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Abstract

We propose a pairwise and readily parallelizable SASA-based nonpolar solvation approach for 

protein simulations, inspired by our previous pairwise GB polar solvation model development. In 

this work, we developed a novel function to estimate the atomic and molecular SASAs of proteins, 

which results in comparable accuracy as the LCPO algorithm in reproducing numerical 

icosahedral-based SASA values. Implemented in Amber software and tested on consumer GPUs, 

our pwSASA method reasonably reproduces LCPO simulation results, but accelerates MD 

simulations up to 30 times compared to the LCPO implementation, which is greatly desirable for 

protein simulations facing sampling challenges. The value of incorporating the nonpolar term in 

implicit solvent simulations is explored on a peptide fragment containing the hydrophobic core of 

HP36, and evaluating thermal stability profiles of four small proteins.

Graphical Abstract

1. INTRODUCTION

Biomolecules such as proteins, carbohydrates, and nucleic acids function in an aqueous 

environment. Biophysical study of their properties and functions requires an accurate 

description of their solvation and desolvation processes, i.e. the binding and removal of 
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water1 or solvent. To study how proteins fold or bind, the solvation free energy changes 

(△Gsol) associated with solute-solvent interactions and water reassembly are essential. In 

biomolecular modeling, these water molecules can be represented explicitly or implicitly. 

Explicit solvent models, which compute all the pairwise interactions over all solute and 

solvent atoms and are thus more detailed and complete in theory, however, can be limited in 

usage, as water atoms dominate the calculations and friction slows the sampling of large 

conformational changes2. As an attractive alternative, implicit solvent models possess high 

efficiency in sampling, which has promoted their wide applications in protein folding3–4, 

structure prediction5, protein design6 and refinement7 using Molecular Dynamics (MD) 

simulations, binding free energy estimations such as Monte Carlo (MC) simulations8, 

molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) and molecular 

mechanics/generalized Born surface area (MM/GBSA)9.

In implicit solvent models, the solvation process is put in the context of a thermodynamic 

cycle10 (Figure 1), first solvating the uncharged solute by creating and accommodating a 

cavity (nonpolar term, △Gnp) and then turning the charges back on by modeling water as a 

continuum high dielectric (polar term, △Gpol). The polar, or electrostatic part, is typically 

modeled with Poisson-Boltzmann (PB)11 or Generalized Born (GB)12 equations. The 

nonpolar part is often further decomposed into cavity (△Gcav ) and van der Waals (△Gvdw) 

contributions13. The cavity term tends to be unfavorable, while the van der Waals interaction 

with solvent is typically favorable, thus some cancellation between these contributions gives 

rise to the overall △Gnp. Both △Gcav and △Gvdw are thought to be proportional to the 

average number of waters making direct contact with solute (i.e. first solvation shell 

approximation)14. Thus the nonpolar term is often estimated by a SASA-based method12, 

although it has been pointed out that SASA is not accurately proportional to solvation 

energies for small alkane solutes15–16, and the volume term may be more important16–17. 

While SASA-based implicit solvent incorrectly predicted association stabilities of small 

molecule amino acid analogues when compared to explicit solvent results14, 18, SASA-based 

nonpolar solvation has been shown to be useful for accurate prediction of native-like protein 

conformations19 and protein-ligand binding affinities20–21 such as in MM/PBSA and MM/

GBSA.

Although PB solvation has been used in MD simulations23-25, GB is typically chosen for 

MD due to the reduced computational complexity of calculating solvation energies and the 

associated derivatives. The use of GB in MD applications has also gained in popularity in 

recent years due to two factors: improved accuracy in simple GB models, and their efficient 

implementation on fast general purpose Graphics Processing Units (GPUs)26. These GB 

models27-29 are often trained to reproduce the PB energies, along with the PB-based 

“perfect” effective radii30, employing additive and pairwise analytical energies and 

derivatives. This pairwise descreening algorithm31 serves as an ideal platform for GPU 

parallelization26. When the same instruction is executed for every atom pair in the protein 

system, massively efficient GPU cores can compute the desired values simultaneously. 

