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 Abstract 

 Breast imaging is a multimodal approach that plays an es-
sential role in the diagnosis of breast cancer. Mammography, 
sonography, magnetic resonance, and image-guided biopsy 
are imaging techniques used to search for malignant chang-
es in the breast or precursors of malignant changes in, e.g., 
screening programs or follow-ups after breast cancer treat-
ment. However, these methods still have some disadvantag-
es such as interobserver variability and the mammography 
sensitivity in women with radiologically dense breasts. In or-
der to overcome these difficulties and decrease the number 
of false positive findings, improvements in imaging analysis 
with the help of artificial intelligence are constantly being 
developed and tested. In addition, the extraction and corre-
lation of imaging features with special tumor characteristics 
and genetics of the patients in order to get more information 
about treatment response, prognosis, and also cancer risk 
are coming more and more in focus. The aim of this review 
is to address recent developments in digital analysis of im-
ages and demonstrate their potential value in multimodal 
breast imaging.  © 2019 S. Karger AG, Basel 

 

  Introduction 

 In Europe, breast cancer (BC) is the leading cause of 
death from cancer in women, and it is the most common-
ly diagnosed cancer worldwide except in Eastern Africa. 
The prevalence of BC has been increasing due to the pos-
sibility of early BC diagnosis, population aging, and 
changes in risk factors, but independent of further devel-
opment of new treatment options, early diagnosis is very 
important as it increases the chances of survival   [1] . 

 Breast imaging is a subspecialty in the diagnostic field 
of radiology, which involves several imaging techniques 
for the early detection of BC. It also plays a fundamental 
role in the assessment and follow-up of BC      [2–5] . It re-
quires a multimodal approach that includes mammogra-
phy (MG) as a gold standard supplemented by sonogra-
phy (US) and dynamic contrast-enhanced magnetic reso-
nance tomography (DCE-MRI). These techniques are 
used to search for malignant changes in the breast, e.g., in 
the screening program, intensified screening, or follow-
up monitoring    [6, 7] . 

 Although breast imaging is currently the most effec-
tive tool for detecting BC, there are still deficits in the de-
tection and interpretation of lesions by the human reader 
 [8] . In addition, the number of dedicated breast imager is 
limited. For this reason, improvements in breast imaging 
and image-based features are crucial and currently a very 
active topic in radiological research. Image analysis with 
the help of computers has shown that computerized fea-
ture extraction and new algorithms classification are 
great tools to assist physicians in the detection and clas-
sification of abnormalities   [9] . Moreover, they are playing  G.N.F. and M.I. contributed equally to this work. 



 Digital Analysis in Breast Imaging 143Breast Care 2019;14:142–150
DOI: 10.1159/000501099

an increasingly important role in predicting clinical prog-
nosis   [10] . 

 This review addresses recent developments in digital 
analysis and their potential value in the context of multi-
modal breast imaging. 

 Mammography 

 A mammogram is an X-ray method for breast imaging 
that has been constantly evolving in recent years from a 
film-based analog MG in the 1960s to full-field digital 
techniques. While analog MG can lead to an inaccurate 
diagnosis or false positive results, digital MG is more ro-
bust and superior, especially in lesion detection in dense 
breasts or premenopausal woman   [11] . In addition, the 
radiation exposure of digital MG is around 20–30% low-
er than screen film for MG   [12] . Furthermore, the images 
can be subsequently altered and easily exchanged elec-
tronically. 

 Since to detect an ion of masses is usually not the big-
gest challenge for radiologists, if they are not obscured by 
overlying dense breast tissue, the interpretation is tricki-
er. On the other hand, the detection of small microcalc 
clusters after a long day or reading a big batch of images 
in screening can become difficult due to lack of concen-
tration. In order to support the radiologists’ detection 
rate and interpretation of breast imaging, innovative im-
age-based features such as computer-assisted diagnostic 
(CAD) systems have been developed. CAD systems iden-
tify abnormalities on the breast image and can be used 
after or before the radiological interpretation of the image 
     [13–16] . Even though these systems can be applied on 
digitized analog images, the development of digital MG 
made it much easier to apply these computer tools and 
will also enable artificial intelligence algorithm in the fu-
ture. 

