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ABSTRACT Human herpesvirus 6 (HHV-6) and cytomegalovirus (CMV) are population-
prevalent betaherpesviruses with intermittent lytic replication that can be pathogenic in
immunocompromised hosts. Elucidation of the adaptive immune response is valuable
for understanding pathogenesis and designing novel treatments. Knowledge of T-cell
antigens has reached the genome-wide level for CMV and other human herpesviruses,
but study of HHV-6 is at an earlier stage. Using rare-cell enrichment combined with an
HLA-agnostic, proteome-wide approach, we queried HHV-6B-specific CD4 T cells from 18
healthy donors with each known HHV-6B protein. We detected a low abundance of
HHV-6-specific CD4 T cells in blood; however, the within-person CD4 T-cell response is
quite broad: the median number of open reading frame (ORF) products recognized was
nine per person. Overall, the data expand the number of documented HHV-6B CD4
T-cell antigens from approximately 11 to 60. Epitopes in the proteins encoded by U14,
U90, and U95 were mapped with synthetic peptides, and HLA restriction was defined for
some responses. Intriguingly, CD4 T-cell antigens newly described in this report are
among the most population prevalent, including U73, U72, U95, and U30. Our results in-
dicate that selection of HHV-6B ORFs for immunotherapy should consider this expanded
panel of HHV-6B antigens.

IMPORTANCE Human herpesvirus 6 is highly prevalent and maintains chronic infec-
tion in immunocompetent individuals, with the potential to replicate widely in set-
tings of immunosuppression, leading to clinical disease. Antiviral compounds may
be ineffective and/or pose dose-limiting toxicity, and therefore, immune-based ther-
apies have garnered increased interest in recent years. Attempts at addressing this
unmet medical need begin with understanding the cellular response to HHV-6 at
the individual and population levels. The present study provides a comprehensive
assessment of HHV-6-specific T-cell responses that may inform the development of
cell-based therapies directed at this virus.
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Human herpesvirus 6 (HHV-6) is a ubiquitous virus that causes roseola upon primary
infection and persists throughout life in immunocompetent carriers (1, 2). It exists

as two closely related species, HHV-6A and HHV-6B (3), that have 90% genomic identity
(4) but differ by tropism and epidemiology (5, 6). About 1% of humans harbor inherited
chromosomally integrated HHV-6 (iciHHV-6), which is inherited in a Mendelian fashion
(7). Lytic infection in immunocompetent adults in the chronic phase of infection
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appears to be relatively limited to the oropharynx, with high levels of HHV-6 DNA
detectable in the saliva (8). Viral replication can be more widespread in immunocom-
promised settings such advanced HIV infection (9). Reactivation, defined as detection of
HHV-6B DNA in blood, occurs in nearly half of post-hematopoietic stem cell transplant
(HCT) patients and has been definitively linked to encephalitis. Adverse outcomes such
as fever and graft-versus-host disease (1, 10, 11) may also be related to HHV-6
replication. Investigators have suggested associations with Hashimoto’s thyroiditis (12),
multiple sclerosis (13–19), and a variety of other medical conditions (1).

Although no antiviral compounds are approved specifically for HHV-6 treatment,
some anticytomegalovirus (anti-CMV) compounds, including ganciclovir, foscarnet, and
cidofovir, inhibit HHV-6 (5, 20–22). These can have dose-limiting toxicities or lack
efficacy (23–25). T-cell immunity is likely important for the control of HHV-6 based on
the increase in HHV-6 replication detected in persons with advanced immunodeficiency
(9, 26, 27). Based on this hypothesis, cell-based therapies are considered a promising
alternative. In particular, detailed knowledge of which HHV-6 antigens rank highest in
immunodominance and immunoprevalence will allow selectively expanded virus-
specific T-cell (VST) or transgenic T-cell receptor (tgTCR) T-cell products to be optimized
for effectiveness and HLA compatibility. While most emphasis has been placed on
cytotoxic CD8 T cells for adoptive T-cell therapy, VST products are usually a mixture of
CD4 and CD8 T cells (28), and adoptive therapy with antigen-specific CD4 T cells can be
active against cancer (29). Therefore, continuing definition of HHV-6 CD4 T-cell targets
may contribute to antiviral therapy.