Compared to parallel performance of CPU implementation with all double precision 

calculations, a single GPU using the mixed precision model32 can achieve a factor of 2-5 

speed up compared to large numbers of CPU cores, as CPU scaling plateaus long before it 

reaches the GPU performance26.
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Although much recent effort has been devoted to improving the polar solvation contribution, 

less attention has been paid to the nonpolar solvation term. This is likely because of its small 

magnitude relative to the polar part, questionable accuracy of simple nonpolar models, and 

significant computational cost. Its two sub-terms are of opposite signs in free energy change, 

thus this term is often treated as negligible; cavity-creation loses entropy, while formation of 

attractive solute-solvent interaction gains enthalpy15. Compared to a solvation energy of 

−5.0 kcal/mol for a polar molecule, this number is only 1.8 kcal/mol for a nonpolar molecule 

of similar composition (e.g. ethanol vs. ethane)33. In other reported literature, even if 

nonpolar contributions were considered, the implicit solvent accuracy was not improved 

with respect to experimental or explicit solvent results34. Even with demonstrated 

optimizations16, 22, 35–36, the cavity sub-term, particularly the SASA, remains a major 

resource demanding calculation. Moreover, in contrast to the fact that all the other energy 

terms can be computed on GPUs in the most recent Amber implementation37, the SASA-

based nonpolar approaches can only be calculated on CPUs, producing a bottleneck that 

severely limits sampling in simulations.

Our motivation to revisit the nonpolar solvation aspect arose from our recent study of protein 

folding simulations using only polar solvation3. Although we could sample folding for 

proteins up to nearly 100 amino acids in standard MD on GPUs using only the polar 

solvation term (GB-neck227, 29), we observed that the proteins tested in our folding studies3 

and Perez et al.’s structure predictions5 suffered from poor folding stability compared to 

experiment. In some of the small proteins (CLN025, Trp-cage, Villin HP36 etc.), even 

though folding to native conformations is accessible from only sequence data to as close as 1 

Å, and correct trends in the melting behavior could be reproduced3, 5, simulated melting 

temperatures (Tms) were usually off by tens of Kelvin (see Results). We hypothesized3 that 

this instability might be a result of neglecting nonpolar solvation in our model. It was also 

suggested by Chen and Brooks14 that a fine tuning non-polar solvation model might be 

helpful or sufficient for proteins such as HP36. Shell and Dill et al. also suggested38 that 

more studies are needed to explore the impact of surface area contributions to simulated 

protein stability. Here, we investigate and quantify the effect of a nonpolar term on protein 

stability and conformational equilibria in MD with the same protein force field39 and GB 

model27 that we used for the protein folding study3. Moreover, we study the extent to which 

a simple SASA-based approach could improve reproduction of experimentally determined 

properties such as folding free energy.

In our opinion, an analytical, GPU-compatible nonpolar solvation energy term currently is 

needed before we can carry out thorough investigations on the impact of nonpolar term in 

MD of larger proteins. Numerical approaches of Lee and Richards40, and other geometric 

constructions41–42, are computationally costly and not suitable for our purpose, since folding 

requires many microseconds of MD that remain intractable using these existing methods. 

Analytical approximations expressed as a function of interatomic distances are more 

attractive. Wodak and Janin43 developed the first algorithm exploiting a probabilistic method 

in which atoms or residues are assumed to randomly distributed in space using excluded 

volumes; the probability that a surface is accessible on one sphere is the product of 

individual probabilities for all pairwise intersecting spheres. Negative SSA values were 

forced to be zero. Hasel and Still et al.44 modified this approach for atomic surface areas. 
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Dynerman et al.45 implemented this algorithm on GPU and refit the parameters to calculate 

SASA changes in protein docking studies. However, their approach is not ideal for MD 

simulations because when atom pairs are considered, the derivatives are not mutually of the 

same value and are not pairwise additive. Weiser and Still et al.46 derived an even faster 

formula approximating atomic surfaces from linear combinations of pairwise overlaps 

(LCPO), which is the current nonpolar implementation (gbsa=1) for Amber simulations. 

Along with another pairwise algorithm developed by Vasilyev and Purisima47, it has been 

implemented on CPUs for MD simulations. These are not optimal for our purpose because 

we seek for a simple and fast approximation that can be embedded in the same code loops as 

the other nonbonded energy terms in the current Amber GPU-implementation26, 37, without 

the need of additional, nested loops for nonpolar term evaluations. Richmond48 and later 

Wesson and Eisenberg49–50 provided area derivatives with respect to the atomic positions, 

but they are not pairwise additive and also not suitable for fast parallel GPU implementation. 