 Magnetic Resonance-Mammography 

 MRI   [17]  is usually used as a complement to X-ray MG 
for the diagnosis of BC. It offers the advantage of provid-
ing not only 3-dimensional spatial information but also 
temporal information. DCE-MRI in breast imaging is 
considered to be the technique with the highest sensitiv-
ity, exceeding 90%   [18] . Current data also confirm high 
accuracies in the detection of ductal carcinomas in situ or 
the diagnosis of lesions presenting with microcalcifica-
tions      [19–22] . 

 MRI allows the acquisition of morphological and func-
tional information of breast tissue and breast lesions and 
the evaluation of pathological features. Functional infor-
mation can be obtained using two different techniques: 

dynamic and morphological enhancement assessment 
  [23]  and diffusion-weighted imaging (DWI)    [24, 25] . The 
contrast dynamic technique is based on different en-
hancement patterns of breast lesions over time after the 
administration of a contrast agent     [26–28] . DWI, on the 
other hand, is a technique that measures the diffusion of 
water molecules in tissue and does not require a contrast 
medium. Due to the water molecules’ mobility, DWI re-
flects biophysical properties such as cell density, integrity 
of the membrane, and tissue microstructure   [25, 29] . 
MRI, however, is a method that requires a high level of 
experience, which may be limited    [30, 31] . Besides, image 
interpretation can show inter- and intraobserver varia-
tions   [32] . Therefore, CAD programs were also devel-
oped for MRI in order to detect and clarify suspicious 
image features, to assist radiologists in distinguishing le-
sions, and to save time      [33–36] . 

 Computer Assistance for Image-Based Diagnosis 

of BC 

 The long history of CAD systems began between 1960 
and 1970, when research studies presented a new auto-
matic computer model that was able to detect and clas-
sify suspicious abnormalities   [37] . It the 1980s, medical 
physicists and physicians at the Kurt Rossmann Labora-
tories (Department of Radiology at the University of Chi-
cago) developed two comprehensive categories of com-
puter models: computer-aided diagnosis (CADx) and 
computer-assisted detection (CADe)   [38] . 

 CAD systems analyze the mammographic images and 
mark abnormal densities and microcalcifications assist-
ing the radiologist to incorporate the machine results into 
their decision-making process. The initial systems had a 
high rate of false positive marks, and not every suspicious 
finding was safely marked   [39] . Therefore, CAD systems 
should only be used as support for radiologists; the re-
sponsibility lies solely with the physician. CAD systems 
are nowadays widely accepted and used throughout the 
field of radiology   [16, 40] . The image analysis of CAD 
systems is based on image acquisition, segmentation, 
processing, detection, and output   [15, 16, 41] . CAD can 
be applied in screen-film MG as well as digital MG. How-
ever, conventional images must be digitized first, as CAD 
systems can only analyze digital datasets   [42] . 

 Emerging studies introduce new CAD systems based 
on neural networks. These innovative systems have the 
supplementary ability to use already collected informa-
tion as a pool of data in order to compare with new mam-
mograms   [43] . With the new technology, researchers 
hope that the new CAD method will replace the second 
imaging reader in the future    [44, 45] . 
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 The CAD system in MG is used as an assistant to the 
radiologist by enhancing potential findings that may get 
overlooked and by reducing the time of image interpreta-
tion. CAD in MG is advantageous when there is a high 
inconsistency among observers, a lack of trained observ-
ers, or double reading with two or more radiologists is 
impractical   [46] . Clinical studies have shown that the ad-
dition of CAD leads to a sensitivity increase from 20 to 
21% in the detection of BC by radiologists     [46–49] . 

 CAD for breast MRI has a different function from its 
application in MG. It is a component in the daily routine 
that serves more like a computer-assisted evaluation and 
visualization tool than only as a lesion detection  [33] . Ra-
diologists usually detect the lesions easily, but only the 
most experienced ones can safely assess the lesion   [50] . 
MRI interpretation requires knowledge of the morphol-
ogy and kinetics of the lesion as well as its enhancement 
patterns. Malignant tumors tend to enhance and wash 
out quickly. An abnormal suspicious morphology of a le-
sion added to type III kinetics  [34]  indicates malignancy 
and increases the likelihood of biopsy. 