The discovery and ranking of HHV-6 T-cell antigens are complicated by the low
frequency of HHV-6-specific T cells in blood (30) and by the complex viral proteome.
Because HHV-6 and CMV are genetically related betaherpesviruses, some studies have
focused on the HHV-6 homologs of known CMV antigenic proteins. These studies have
identified HHV-6 U11, U14, U54, and U90, the homologs of CMV UL32, UL25, UL82/83,
and IE1, respectively, as targets for CD4 or CD8 T cells (31–34). Other studies have taken
a cross-sectional approach by testing libraries of peptides that were predicted to bind
to a particular HLA allele: DRB1*0101 for CD4 T cells (30, 35) or HLA-B*0801 for CD8 T
cells (36). These studies expanded the number of known T-cell antigens considerably
but were limited to single HLA allelic variants.

The present study uses a high-throughput approach to antigen discovery that was
originally developed for large-genome pathogens, including vaccinia virus, herpes
simplex virus 1 (HSV-1), HSV-2, varicella-zoster virus (VZV), and Mycobacterium tuber-
culosis (37–41). Enriched whole-virus-reactive CD4 T cells are initially tested against a
library of all full-length viral proteins, with downstream deconvolution to the epitope
level for selected antigens. As this workflow relies on sequential antigen processing of
whole virus and long polypeptides by antigen-presenting cells (APCs), epitopes iden-
tified by this workflow are likely to be physiologically relevant. This genome-wide,
HLA-agnostic approach allows antigen immunoprevalence ranking in the population to
provide a comprehensive view of HHV-6B-specific CD4 T-cell responses.

RESULTS
Peripheral blood of healthy donors contains HHV-6B-specific CD4 T cells that

can be enriched in vitro. The initial cohort of 53 healthy donors was 34% male, and
the median age at the time of blood draw was 40 years (range, 21 to 68 years). To
ascertain the frequency of HHV-6B-specific CD4 T cells in peripheral blood, peripheral
blood mononuclear cells (PBMCs) were assayed by an interleukin-2 (IL-2)/interferon
gamma (IFN-�) intracellular cytokine cytometry (ICC) assay (Fig. 1A). Donors had
virus-specific cell populations that were of low abundance but clearly discernible in
most subjects. Responses were typically less than 0.1% of total CD4 T cells, with an
overall median of 0.048% (Fig. 1B).

Given the low abundance of HHV-6-reactive CD4 T cells in PBMCs, we enriched these
cells from 42 donors prior to interrogation of the HHV-6B protein library. These donors
were chosen based on PBMC availability and a detectable response to HHV-6B ex vivo.
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To sort virus-specific T cells with optimal specificity, we added CD69 and CD154 as
activation-induced markers (AIMs) to CD137, the principal AIM in our previous work (37,
39, 40). Live CD4 T cells expressing triple AIMs were bulk sorted and expanded (Fig. 1C).
As a negative control, CD3� CD4� T cells lacking CD154 expression were tested in

FIG 1 Isolation and enrichment of HHV-6B-specific CD4 T cells. (A) PBMCs from a representative donor were stimulated for 18 h with mock or HHV-6B lysate
and tested by intracellular cytokine staining (ICS) for IL-2 and IFN-� expression. Gated CD3� and CD4� cells are shown. (B) Results from similarly tested ex vivo
PBMCs of 53 donors. For each, HHV-6B-treated cells expressing either cytokine, or both, were totaled, and mock values were subtracted for the net IL-2 and/or
IFN-� HHV-6B-specific T-cell frequency. The horizontal bar is the median (0.048%). (C) Sorting scheme for HHV-6B-specific T cells. Live cells from the same donor
as in panel A were gated for CD3 and CD4 expression; from these, cells expressing CD154, CD69, and CD137 (green) were sorted and expanded in culture for
downstream assays. Cells negative for CD154 (red gate) were sorted as a negative control. FSC, forward scatter. (D) Expanded polyclonal T cells from the same
donor as in panel A originating from CD154-negative cells (“neg”) or CD154/CD137/CD69 triple-positive cells (“pos”) were evaluated to document enrichment
for HHV-6B specificity among the AIM-positive cells. Numbers are percentages of gated cells expressing the indicated pattern of cytokines or activation markers.
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parallel. The polyclonal AIM-positive (AIM�) cell lines showed strong HHV-6 reactivity
and were generally 5% to 50% specific for HHV-6B antigen (representative data are
shown in Fig. 1D), while AIM-negative (AIM�) cells showed no specific reactivity.