Different approaches taken by Schaefer and Karplus et al.51 make use of the effective Born 

radii calculated in GB equations, which is not independent of polar term used in solvation. It 

may also be beneficial to have a method to estimate SASA without the need for the full GB 

polar solvation calculation, for use in SASA-based methods that also estimate the polar 

solvation by using atom type specific surface tensions, or atomic solvation parameters 

(ASP), such used in the work of Eisenberg et al.52 and some preceding work49, 53.

Here, we explore a simple pairwise approach that would be amenable to fast GPU 

calculations in situ. Similar to previous work by Guvench et al., our pwSASA algorithm is 

designed to estimate SASA from short-range atom pair distances. For each atom, the SASA 

equals a maximum value, subtracting the sum of the areas that are buried or shielded due to 

other neighboring atoms preventing waters from accessing to the atom of interest. The ideal 

shielding function would re-use terms that are already being calculated for the non-solvation 

energies and forces. In principle, this could provide a SASA estimate with nearly no 

additional computational cost. Our approach is inspired by Vasilyev and Purisima47, who 

employed a recursive Lorentz function to compute the central atom’s SASA from distances 

to all other atoms, and Guvench et al.54, who used a 4th-order polynomial using pairwise 

distance data. We adhere to a single function, but without recursive iteration complexity, to 

maintain its pairwise evaluation and minimal burden in speed. A monotonic and 

continuously differential function is chosen to best represent the pairwise burial term. 

Similar to Guvench et al.54, we utilize the unique geometry environments for different 

protein atoms by defining specific atom types for parameterization. These atom types 

account for change in SASA due to bonded atoms, and also help us incorporate non-pairwise 

contributions in a mean-field manner. In our model, each pwSASA type possesses one 

parameter representing the base maximum SASA value and another two parameters 

describing how much this atom can shield other atoms’ SASA and how this shielding profile 

changes over distance. Trained to reproduce numerical SASA values for all the atoms in a 

novel training set of multiple peptides spanning all 20 amino acids, we validate the 90 

resulting parameters on a test set of proteins. In addition to comparing SASA profiles for 

LCPO and our new method, we also compared the ensembles sampled in MD simulations 

using both SASA calculation methods, as well as simulations without nonpolar solvation.
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In the present work, we use the SASA to estimate only △Gnp, thus a reasonable first 

approximation is that the same surface tension could be used for all atoms. Since a variety of 

surface tension values have been suggested from different training sets12, 55–56, we further 

calibrated the surface tension that best reproduces explicit solvent data in a model system 

with precisely controlled set-up. In this model system (HC16, a 16-residue hydrophobic core 

fragment of HP36), the surface tension was empirically adjusted to correct the discrepancy 

between GB and TIP3P simulation results. The optimized surface tension was then used for 

GB/SA simulations on additional systems.

Overall, we present a fast algorithm for calculating SASA with parameters optimized against 

diverse protein ensembles, implement the atomic SASA calculations in Amber software on 

consumer GPUs, and apply our GPU-encoded GB/SA method on four proteins, CLN025, 

Trp-cage tc5b, Homeodomain variant and HP36, to explore our hypothesis that 

incorporation of a nonpolar term could improve the predicted protein stabilities. We 

compared well-converged ensembles obtained using a consistent protocol except for the 

inclusion or omission of the nonpolar solvation energy. Our findings suggest a potentially 

valuable role of this inexpensive nonpolar term in the accuracy of our computational model, 

particularly in improving the ability to predict native-like structures using the GB solvent 

model in microsecond-timescale implicit solvent simulations.

2. METHODS

2.1 Theory of nonpolar solvation

A SASA-based nonpolar solvation model12 was used, where the free energy is approximated 

by taking the product of the surface tension scaling factor (γ) and the Solvent Accessible 

Surface Area (SASA).

ΔGnp = γ SASA (1)

2.2 SASA estimations by ICOSA and LCPO algorithm

ICOSA40, 57 surface area (gbsa=2 in Amber) SASA is a numerical method that recursively 

rolls a 1.4 Å radius water probe on the van der Waals surface of the molecule, starting from 

an icosahedron. The current Amber implementation does not include derivatives of the 

SASA, so it is not possible to use in MD where forces are required.