 CAD is a system able to organize this multifaceted im-
age information, reducing the number of false positives 
and, thereby, unnecessary biopsies   [51] . In addition, it 
has been shown that CAD may also be useful for assessing 
changes in enhancement patterns of tumors after chemo-
therapy   [52] . 

 Breast Density Assessment 

 In order to be able to predict the individual risk of 
women to develop BC, researchers’ interest in imaging 
risk indicators, such as breast density, fibroglandular tis-
sue (FGT), and background parenchymal enhancement 
(BPE) after approximately 90 s, has increased in recent 
years. The assessment of the density of the breast using 
the BI-RADS lexicon quite often shows a significant vari-
ability among readers. Therefore, more objective mea-
surement tools would be helpful. Automatic assessment 
of volumetric percentage density using dedicated soft-
ware reduces these variabilities. Studies have shown that 
mammographic percent density, BPE, and FGT are inde-
pendent imaging biomarkers as they are also risk factors 
for the development of BC     [53–55] . 

 In addition, several research studies assessed whether 
a computer-assisted program would also find less BC due 
to increased tissue density of the breast: Bolivar et al.   [56]  
presented a significant difference in sensitivity between 
the nondense breasts compared to dense breasts (95 vs. 
89%) after using a CAD system. In contrast, Brem et al. 
 [47] , Birdwell et al.   [57] , and Yang et al.   [58]  showed no 
impact of breast density on the performance of CAD sys-
tems. Engelken et al.  [39]  showed an influence of the vol-

ume of breast tissue but not its percentage on the perfor-
mance of a CAD system. However, the groups used dif-
ferent CAD systems and partly digital partly screen-film 
mammograms. 

 Breast density in MRI is a volumetric assessment of 
FGT, since fat and FGT are two major components of 
breast MRI. It is strongly correlated with mammographic 
percent density    [59, 60]  and associated with BC risk  [55] . 
BPE in MRI is recognized as enhancement of normal 
breast tissue to varying degrees after injection of the con-
trast agent    [61, 62] . Breast density, FGT, and BPE may be 
altered as they represent dynamic physiological processes 
subject to hormonal changes   [63] . In order to assess these 
imaging biomarkers, radiologists use a 4-point scale that 
qualifies the breast density according to a visual criterion 
established by the American College of Radiology: Breast 
Imaging Reporting and Data System (BI-RADS) criteria. 
In MRI, BI-RADS assessment should occur on the first 
image after contrast injection at approximately 90 s. 
However, the manual assessment of BI-RADS can lead 
to inconsistencies between inter- and intrareaders and 
obstructs the prediction of BC    [64, 65] . To overcome 
these limitations, other algorithms are being developed 
   [66, 67] . 

 The initial computer-assisted systems and software al-
gorithms where using more basic techniques and were 
limited by the performance speed of the available com-
puter technique at that time. But in the last years, more 
and more sophisticated computer techniques using neu-
ronal networks, deep learning (DL), and artificial intelli-
gence came more and more into focus. These techniques 
also enable researchers to extract multiple imaging fea-
tures and correlate them to biological markers to predict, 
for example, the type and behavior of a tumor. These 
techniques are described in more detail in the following 
section. 

 Radiomics and DL 

 Radiomics is a technique that converts radiological 
imaging data, such as CT or MR images, into a high-di-
mensional feature space, where the term feature refers to 
a scalar number that encodes a specific property of the 
tumor. This feature space is hypothesized to contain a 
link to a clinical or biological endpoint – such as tumor 
(sub-)type, prognosis, or treatment response. Computa-
tional modelling and machine learning (ML) approaches 
are often used in a hypothesis-generating approach to 
link the high-dimensional image feature space to a spe-
cific endpoint. As such, radiomics can be seen as the ra-
diological interpretation of the systems biology approach 
  [68] : Systems biology is the study of complex biologic sys-
tems, which relies on integrating multifaceted data about 
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genes, metabolism, protein expression, and other compo-
nents. Systems biology approaches encompass data from 
many scientific disciplines and form an integral part of 
precision medicine. 