HLA-agnostic genome-wide screening reveals novel HHV-6B antigens for CD4
T cells. A set of 101 in vitro-expressed proteins covering curated and candidate novel
HHV-6B open reading frames (ORFs) were tested with [3H]thymidine uptake assays. Five
mRNA splice variants with amino acid sequences differing from the ORF set under NCBI
accession number NC_000898.1 were also tested. Polyclonal HHV-6B-reactive CD4 T-cell
lines showed discrete positive responses to specific HHV-6B proteins (Fig. 2A). We
focused on 18 donors with sufficient PBMC availability, a proliferative response to
whole HHV-6B at least twice that of mock, and a positive response to at least one
HHV-6B protein. This group was 33% male, and the median age at the time of blood
draw was 38 years (range, 25 to 54 years).

The median number of HHV-6B genes or gene fragments recognized per donor
was 9, and 57% of all proteins were recognized by at least one donor (Fig. 2B). Of
these, 5 are annotated as having immediate early, 14 are annotated as having early,
and 18 are annotated as having late expression kinetics. Eleven of these HHV-6B
ORFs have not, to our knowledge, previously been described as HHV-6B CD4 T-cell
antigens (30, 31, 35). Unlike the originally annotated U83 (NCBI accession number
NC_000898.1), the reannotated ORF “U83A” was transcribed in the reverse direction
and contained one intron, resulting in an entirely new amino acid sequence; interest-
ingly, the full-length U83A protein elicited responses from three donors, supporting its
status as a novel HHV-6B ORF.

The U73 protein was the most frequently recognized, stimulating CD4 T cells from
over half of the final cohort. The U14- and U72-encoded proteins were recognized by
half of the final cohort. Among the dozen proteins recognized by at least one-third of
donors, half, to our knowledge, have not previously been described as CD4 T-cell
targets: U73, U72, U95, U30, U62, and U63 (Fig. 2C).

Validation of selected CD4 T-cell antigens at the peptide epitope level. We
confirmed selected positive responses to HHV-6 polypeptides with synthetic peptides.
Bulk polyclonal HHV-6-reactive CD4 T-cell lines were again used as responder cells, and
autologous PBMCs were used as APCs. In initial assays (data not shown), we tested
pools of 30 to 35 overlapping peptides within the reactive U14, U90, and U95 ORFs for
preliminary epitope mapping. Further testing with individual peptides from U90 (rep-
resentative data are shown in Fig. 3A) and U95 (Fig. 4) peptide pools eliciting robust
T-cell responses showed that the response to these HHV-6B proteins can include
several epitopes per person. Data from several donors are summarized in Table 1.
Protein BLAST revealed that all of these epitopes had homologs in HHV-6A, and nine
had homologs in HHV-7 (see Table S2 in the supplemental material). No sequence
homologs were detected in human CMV (HCMV) or any other human herpesviruses.
Interestingly, 21 of the epitopes had perfect identity to a recently reported iciHHV-6B
genomic sequence (GenBank accession number KY315520.1).

To validate detection of canonical responses, HLA restriction was interrogated.
Responses of HHV-6B-specific T-cell lines to six individual peptides of U90 were
attenuated by antibody blockage of HLA molecules at one of the three DR, DP, or DQ
loci, indicating locus-level restriction (Fig. 3B). Finally, cells expressing a single HLA
allele were able to present selected peptides and elicit an IFN-� response from
HHV-6B-specific T cells, revealing the exact allelic restriction of these peptides (Fig. 3C).
We documented examples of HLA restriction at the DR, DP, and DQ genetic loci and of
restriction by the HLA DPB1*04:02 and HLA DRB1*03:01 allelic variants. Together, these
results corroborated that T-cell responses detected with full-length proteins show the
typical properties of HLA class II-restricted CD4 T cells.