LCPO46 (Linear Combinations of Pairwise Overlaps, gbsa=1 in Amber) is the algorithm 

used for GB/SA MD simulations in recent Amber versions. It considers the neighbor list of a 

central atom and subtracts the pairwise overlaps from its isolated sphere area. In practice, 

this is a three-body approach, as not only the overlaps between the central atom and its 

neighbor atoms are calculated, but also the overlaps of the neighbors with each other. This 

adds to the computational complexity compared to our desired (non-recursive pairwise) 

approach.
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2.3 pwSASA: the proposed fast pairwise analytical SASA estimation algorithm

2.3.1 Physical Rationale—Our first step is to assume that the SASA of the molecule 

can be approximated by considering only the heavy (non-H) atoms, and that H atoms can 

also be excluded in the calculation of solvent shielding of the heavy atoms. Estimating 

SASA just for heavy atoms results in a substantial reduction of atom pairs and 

computational cost, which also has been exploited in LCPO46 and other algorithms47.

The SASA of each atom in a protein configuration is its maximum surface area (termed 

max_SASAi) subtracting the patches shielded by close neighbor atoms (termed 

shielded_SASAi):

SASAi = max−SASAi − shielded −SASAi (2)

The simplest (although impractical) case is solvation of a single atom; both the SASAi and 

max_SASAi for this atom are the surface area of this isolated sphere. In the context of 

proteins, all atoms have at least one covalent bond, and thus atoms are never exposed 

entirely to solvent. We decided to handle the shielding by covalent and non-covalent 

neighbors differently, since the covalent neighbors (bonds and angles) likely have larger 

overlaps and closer distances than those sampled by purely non-bonded neighbors. This 

simplifies our construction of a function to estimate the shielding of an atom based on the 

distance of each neighbor. We also assume that the shielding by covalent neighbors (1–2 and 

1–3 neighbors) is approximately independent of conformation, and thus max_SASAi also is 

independent of the specific conformation and incorporates the shielding of the 1–2 and 1–3 

pairs. Therefore, the max_SASAi absorbs any shielding from covalent neighbors and 

differences in accessibility due to hybridization variants, and implicitly accounts for multi-

body effects such as those from overlaps between covalent neighbors.

In this context, what is an atomic max_SASAi in proteins? The answer is that it depends on 

the local geometry of an atom, including atoms that are covalently linked (bonds, angles 

etc.). To describe the protein local geometries by defining 30 pwSASA atom types with each 

representing one specific local geometry of an atom found in proteins (see the detailed 

classifications in Supporting Info Table S1 and parameters in Table S2). Each element (C, N, 

O, S) is divided first into different hybridization states, then further divided based on the 

number and type of bonded heavy atoms. Some types are subsequently divided further to 

improve quality of fitting. 30 total atom types, termed “pwSASA types”, were used to 

describe all the protein local geometries. Guvench et al. also used atom types in their 

procedure54, with a similar but not identical approach to dividing atoms into 26 types (for 

example, H atoms were included in that work but are not here).

Each pwSASA atom type has an associated constant max_SASAi that is calculated after the 

fitting of the second term, shielded_SASAi (i.e. the pairwise burial term, or pairwise 

shielding effect on each other’s accessible surface area). To adhere to the pairwise 

decomposability, we make two assumptions that (1) the atomic surface area shielded by all 

other atoms is a sum of pairwise effect, which only iterates once for all the i,j pairs, when 
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atom j iterates over remaining atoms with respect to atom i; (2) this pairwise effect could be 

represented as a single function of distance separating this atom pair.

shielded−SASAi = ∑
j

shielded−SASAi, j (3)

shielded −SASAi, j = f Ri, j (4)

As a result, shielded_SASAi for a specific atom pair i, j contributes the same SASA 

reduction to both atoms i and j, with symmetric forces. But as every atom in a protein 

possesses its specific local geometry (as defined by pwSASA types and involving different 

neighbor atoms), iteratively evaluating all the pairwise atoms results in a unique sum for 

each central atom in its specific conformation of the protein.

In the next section, we focus on the considerations of the functional form we selected, and 

the parameters used for pairwise burial term evaluations.