 Technical Introduction 
 Radiomics was introduced in a ground-breaking work 

by Aerts et al.   [69] . This work demonstrated in indepen-
dent CT datasets of patients with lung or head-and-neck 
cancer that radiomics features, generated by automated 
image analysis, contain prognostic information. Funda-
mentally, this work demonstrated that imaging pheno-
type becomes accessible to computational analysis by the 
proposed approach termed “radiomics,” which is de-
scribed in the following subsections. 

 This initial paper was followed by an abundance of 
publications which investigated radiomics approaches 
for the analysis of CT and MR data, with the clinical end-
points of classification, e.g., of tumor types or the pres-
ence or absence of genetic subtypes, or progression-free 
or overall survival   [70] . It is noteworthy that the majority 
of radiomics studies has focused on oncologic questions, 
although, in principle, the radiomics approach is feasible 
for all questions that can be formulated as classification, 
regression, or survival analysis. For the sake of simplicity, 
the following discussion is limited to radiomics analysis 
of tumors. 

  Figure 1  outlines a typical radiomics analysis. Starting 
with high-quality tomographic images, the tumor is seg-
mented or contoured on each image slice, resulting in a 
3-dimensional definition of the tumor shape. In the initial 
radiomics studies, this tumor segmentation was per-
formed manually by expert readers, typically radiologists 
with sufficient domain expertise. Depending on image 
contrast, tumor boundaries, and image resolution, this 
manual segmentation can be an extremely time-consum-
ing and user-dependent task. 

 Once the tumor is segmented, radiomics analysis pro-
ceeds by calculating a large number of quantitative image 
features, which can roughly be categorized into three 
groups. The first group of features describes tumor shape 

and encompasses simple and well-understood parame-
ters such as maximum diameter, tumor volume, or tumor 
surface area. Often, additional parameters such as sphe-
ricity, the ratio of surface to volume, or other parameters 
are calculated. The second group of image features de-
scribes the histogram of signal intensities within the tu-
mor. Again, this encompasses simple and straightforward 
parameters such as mean or median, minimum or maxi-
mum signal intensity, but also energy, skewness, and kur-
tosis of the histogram. With these groups of features, the 
tumor is already well characterized, but the relation of 
neighboring pixels is not taken into account. To this end, 
the third group of features comprises image texture, 
which essentially captures the spatial relations of different 
gray levels, by means of gray-level co-occurrence or gray-
level run-length matrices. Notably, these texture features 
are able to capture various aspects of tumor heterogene-
ity, a measure which often has strong prognostic rele-
vance. 

 After feature extraction, imaging data are converted 
into a long vector of image features. These data can be 
readily enhanced with additional information, such as 
demographic, clinical, or pathological data, or even ad-
ditional -omics data, e.g., from genomics. This wealth of 
data, however, should be interpreted with caution: it may 
well be that a large number of these features is of little use 
for endpoint prediction. For example, it may be that some 
image features are highly sensitive with respect to image 
segmentation, so that feature changes are dominated by 
small changes in segmentation, as, for example, caused by 
interreader variability. Other features may have no asso-
ciation with the outcome at all, and again others may have 
high intercorrelation and, thus, act as confounders in fur-
ther analysis. For this reason, the high-dimensional fea-
ture space is often narrowed down by means of feature 
selection, which may employ a large number of feature 
quality measures to narrow down the number of predic-
tors. 