DISCUSSION

Severe HHV-6 infections can occur in settings of compromised cellular immunity, yet
even in immunocompetent individuals, HHV-6-specific T cells in blood are scarce.
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FIG 2 Genome-wide HHV-6B CD4 T-cell antigen screens. (A) Representative data from the same donor as in Fig. 1A, C, and D. Shown are responses of polyclonal
HHV-6B-reactive CD4 T cells to individual HHV-6B polypeptides, or controls, including mock or HHV-6B-infected lysate, PHA, or irrelevant Plasmodium falciparum
proteins. CPM, counts per minute. The dotted horizontal line is the statistical cutoff for positive responses. (B) Summary of CD4 T-cell responses to the HHV-6B
proteome. Positive responses are denoted by black squares. frag, fragment. (C) Population prevalence hierarchy of CD4 T-cell responses to HHV-6B proteins.
Responses to �1 fragment for proteins studied in segments are collapsed to one positive response. sv, splice variant, as detailed in Table S1 in the
supplemental material.
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FIG 3 Detection of CD4 T-cell epitopes in HHV-6B U90. (A) Polyclonal HHV-6B-reactive CD4 T cells from a representative donor were tested
against U90 peptides. Controls at the right include responses to U90 peptide pools and the U90 fragment C IVTT polypeptide, which
corresponds to part of pool 4, and pool 5. Numbers on the x axis indicate starting amino acid (AA) positions of 18-mer peptides or amino
acid positions covered by peptide pools. Values are means of data from duplicates. DMSO, dimethyl sulfoxide. (B) Reactive U90 peptides
were retested with HLA locus-specific blocking monoclonal antibody specific for HLA-DP, HLA-DQ, or HLA-DR or no antibody (NA). After
overnight stimulation, supernatants were tested for IFN-� by an ELISA. Values are means and standard deviations of data from triplicates.
OD450, optical density at 450 nm. (C) Selected peptides from panel B were retested using single-HLA class II-expressing cell lines as APCs
with ELISA readouts in triplicate. U90 peptides are indicated at the bottom. HLA class II-negative parental cell lines DAP3 and RM3 were
used as controls.
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Compared to CMV, the frequency of CD4 T cells in blood is about 100 times higher for
CMV than for HHV-6B; we found a median abundance for HHV-6B of approximately
0.05%, while others have found CMV-specific frequencies of up to 10% or higher (42).
The acquired immune response coexists with anatomically limited, lytic viral replication
in the oropharynx, as reflected by the detection of large amounts of HHV-6 DNA in most
saliva samples (43). It is currently unknown how the low overall magnitude of the CD4
T-cell response to HHV-6, as detected previously (30) and confirmed in this report, is
conditioned by constant antigen exposure. HHV-6B is CD4 T-cell tropic and may shape
the immune response by killing HHV-6B-specific T cells during primary infection, similar
to HIV and measles virus (44). In the present work, as in previous reports (30, 34, 35),
the very low ex vivo frequency of HHV-6B-specific T cells required in vitro expansion for
detailed study. The use of methods with high sensitivity helped to detect these rare
cells and reveal the novel HHV-6B antigens described here.

The present study greatly expands the number of known CD4 T-cell antigens in
HHV-6B via a high-throughput genome-wide method. Polyclonal HHV-6B-specific T-cell
lines tested against full-length viral proteins revealed adaptive responses to both
previously known and novel antigens of all viral kinetic classes. Responses could be
confirmed with peptides. The accrual of new specificity data is not surprising, given the
difficulties that attend study of HHV-6-specific T cells, as reviewed previously (45), and
the application of sensitive methods. Some investigators have managed the complexity
inherent in the large HHV-6 proteome by limiting query to epitopes restricted by HLA
allelic variants with well-understood peptide binding motifs (30, 35). Our methods can
access any epitope regardless of HLA type while still allowing definition of HLA
restriction using a two-step approach (as outlined in Fig. 3). This approach has ex-
panded the diversity of known HHV-6B CD4 T-cell antigens from approximately 11 to
60 ORF products.

Interestingly, some of the novel antigens found here are among the most prevalent,
underscoring the importance of these findings. The most prevalent response was to
novel antigen U73 (61% of donors), which has no HCMV homolog, suggesting that the
responses that we detected were not due to cross-reactivity with CMV. Both U14
(previously described [30, 31]) and U72 (previously described [36]) had 50% response
rates, and both have HCMV homologs (UL25 and UL100, respectively); however, U72
bears only 40% amino acid sequence identity to UL100, scattered irregularly
throughout, so HCMV cross-reactivity seems unlikely to contribute substantially to

FIG 4 Detection of CD4 T-cell epitopes in HHV-6B U95. Polyclonal HHV-6B-reactive CD4 T cells from the same donor as in Fig. 3A were
tested against U95 peptides as described in the legend of Fig. 3A. Controls at the right include responses to U95 peptide pools and U95
fragment IVTT polypeptides A and B.
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U72 responses. The novel prevalent antigen U95, recognized by 44% of participants
and confirmed by peptides, has no known HCMV homolog but is a highly expressed
immediate early gene (46). Therefore, it may also be a rational target for cell-based
immunotherapies alongside the immediate early U90 protein, a previously de-
scribed antigen (31, 32, 34). Peptide epitopes confirmed here for U14, U90, and U95
had sequence homology to the related betaherpesviruses HHV-6A (all epitopes) and
HHV-7 (nine epitopes) (see Table S2 in the supplemental material), suggesting
possible cross-reactivity. Twenty-one epitopes had identity with the iciHHV-6B
genomic sequence (GenBank accession number KY315520.1), and albeit beyond the
purview of this study, it would be interesting to test if these epitopes are recognized
by HHV-6B-specific T cells in a cohort with iciHHV-6B (47–49).