2.3.2 Formula and parameterization design—Given the basic idea elaborated in the 

physical rationale, to calculate atomic SASA, A term shielded_SASAi is computed from 

summing pairwise burial terms shielded_SASAi,j considering all close neighbor atoms 

(Equations 2, 3). The pairwise shielded_SASAi,j is assumed to be a function only of 

pairwise distances (Equations 4) and is conceptually physical. As depicted in Figure 2A, it 

varies as the two atoms are apart at different distances: when the distance is beyond a certain 

cutoff, water can traverse the gap and the SASAs are not shielded by each other; when the 

distance gets smaller, the SASA shielding increases, until the atom fully displaces solvent 

and thus the shielded SASA reaches its maximum at contact distance. Therefore, a sigmoid-

like function with pairwise combinatory parameters is desirable.

Many options for a sigmoidal form are possible, including adapting some of the values 

calculated for the GB polar term for the nonpolar calculation51. Guvench et al. used 4th-

order polynomial fitting to estimate screening contributions.54 Our choice of formula is 

inspired by the Lennard-Jones function (depicted in gray in Figure 2B) that is already being 

calculated during the simulation, further minimizing the additional computational overhead. 

The curve is monotonic and continuously differential at all points, and importantly, the 

pairwise approach of Lennard-Jones parameters can be adapted to generate pair-specific 

shielded_SASAi,j parameters. Some transformations (a reflection of the Lennard-Jones 

curve over the y-axis followed by an up/right shift) result in a curve that fits our conceptual 

goals (black curve in Figure 2B). When the distance of an atom pair Ri,j exceeds a certain 

point, the resulting shielded_SASAi,j is zero; as Ri,j gets smaller, the burial term gets larger 

before it reaches a plateau and sensitivity to distance decreases as water is fully displaced. 

The cutoffi,j values are also taken in a pairwise combinatory way (Equation 8).
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The stepwise derivation of the pairwise burial term shielded_SASAi,j is provided in 

Equations S1-S6, with the final equation as a function of Ri,j shown below:

shielded −SASAi, j =

εi, j

+εi, j,
0,

n
m − n

1 +
Cuto f f i, j − Ri, j

σi, j
m

−
m

m − n

1 +
Cuto f f i, j − Ri, j

σi, j
n

Ri, j < Cuto f f i, j

Ri, j ≥ Cuto f f i, j

(5)

where σi,j and εi,j are calculated from pwSASA-type specific parameters discussed below. 

The values of m and n are also discussed below. Cutoffi,j is a pairwise constant calculated 

from atomic radii. We note that the function and its derivatives with respect to atomic 

coordinates are continuous across the cutoff point, differing from the Guvench et al. work 

where a force discontinuity is present at the cutoff point.54 We evaluated energy 

conservation with and without the pwSASA energy term, and found that addition of 

pwSASA had neglible impact on the energy conservation (Figure S4; additional details 

provided in Supporting Information).

For each atom of a given pwSASA type, two parameters σi, and εi, are needed to describe its 

ability to shield other atoms (hence 60 total). For each atom pair, we use the Lorentz-

Berthelot combination rules to obtain the σi,j and εi,j values:

σi, j = σi + σ j (6)

εi, j = εiε j (7)

The cutoff distance is employed to ensure that when two atoms are far enough apart (Ri,j ≥ 
Cutoffi,j) they do not contribute to each other’s shielded_SASA. This eliminates the 

repulsive portion originally present in the Lennard-Jones-type function (dashed lines in 

Figure 2B) and ensures force continuity through the cutoff distance. Cutoff distances are the 

sum of the atomic radius and the water probe radius (1.4 Å). The same atomic radii for four 

elements (C 1.7 Å, O 1.5 A, N 1.55 Å and S 1.8 Å) were used both here and in ICOSA. 

Different radii were used with LCPO (C 1.7 Å, O 1.6 Å, N 1.65 Å and S 1.9 Å) to be 

consistent with the values used during the original training of the 54 LCPO parameters58.
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Cuto f f i, j = Cuto f f i + Cuto f f j (8)

Cuto f f i = Atom_Radiusi + 1.4Å (9)

The exponents m and n determine the steepness of the shielded_SASi,j transition as the two 

atoms approach. Values for n were tested among 2, 4, 6 and 8; n = 4 gave the best atomic 

SASA correlation (data not shown). Correlation was less affected by the choice of m when 

10 and 12 were used for comparison, so m = 10 was initially used in the optimization. As 

other values for m and n did not improve the accuracy of the algorithm (data not shown), and 

parameterizations of σi and εi values also affect the depth and steepness of the pairwise 

curves, we kept m = 10 and n = 4 for all atom pairs.

