial

conditions is a potential future project (as in figures 4 and 5).

Even though complicated dynamics can still be captured by

the relatively simple replicator-like equations and fixation
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Figure 5. Lionesses in territory defence and stag – hunt games. The SGD of the games are plotted in the top panel. The leader Le, laggard La, and loner Lo are the
strategies in the territorial defence game. Cooperation C and defection D are the strategies for the stag hunt. The grey lines are trajectories from random initial
conditions to observe the SGDs. We choose three trajectories having initial conditions ic1, ic2, and ic3 to track the SGDs and MGD. Homoclinic orbits that emerge from
and lead to xLo can be seen in the SGD of game 1. The SGD of game 2 shows an unstable equilibrium at (q�21

) and a stable one at q�22
. The MGD consists of six

categorical types xLe C, xLa C, xLo C, xLe D, xLa D, and xLo D. In the middle panel, the time evolution of the categorical types is plotted. For ic1, we recover oscillatory
dynamics but different dynamics as well as equilibria emerge for other initial conditions. In the last row, we show the recovered SGDs ( plotted in dashed lines) from
the MGD in comparison with the original SGDs ( plotted with solid lines). For the recovered territorial defence game, the initial conditions ic2 and ic3 do not end up
in the homoclinic cycle as in the SGDs; the equilibrium solution and dynamics in the multi-game is different from the SGD. For ic1 and ic3, cooperation in game 2,
i.e. p2C does not reach a static equilibrium but oscillates. On the other hand, ic2 goes extinct; a complete switch of equilibrium as compared to the SGD. So the
addition of games changes the dynamics as well as stability of both the games for certain initial conditions. (Online version in colour.)
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probabilities, vast domains in the multiple games space remain

unexplored.
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