 The link between feature space and clinical endpoint 
then needs to be provided either by statistical modeling 
or ML, often in a classification or survival setting. In ML 

Fig. 1.  Outline of a state-of-the-art ra-
diomics analysis   [88] . Briefly, a tumor is 
outlined or contoured on tomographic im-
ages. In the next step, a range of quantita-
tive image features is computed, typically 
comprising shape features, signal intensity 
distributions, and image texture. Finally, 
machine learning is used to establish a link 
between this high-dimensional data space 
and the relevant clinical endpoint or out-
come. 
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terms, this problem can be formulated as “supervised 
learning:” for each patient, the feature vector and the as-
sociated label, i.e., the clinical endpoint, is known; the ML 
model needs to establish the link between the two entities, 
which is performed in a so-called training step. After 
training, the model can then predict an outcome for new 
hitherto unseen patient data. During training, special care 
needs to be taken in order to arrive at meaningful predic-
tions – otherwise, a model might simply memorize train-
ing data and be unable to predict on new data. A popular 
strategy for this purpose is to split the data into training 
and testing data; during training, the model sees only the 
training data, and after training, the model performance 
is evaluated on the testing data. A generalization of this 
approach is cross validation: here, the data is divided into 
several folds, one fold is held out during training and used 
only for prediction. This is then permuted, so that predic-
tions for each fold are based on training with all other 
folds. 

 Applications in BC 
 The key application of radiomics in oncological set-

tings is the prediction of a clinical endpoint. In the con-
text of BC, radiomics applications have up to now focused 
on the characterization of suspicious lesions, on the char-
acterization of tumors, and on prognosis and risk predic-
tion. In the following, we present key studies in these 
fields. For a more comprehensive overview, please refer, 
for example, to Pinker et al.  [68]  or Crivelli et al.   [71] . It 
should be noted, however, that most of these studies have 
been performed in a retrospective fashion and require 
validation in prospective studies. 

 The diagnostic workup of suspicious lesions on con-
ventional MG is a central application of MRI in BC. The 
additional value of radiomics feature as compared to the 
maximum linear size was evaluated by Whitney et al.   [72] , 
their study demonstrated that radiomics features im-
proved the ability to distinguish benign lesions from lu-
minal A BCs. A distinguishing feature of MRI is its abil-
ity to provide information beyond pure morphology, a 
very useful application is imaging of water diffusion in 
tissue, based on the notion that densely packed tumor 
cells provide more diffusion restriction than healthy tis-
sue and, thus, appear dark in so-called apparent diffusion 
coefficient images. Radiomics analyses of diffusion-
weighted MRI in BC have been shown to be superior to 
mere mean apparent diffusion coefficient values in the 
discrimination between benign and malignant lesions 
  [73] . 

 In a prospective bi-centric study   [74] , a specialized 
DWI protocol was used for imaging patients with suspi-
cious lesions detected on X-ray MG. Here, the radiomics 
analysis was demonstrated to have higher specificity than 
conventional image analysis, even with MR scanners 

from different vendors. Radiomics has also been used to 
differentiate BC molecular subtypes. Here, it was demon-
strated that a quantitative MRI radiomics approach may 
be very helpful for the molecular classification of invasive 
BC – e.g., the differentiation of ER+ versus ER– or HER2+ 
versus HER2– receptor status   [75] . In a similar approach, 
radiomics analysis of DCE-MRI was used to differentiate 
luminal A, luminal B, HER2, and basal-like subtypes   [76] . 

 With respect to prognosis, Li et al.   [77]  aimed to use 
MRI features to predict BC recurrence scores from mul-
tigene assays. The findings of their study suggested that 
radiomics features used for image-based phenotyping 
may be helpful in assessing the risk of cancer recurrence. 
With respect to the endpoint of disease-free survival, Park 
et al.   [78]  demonstrated that a radiomics signature from 
preoperative MRI, termed “Rad-Score,” has prognostic 
value. In particular, when combined with clinicopatho-
logical and MRI findings, this signature improved the es-
timation of disease-free survival, suggesting that the ra-
diomics signature provides additional prognostic value. 
Finally, a recent study investigated the potential of ra-
diomics to predict pathological complete response of pa-
tients with locally advanced BC under neoadjuvant che-
motherapy   [79, 80] . 

 Deep Learning 
 In contrast to radiomics, where image features are 

“handcrafted,” DL approaches promise to learn relevant 
image features on their own. By combining image analy-
sis and ML in one network, convolutional neural net-
works (CNN) have had a disruptive effect on a large num-
ber of ML approaches, in particular with respect to 
computer vision and image analysis. This has raised con-
siderable interest in the medical imaging community, 
where such approaches have been shown to provide value 
in a large number of clinical applications  [81] . While DL 
approaches are useful for a number of tasks in medical 
imaging, we limit the brief overview below to the applica-
tion of DL for the classification of conventional MG. For 
a detailed discussion and a review of recent publications, 
please refer to Hamidinekoo et al.  [82] . 

