Skip to main content
. 2019 Jun 8;20(11):2801. doi: 10.3390/ijms20112801

Table 3.

Performance of the ANNs as a function of the number of neurons in the hidden layer.

Training Set Test Set
NN Score r² MAE RMSE RAE RRSE q² MAE RMSE RAE RRSE
1 - 0.51 0.86 1.03 87 68 - - - - -
2 - 0.72 0.69 0.85 69 72 - - - - -
3 - 0.75 0.69 0.86 69 72 - - - - -
4 - 0.77 0.68 0.84 68 70 - - - - -
5 0.78 0.78 0.64 0.81 65 68 0.80 0.64 0.82 63 66
6# 0.80 0.79 0.65 0.82 65 68 0.85 0.60 0.75 59 61
7 0.81 0.81 0.57 0.73 56 62 0.81 0.59 0.76 58 62
8 0.76 0.79 0.68 0.85 68 71 0.77 0.69 0.90 68 73
9 0.80 0.80 0.65 0.82 65 68 0.82 0.64 0.81 63 66
10 0.77 0.82 0.58 0.75 58 63 0.79 0.62 0.83 61 67

Note: NN = number of neurons in the hidden layer; r2 = correlation coefficient for the training set; q2 = correlation coefficient for the test set (r2pred); RMSE = root mean square error; MAE = mean absolute error; RAE = relative absolute error; RRSE = root relative squared error; score = (1 − |(r2q2)|) × q2. #Standard NN.