Table 3.
Training Set | Test Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NN | Score | r² | MAE | RMSE | RAE | RRSE | q² | MAE | RMSE | RAE | RRSE |
1 | - | 0.51 | 0.86 | 1.03 | 87 | 68 | - | - | - | - | - |
2 | - | 0.72 | 0.69 | 0.85 | 69 | 72 | - | - | - | - | - |
3 | - | 0.75 | 0.69 | 0.86 | 69 | 72 | - | - | - | - | - |
4 | - | 0.77 | 0.68 | 0.84 | 68 | 70 | - | - | - | - | - |
5 | 0.78 | 0.78 | 0.64 | 0.81 | 65 | 68 | 0.80 | 0.64 | 0.82 | 63 | 66 |
6# | 0.80 | 0.79 | 0.65 | 0.82 | 65 | 68 | 0.85 | 0.60 | 0.75 | 59 | 61 |
7 | 0.81 | 0.81 | 0.57 | 0.73 | 56 | 62 | 0.81 | 0.59 | 0.76 | 58 | 62 |
8 | 0.76 | 0.79 | 0.68 | 0.85 | 68 | 71 | 0.77 | 0.69 | 0.90 | 68 | 73 |
9 | 0.80 | 0.80 | 0.65 | 0.82 | 65 | 68 | 0.82 | 0.64 | 0.81 | 63 | 66 |
10 | 0.77 | 0.82 | 0.58 | 0.75 | 58 | 63 | 0.79 | 0.62 | 0.83 | 61 | 67 |
Note: NN = number of neurons in the hidden layer; r2 = correlation coefficient for the training set; q2 = correlation coefficient for the test set (r2pred); RMSE = root mean square error; MAE = mean absolute error; RAE = relative absolute error; RRSE = root relative squared error; score = (1 − |(r2 − q2)|) × q2. #Standard NN.