 On MG images, a tumor may appear as mass, through 
the presence of microcalcifications or through distortion 
of tissue. These features can readily be detected through 
feature extraction by dedicated conventional CAD sys-
tems (see above), but these approaches have been chal-
lenged through the rise of DL approaches for classifica-
tion. In a recent study  [83] , a DL system was trained and 
evaluated on a large dataset of approx. 45,000 images; the 
system’s performance to detect cancer was compared 
against a state-of-the-art MG CAD system and against 
human readers. This study found that the CNN approach 
outperformed the CAD system at low sensitivity and 
yielded comparable results at high sensitivity; there was 
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no significant difference in performance between the 
CNN and human readers. 

 A critical requirement for training DL algorithms is 
the availability of sufficient amounts of training data, 
where the relevant clinical endpoint is available as label to 
each dataset. This has been a considerable limitation of 
the application of DL algorithms in medical imaging, 
which has recently been mitigated through several chal-
lenges, where large amounts of labeled data were made 
available to the public; participants in these challenges 
trained their algorithms on the public data and submitted 
them to the competition. For an unbiased evaluation of 
these trained algorithms, their performance was deter-
mined on a held-back validation dataset, which deter-
mined the position of the algorithm on the so-called pri-
vate leaderboard. In the field of MG, an influential chal-
lenge was the DREAM challenge which aimed to assess 
algorithms for risk stratification in screening MG  [84] . In 
this challenge, 86,000 exams were made available, togeth-
er with a binary label for each image, stating whether BC 
was diagnosed within 12 months after diagnosis. The 
winning algorithms achieved AUC values of 0.874 and 
0.843, respectively. The second-best algorithm  [85]  not 
only predicted the diagnosis of BC on the breast level, but 
it was also able to localize and detect lesions. As a detector 
system, this algorithm achieved high sensitivity with very 
few false positive marks. 

 Outlook and Perspectives 

 Imaging methods become more and more complex, 
promising individualized treatment options arise, and 
the number of BC patients is increasing – this highlights 
the crucial role of correct assessment and interpretation 
of imaging data. At the same time, the workload of expe-
rienced breast radiologists increases and the recruitment 
of new specialists becomes difficult. 

 Whereas early CAD systems have focused on the mere 
detection of lesions, recent advances in radiomics and DL 
promise not only to detect, but also a complete lesion 
characterization, including tumor type specification and 
prognosis. Modern CAD systems have reached a reading 
level that is comparable to human readers, and radiolo-
gists should consider options and modalities how these 
systems can be incorporated into clinical care, especially 
in a screening setting – for example, CAD systems might 
replace a second human reader (they reached the same 
sensitivity as average screening readers in a retrospective 
study  [86] ) or preselect normal images to reduce the read-
ers’ workload  [87] . 

 In addition, much more information about the type of 
lesions we detect in our patients, the heterogeneity of tu-
mors, and the differences in treatment response and 

prognosis is inherited in our images and has so far maybe 
been hidden to the human reader’s eyes or is too complex 
to be completely assessed by the human read-only. In the 
past, CAD tools helped mainly to detect lesions but did 
not add much more information for their interpretation. 
With more advanced diagnostic techniques, like ra-
diomics and DL, a translation from imaging extracted 
features into tumor-type specifications or prognosis pre-
diction will come more and more into focus. 

 Computer systems may also be helpful for risk assess-
ment and stratification in high-risk patients, taking into 
account breast density, tissue structure, background en-
hancement, or other image features; this is an active area 
of research. In this sense, the replacement debate loses 
momentum; instead, radiologists should appreciate and 
embrace the added value that artificial intelligence sys-
tems provide – quite possibly, these systems will relieve 
radiologists from routine work, will improve the level of 
patient-centered care, and, maybe most importantly, will 
enable the radiologist to focus on human interaction and 
individual treatment. 
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