There are several advantages of the present approach. First, whereas previous
peptide-based CD4 T-cell studies were limited to epitopes restricted by DRB1*0101 (30,
35), the present study allows genome-wide coverage that captures epitopes of any HLA
restriction. Second, the whole HHV-6B antigen and full-length viral protein used prior
to peptide confirmation require processing of complex forms of antigen, similar to in
vivo conditions. This is in contrast to some epitope discovery methods reliant on
peptides alone. Finally, [3H]thymidine-based proliferation assays are quite sensitive.
Together, these methods provide the most comprehensive picture yet of HHV-6-
specific T-cell responses among the human population.

The study also has certain limitations. The whole HHV-6B antigen is made with

TABLE 1 HHV-6B peptides with CD4 T-cell responses detected in this study

ORF Positions Amino acid sequencea HLA restriction Previously reportedb

U14 372–389 EYDEDKPPIQVDPGRVDN Yes
U14 379–396 PIQVDPGRVDNVLTDSDF Yes
U90 281–298 KQELLESRNEIIENHVKN Yes
U90 309–326 QMNQIFMDNsDKTFLKIH No
U90 316–333 DNsDKTFLKIHINsKNLI Yes
U90 330–347 KNLITAAKNIGIAVLQSI Yes
U90 344–361 LQSIVLsSNEFSWQYLKP Yes
U90 365–382 QFKITMMNMITHAsEsIE Yes
U90 876–893 KTHKVDNsVIHSSAKMNV DPB1*04:02 Yes
U90 904–921 HsFINHFVPIKTDDEEYE Yes
U90 911–928 VPIKTDDEEYEKENVSYT DPB1*04:02 Yes
U90 939–956 LEDITPTKKLITEMVMEN Yes
U90 946–963 KKLITEMVMENFMDLTDI DQ Yes
U90 967–984 GIAKHsQDLSSKYTVITH Yes
U90 974–991 DLSSKYTVITHTAsEKNL DQ No
U90 981–998 VITHTAsEKNLNVANSQN No
U90 1002–1019 AETQIFDPQGTGNNSPIL Yes
U90 1009–1026 PQGTGNNSPILNIINDTT Yes
U90 1016–1033 SPILNIINDTTsQNDENR Yes
U90 1023–1040 NDTTsQNDENRsTEGTSN DRB1*03:01 No
U90 1037–1054 GTSNDNEKsTIRSDsNSD Yes
U90 1044–1061 KsTIRSDsNSDKMEVFKL DP Yes
U95 1–18 MSSNLEDLLWQQILSMDP No
U95 8–25 LLWQQILSMDPAELLSDN No
U95 15–32 SMDPAELLSDNAISSTSD No
U95 85–102 TGLSLESINNQINVQPTQ No
U95 92–109 INNQINVQPTQMTFQPIS No
U95 99–116 QPTQMTFQPISPPMQGQN No
U95 729–746 KRMHSEIGISEDGRVREE No
U95 785–802 QDASGGSSSGTKKGEKLQ No
U95 848–865 NPDYRQAKRLLADIPYRR No
U95 855–872 KRLLADIPYRRWIPDTFN No
U95 862–879 PYRRWIPDTFNMEEHEGP No
U95 876–893 HEGPFLPIVTRPPTVFMG No
U95 904–921 SVTSIGPLSKLTYFKELL No
U95 939–956 AKHRVYIMSEEKLGYNHI No
aA lowercase “s” denotes a serine substitution for cysteine.
bEpitopes were previously described by Vita et al. (65) or Becerra-Artiles et al. (35).
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SupT1 cells, which may express viral proteins at different levels, with different splice
variants, or even with different start and stop sites than cells infected in vivo. This could
influence the likelihood of virus-specific T cells being activated and captured with our
triple-AIM sorting technique. Moreover, differential T-cell division rates could skew the
expansion of HHV-6B-specific clonotypes in vitro prior to readout assays. Therefore, we
consider our assay results dichotomous and suitable for calling responses to individual
proteins positive or negative and not suitable for establishing within-person immu-
nodominance. False-negative responses to HHV-6B proteins are also possible. T-cell
recognition of some epitopes could require posttranslational modifications, which
would be not be recapitulated by in vitro transcription and translation (IVTT) proteins
or by peptides.