2.3.3 Training set and Fitting strategy—The 60 parameters for pwSASA atom type 

specific shielding were fit against ICOSA SASAs (also calculated using only heavy atoms) 

on a training set of 10 peptides. To cover a broad spectrum of atomic environments and 

possible atomic pairwise contacts and extents of burial, we designed a set of 10 sequences 

(Table S3); each is a scrambled sequence made of all 20 natural amino acids (using all 3 

protonation variants for the His side chain, thus each peptide was 22 amino acids in length). 

Together, conformational ensembles for these scrambled peptides provide significant 

statistics for atomic SASA ranges, and they encompass the distributions of pairwise distance 

distributions expected in real proteins (Figure S2).

For each sequence, 50 geometries of diverse structures were included in the training set 

ensembles. Ensembles were generated as follows: initial conformations were generated from 

fully extended structures constructed using tleap, with 1000 steps of minimization to ensure 

reasonable initial geometries. This was followed by 1 μs of unrestrained MD simulation at 

300K (using a Langevin thermostat, the ff14SBonlysc39 force field in GB-Neck227 solvent 

without SA term) producing 5000 conformations equally spaced in time. The cpptraj 
program59 was used to separate each trajectory into 50 clusters using the hierarchical 

agglomerative algorithm, based on all 22 Cα atoms. These 50 representative structures from 

each peptide sequence comprised the training set ensembles. Table S3 shows the 

representative structure of the most populated cluster for each peptide. We calculated 

reference atomic SASA values for each heavy atom in each structure using a modified 

version of sander (where Atom_Radius for hydrogen was set to zero in the icosa subroutine) 

in Amber 1637.

Fitting of parameters was done as follows (for further details, see Supporting Information). 

Initial guesses for all 60 parameters were randomly generated, then were optimized using 

the l_bfgs_b algorithm60 in the Python Scipy package61. The objective function used for 

optimization was:
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score = ∑
peptide

10
∑

atom −i

367
∑

f rame pair

250
ΔSASAatom −i

icosa − ΔSASAatom−i
f itted 2

(10)

where:

ΔSASAatom −i
method = SASA f rame−a

method − SASA f rame−b
method (11)

where frame_a and frame_b represent two different conformations from the training set for 

that peptide. As Vasilyev and Purisima pointed out47, the change in the accessible surface 

area is often of more interest than the absolute value. In addition, as max_SASAi is a 

constant for one specific pwSASA type, fitting to ΔSASAi results in isolation of the 30 

max_SASAi parameters since they cancel in the target ΔSASAi values. For these reasons, 

we fit the 30 sets of σi and εi parameters to the SASA difference between pairs of 

conformations.

Instead of iterating over all combinations of conformation pairs, we sorted the atomic SASA 

of all 500 representatives, picked the 2 conformations with largest and smallest SASA as the 

first pair, then the second largest and the second smallest as the second pair, and so on. The 

reasons not to include all pairs of 500 conformations are (1) all 250,000 conformation pairs 

per atom for one evaluation of optimization is more time-consuming, (2) many data are 

redundant if each conformation to every other conformation is included, and (3) most 

importantly, most of the SASA differences are quite small if all conformation pairs are 

included, and the squared differences would weigh even less in the optimization function 

(Equation 10), resulting in inefficient data use. In the end, we adopted a sorted pair scheme 

that included 250 pairs of conformations for each atom in optimizations, and a flatter 

distribution of SASA difference values compared to the more costly all pairs scheme (Figure 

S3).

As discussed above, fitting the changes in SASA results in cancellation of the max_SASAi 

in the scoring function. Calculating the 30 max_SASAi values was done after optimizing the 

60 σi and εi values. For each SASA type, the max_SASA was obtained by taking the 

arithmetic average of the difference between the icosahedral SASA and the calculated 

shielded_SASA, over all atoms of that SASA type:

max−SASAi = 1
N ∑

peptide

10
∑

con f ormations

50
∑
typei

30
SASAi

icosa − shielded−SASAi (12)

where N equals to the total number of atoms of that pwSASA type.
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2.3.4 Test set—18 proteins were used as a test set to validate SASA estimation. This set 

of proteins of diverse topologies ranging from 10 to 92 amino acids corresponds to the set 

we previously used for ab initio protein folding3. The structural ensembles for the test set 

were extracted from the protein folding trajectories in that work to get a set of structures 

spanning diverse atomic and molecular SASA values to evaluate the new pairwise model. 