Also, the bulk-expanded HHV-6B-specific T-cell lines from many donors showed high
background signals in proliferation assays, possibly obscuring positive antigen calls and
even completely invalidating data from several donors. One explanation could be that
the frequency of HHV-6B-specific T cells in PBMCs is so low as to be only slightly higher
than that of autoreactive T cells. In this scenario, autoreactive T cells, which exist at a
low frequency in all donors, as shown in Fig. 1C (response to mock antigen), would be
coenriched with HHV-6B-reactive cells and react to autologous PBMCs in proliferation
assays, creating high background signals. The triple-AIM selection pathway used does
not result in a pure population of HHV-6B-reactive CD4 T cells. In addition to the
enrichment of autoreactive cells, this could be related to bystander activation of CD4
T cells in PBMCs in response to cytokines present after HHV-6B recall antigen addition.
Triple-AIM sorting also excludes double-AIM-positive T cells; including this compart-
ment at the sorting step would probably capture more HHV-6B-specific clonotypes and
reveal additional antigens, provided that adequate enrichment of specific T cells could
still be achieved.

Knowledge of HHV-6 T-cell specificity may have clinical implications. VST therapies
are emerging as a promising alternative to small-molecule antiviral drugs in the
post-HCT setting, during which nearly half of patients experience HHV-6 reactivation (1,
50). For HHV-6B, two proof-of-concept studies used U11, U14, and U90 (51, 52), and one
study used U54 and U90 (53). However, it is still not clear if these antigens are optimal
for broad applicability. The hierarchy of HHV-6B antigen prevalence provided here
suggested that CD4 T-cell antigens U73, U14, U72, and U95 are among the most
prevalently recognized and may therefore be rational targets in future VST trials,
although further study with a larger sample size would be informative on this point.
U95 may be particularly effective since it is a highly expressed immediate early protein,
similar to U90. The most frequently used VST approach restimulates PBMCs with
ORF-covering peptides and seeks to treat with both CD8 and CD4 T cells. Additional
work is required to determine if the population-prevalent HHV-6 CD4 T-cell antigens
uncovered in the present report are also prominent CD8 T-cell targets.

In summary, the CD4 T-cell response to HHV-6 has been challenging to study in
detail due to the low abundance of the integrated PBMC response. In the present
report, a combination AIM approach has allowed significant enrichment of HHV-6B
polyclonal CD4 T cells from PBMCs, at the possible expense of coenriching autoreactive
CD4 T cells. These cell lines have allowed us to establish a population prevalence
hierarchy of responses in a small population of healthy donors across the entire viral
proteome, including candidate novel ORFs and variants. In addition to confirming the
identity of previously characterized CD4 T-cell antigens, new specificities have been
detected that may prove useful in future efforts to study HHV-6 pathogenesis or
provide immune-based therapies.

MATERIALS AND METHODS
Participants and specimens. Healthy adults were recruited at the University of Washington Virology

Research Clinic. Peripheral venous blood was collected with heparin, and peripheral blood mononuclear
cells (PBMCs) were isolated by Ficoll density gradient centrifugation (54). PBMCs not immediately used
after processing were cryopreserved until use. All donor PBMCs were tested for iciHHV-6B (55) and found
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to be negative. Donors gave informed consent, and all research was conducted according the principles
of the Declaration of Helsinki.

Virus and cell culture. HHV-6B strain Z29 was cultured in SupT1 cells (NIH AIDS Reagent Program)
with RPMI 1640 supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 �g/ml
streptomycin, and 2 mM L-glutamine. Infected cells were periodically cocultured with uninfected SupT1
cells to maintain infection. Whole HHV-6 antigen was prepared by collection of Z29-SupT1 at 4�
cytopathic effect (CPE), sonication, and UV irradiation for 30 min. Control preparations were made from
uninfected SupT1 cells. T-cell stimulation, expansion, and readout assays were performed by using T-cell
medium (TCM) (RPMI 1640 with 5% FBS, 5% human serum, 100 U/ml penicillin, 100 �g/ml streptomycin,
and 2 mM L-glutamine).

Enrichment and expansion of virus-reactive T cells from PBMCs. In a 24-well plate, 7 � 107 PBMCs
were incubated overnight at 5 � 106 cells per well with the HHV-6B-infected SupT1 lysate or mock-
infected lysate (1:100 dilution). To prevent reuptake of CD154 due to ligation of CD40, anti-CD40
antibody (clone HB14; Miltenyi) was also added at 5 �l/ml. Cells were pooled and stained with 7-amino
actinomycin D for viability and fluorochrome-labeled monoclonal antibody (mAb) specific for human
CD3, CD4, CD69, CD137, and CD154 in 100 �l TCM. After two washes, cells were resuspended in 1 ml TCM
and sorted using a FACSAria II instrument (BD Biosciences). After initial gating for live CD3� CD4�

lymphocytes, cells gating positive for CD154, CD69, and CD137 were isolated, as were 5 � 104 live CD3�

CD4� CD154-negative cells (as a negative control). Bulk populations were separately expanded using
irradiated allogeneic PBMCs (3,300 rads) and 1.6 �g/ml of phytohemagglutinin (PHA-P; Remel) in 200 �l
of TCM in a 96-well U-bottom plate. Natural human IL-2 (hIL-2) (32 U/ml; Hemagen) was added on day
2 and maintained for 14 days, typically yielding 7 � 106 to 1 � 107 cells. A portion of these initially
expanded cells was then reexpanded with anti-CD3 mAb OKT3 as the mitogen, a combination of
irradiated allogeneic PBMCs and Epstein-Barr virus (EBV)-transformed B lymphocytes as feeder cells, and
recombinant hIL-2 (56) for an additional 14 to 18 days. This typically yielded a 1,000-fold increase in the
number of T cells, which were cryopreserved in aliquots.

HHV-6B transcriptome analysis and cloning of open reading frames. RNA sequencing and
mass-spectrometry-based confirmation of viral protein expression were carried out on HHV-6B-infected
SupT1 cells as described previously (57, 58). Based on these data and the HHV-6B strain Z29 GenBank
sequence (accession number NC_000898.1), PCR primers were designed to amplify each annotated
HHV-6B ORF and ORFs identified by RNA sequencing as having amino acid sequence disparities with
respect to GenBank annotations (i.e., truncation, extension, and/or altered splicing) or as being entirely
novel potential ORFs (see Table S1 in the supplemental material), here labeled U7A, U17A, U19A, U47A,
U83A, U100A, U100B, and B9A. Total DNA was prepared from HHV-6B-infected SupT1 cells using the
QIAamp DNA blood minikit (Qiagen) cultured-cell protocol. Whenever possible, full-length ORFs were
amplified. Longer ORFs were amplified in fragments with several overlapping amino acids (Table S1).
Where relevant, fragments are labeled fragment A, B, or C in the N- to C-terminal direction. For genes
DR6, U12, U15, U79, and U91, which have predicted introns, total RNA was isolated from HHV-6B-infected
SupT1 cells using the RNeasy minikit (Qiagen) and used to create a cDNA library by priming with random
hexamers, which was used as the PCR template. For intron-containing ORFs, including DR1, U7, U17, and
U66, each exon was amplified from genomic DNA primers designed to encode amino acids overlapping
splice junctions, and fragments were labeled as described above.

For certain HHV-6B ORFs, RNA sequence data revealed discrepancies in splicing patterns or even
translation start and/or stop sites in SupT1 cells vis-à-vis the HHV-6B Z29 NCBI reference genome
(accession number NC_000898.1), and ORFs were amplified to reflect these modifications (57). The
C-terminal end of U8 and the N-terminal end of U7 are conjoined by a splicing event to form one
continuous ORF in the original reading frame, labeled here U7A; primers for these fragments therefore
contained overlapping amino acid codons at the splice junction. RNA sequence data showed deep reads
in the region between U17 and U18, with two clearly spliced-out introns; the region between predicted
start and stop codons is labeled U17A. The C-terminal amino acid codon of U19 was spliced to a
downstream region, thereby deleting the annotated stop codon and adding 15 new amino acid codons
followed by a new stop codon; this modified ORF is labeled U19A. U47 appeared to have a C-terminal
truncation in the RNA sequence data and is labeled U47A. Nearly all transcripts aligning to the U83 ORF
region run in the reverse direction to the currently annotated U83, include a start and stop codon, and
are predicted to encode a protein with 83 amino acid (aa) residues, as described previously (57). In U100,
exons 7 and 8 were not spliced, leaving the intervening intron intact, thereby adding 28 amino acid
residues to the end of exon 7 followed by a stop codon. The resulting altered protein is labeled U100A
here. Exons 8 through 10 were labeled U100B, with a portion of the upstream intron extending to the
first start codon 5= to exon 8.