The model system HC16 was also included. Reference data were calculated for each 

structure using the ICOSA and LCPO algorithms.

2.4 Simulated protein systems

2.4.1 HC16 with helical restraints—HC16 (16-residues with ACE and NHE caps, 

with sequence DEDFKAVFGMTRSAFA) consists of the hydrophobic core of HP21 (a 

Villin headpiece HP36 fragment). HP21 was reported to transiently adopt a native-like 

conformation similar to that in full-length HP3662, retaining the core of three phenylalanine 

residues, Phe47, Phe51, and Phe58 (we adopt the widely used numbering of residues derived 

from intact Villin headpiece). HC16 retains the structured region of HP21.

To facilitate obtaining converged data in explicit solvent, and also to maximally isolate the 

difference between simulations to the presence or absence of nonpolar solvation, we 

restrained 7 hydrogen bonds in the backbone of HC16 with 50 kcal/(mol Å2) force constant: 

ace.O-Phe47.H (1.94 Å), Asp44.O-Lys48.H (1.95 Å), Glu45.O-Ala49.H (2.41 Å), Phe47.O-

Val50.H (1.87 Å), Thr54.O-Phe58.H (1.67 Å), Arg55.O-Ala59.H (2.24 Å), Ala57.O-nhe.H 

(2.07 Å). The distances for the restraints (listed respectively in the parentheses and depicted 

in Figure 3A) were selected as those present in the NMR structure63 of HP36. The HC16 

model system is precisely controlled by setting the nonpolar term as the single variable in 

benchmark simulations; we hypothesize that when the two helices in HC16 are rigorously 

restrained to the secondary structures adopted in folded conformations, the thermodynamic 

stability in hydrophobic core formation and breakdown is dominated by the effectiveness of 

nonpolar term. Restraining the helices has the double benefit of (1) simplifying sampling in 

explicit solvent (still highly challenging to fully converge for 16 amino acids), and (2) 

reducing the potential influence of differences in secondary structure propensity from the 

polar portion of the implicit/explicit solvent64 (although we note that the GBneck2 model 

used here has excellent agreement with TIP3P in this respect27).

2.4.2 Unrestrained Cln025, Trp-cage, HP36 and Homeodomain—Chignolin 

variant CLN025 is a 10-residue mini-protein with sequence YYDPETGTWY. CLN025 

adopts a stable hairpin conformation, determined by both crystallography (PDB code: 

5AWL65) and aqueous state NMR (PDB code: 2RVD65).

Trp-cage variant tc5b is a 20-residue mini-protein with sequence 

NLYIQWLKDGGPSSGRPPPS. Designed and solved via NMR (PDB code: 1L2Y66) in 

2002, it is designated as the ‘Trp-cage’ motif because the burial of a hydrophobic 

Tryptophan side chain is thought to be a driving force of its folding. It contains secondary 

structure of an α-helix, a short 310-helix and the Trp indole ring encapsulated in a cluster of 

Pro rings.
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HP36 is the naturally found 36-residue Villin headpiece subdomain with a full sequence 

MLSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLF. It is recognized to fold into 

a compact native state with three α-helices as solved by NMR (PDB code: 1VII63).

Homeodomain is a 52-residue computationally re-designed variant of Drosophila 

melanogaster engrailed homeodomain, with sequence 

MKQWSENVEEKLKEFVKRHδQRITQEELHδ

QYAQRLGLNEEAIRQFFEEFEQRK. The NMR-solved native structure (PDB code:

2P6J67) is thermally stable, and like HP36 consists of three a-helices but with a different 

overall fold.

Experimental melting curves for CLN02565, Trp-cage66 and HP3668 were obtained from CD 

experiments. The melting temperature of the Homeodomain variant was measured from 

CD67. All 4 systems were previously studied in our ab initio folding experiments3 using the 

same force field and solvent model used here, providing an excellent reference to quantify 

the possible improvement by addition of a nonpolar solvation term.