Primers included 5= adaptor sequences for recombinase-mediated integration of PCR amplicons into
pDONR221 (Invitrogen). HHV-6 sequences were then moved to pDEST203 (57). As an alternative to this
two-step Gateway cloning, some HHV-6 sequences were PCR amplified with flanking restriction endo-
nuclease sites and cloned directly into pDEST203. This included some sequences obtained as synthetic
genes (GeneArt; Invitrogen). Once completed, the entire set of pDEST203 plasmids was pooled, diluted
to 1 ng/�l, shotgun sequenced using Nextera XT tagmentation (59), and aligned to the NCBI reference
sequence for HHV-6B (accession number NC_000898.1).

Intracellular cytokine cytometry. HHV-6B specificity was tested by intracellular cytokine cytometry
(ICC) as previously described (60). For direct ex vivo PBMC tests, 2 � 106 thawed PBMCs were incubated
with mock or HHV-6B antigen (1:100 dilution) and medium or PHA controls. To test bulk-expanded T
cells, 2 � 105 expanded T cells were cocultured overnight with an equal number of autologous PBMCs
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prelabeled with CellTrace violet (CTV; Thermo Fisher), along with the mock or HHV-6B antigen prepa-
ration or PHA as a positive control. Anti-CD28 and anti-CD49d mAbs were added at assay setup, and
brefeldin A was used to reduce cytokine secretion. Cells were stained with Live/Dead Near-IR dye
(Thermo Fisher), permeabilized, and stained with fluorochrome-labeled mAbs specific for CD3 (Miltenyi),
CD4 (Life Technologies), IFN-� (BD Biosciences), and IL-2 (BD Pharmingen). The frequency of HHV-6B-
specific T cells was measured as the percentage of live CD3� CD4� lymphocytes that were positive for
IFN-� and/or IL-2, less mock values. For bulk-expanded responder cells, the CTV-labeled PBMCs used as
APCs were dump gated prior to analysis.

T-cell activation assays. HHV-6B and control microbial genes cloned into pDEST203 were expressed
by E. coli in vitro transcription and translation (IVTT) as described previously (60). Proliferative responses
of bulk-expanded T-cell lines were tested for each IVTT-expressed protein (60, 61). Briefly, in 96-well
U-bottom plates, equal numbers of bulk responder T cells and �-irradiated autologous PBMCs, used as
APCs, were plated in the range of 5 � 104 to 1 � 105 cells per well in duplicate along with each HHV-6B
protein diluted 1:2,000 in a total of 200 �l TCM. Controls included 35 IVTT-expressed P. falciparum
proteins, empty pDEST203, whole HHV-6B antigen, mock antigen, PHA, and TCM only. On the fourth day
after setup, cells were pulsed with 0.5 �Ci of [3H]thymidine per well, and proliferation was measured 6
h later. The statistical cutoff for positive responses was described previously (62, 63). Peptides from
selected HHV-6B ORFs (18 aa long, overlapping by 11 aa) were pooled at 30 or fewer peptides per pool
and tested at a final concentration of 1 �g/ml of each peptide. Individual peptides from reactive pools
were retested at 1 �g/ml. In selected cases, inhibitory mAbs that recognize all known HLA DR, HLA DP,
or HLA DQ allelic variants were included (54). For these blocking assays, responder cells and APCs were
incubated with single peptides and mAb overnight, and T-cell activation was determined by measuring
IFN-� in collected supernatants by an enzyme-linked immunosorbent assay (ELISA) (56). Determination
of HLA restriction was also done by using HLA single-antigen lines (SALs) expressing known HLA class II
heterodimers or their parental cell nonrecombinant cell lines (64). The SALs were cultured in selective
medium and documented as Mycoplasma negative and as positive for surface HLA class II using the same
mAbs used in blocking experiments.

Sequential comparison of confirmed HHV-6B epitopes between herpesviruses. A protein BLAST
search was performed with default settings on each confirmed epitope sequence in Table 1 (after
reversing cysteine substitutions) against all human herpesvirus species, including HSV-1 (taxonomy
identification number [taxid] 10298), HSV-2 (taxid 10310), VZV (taxid 10335), EBV (taxid 10376), HCMV
(taxid 10359), HHV-6A (taxid 32603), HHV-6B (taxid 32604), HHV-7 (taxid 10372), and HHV-8 (taxid 37296).
Comparison to iciHHV-6B was also performed by manually searching a representative genome sequence
(GenBank accession number KY316046.1). All sequence matches with �50% identity to the HHV-6B
epitope are compiled in Table S2.

Data availability. Sequencing reads for the HHV-6B ORFeome are available under BioProject
accession number PRJNA525305.
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