2.5 MD simulation and analysis details

2.5.1 Explicit solvent simulations of restrained HC16—Helical distance restraints 

described in 2.4.1 were applied to the HC16 system in explicit solvent simulations. Two sets 

of simulations were initiated from two conformations: one “restrained unfolded” and the 

other as observed in HP36 NMR structure. The “restrained unfolded” conformation was 

generated from a short high-temperature MD simulation starting from the NMR structure; 

after this 1 ns short MD run at 500K with chirality and helical distance restraints, the 

conformation of maximal end-to-end distance (25.9 Å vs. 16.0 Å as in NMR structure) was 

equilibrated with helical restraints at 300K as the “restrained unfolded” structure. HC16 was 

parameterized in ff14SBonlysc39 and solvated with 2187 TIP3P69 water molecules in a 

truncated octahedral periodic box. The distance from solute to the edge of the box was at 

least 9 Å for the “restrained unfolded” structure, and increased to 11.061 Å for the NMR 

structure so that the total number of atoms was equivalent for the two simulations. For the 

equilibration, 10000 steps of energy minimization were first done with 100 kcal/(mol Å2) 

positional restraints on all heavy atoms, followed by 100 ps of MD heating from 100 to 

300K at constant volume. Next, 100 ps and 250 ps of constant pressure MD simulations 

were done with 100 and 10 kcal/(mol Å2) force constant, respectively. Another 10000 steps 

of minimization with backbone positional restraints of 10 kcal/(mol Å2) were followed by 

100 ps of MD simulation at constant pressure and temperature. Then three 100 ps 

simulations (with 1, 0.1, 0 kcal/(mol Å2) backbone restraints, respectively) were done with 

helical restraints as described in 2.4.1. The helical restraints were maintained throughout the 

production runs. Replica Exchange Molecular Dynamics (REMD) simulations were 

performed to help overcome viscosity barriers in explicit solvent, using 32 replicas in the 

NVT ensemble; 8.0 Â was used as the nonbonded direct space cutoff; Langevin dynamics 

with 1 ps−1 collision frequency was used; thermostat temperatures ranged from 294.4 K to 

394.4 K (the full temperature ladder is reported in Table S5). Each replica was simulated for 

> 2.6 μs, giving a cumulative 83 μs of simulation time and requiring ~15 days on Tesla 
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K20X using the Amber 16 GPU (CUDA) version of PMEMD. The PMF profile at 300K was 

calculated with the temperature-biased weighted histogram analysis method (TWHAM)70.

2.5.2 GB and GB/SA simulations—SHAKE constraints71 were applied on all bonds 

involving hydrogen. Langevin dynamics used 1 ps−1 collision frequency (ntt=3) and 4 fs 

time step via hydrogen mass repartitioning (following the published protocol72 in which 

masses of H atoms are scaled by a factor of 3, with the extra mass being subtracted from that 

of the bonded heavy atom).

Restrained HC16 model system.: Restrained HC16 parameterized in ff14SBonlysc39 was 

simulated in GBNeck2 (igb=8) with mbondi3 radii27. GB simulations without nonpolar 

solvation used gbsa=0. Two runs of Langevin dynamics simulations starting from the two 

conformations were run at 300K, each for 16 μs. Cluster analysis comparing pairwise 

RMSD between structures was performed on the last 8 μs of simulations (2 runs of 8000 

frames, 16000 frames in total). The hierarchical agglomerative algorithm in cpptraj 
program59 was used for clustering, based on all 16 Ca atoms at a 2 Å cutoff.

REMD was used to enhance the sampling efficiency for all GB/SA simulations since 

compact conformations were stabilized relative to unfolded states, and simulations at 300K 

sampled high RMSD conformations too rarely for precise quantification of stability. In 

Amber, gbsa=1 was used for LCPO algorithm and gbsa=3 was used for our new pairwise 

model. Surface tension values (surften flag) of 5, 7, 10 and 12 cal/(mol Å2) were tested. For 

each surface tension, two production runs starting from the “restrained unfolded” and NMR 

structures were simulated to 4 μs per replica of REMD with 6 replicas to obtain well-

converged data; thermostat temperatures ranged from 279.5 K to 397.9 K (see Table S5). It 

took > 60 days for GB/(LCPO)SA to generate 4 μs of simulations on 4 cpu cores for each 

replica, while 4 days were sufficient to collect the same amount of data for GB/

(pairwise)SA, on 1 GXT680 GPU for each replica.

PMF structure equilibrium profiles were calculated using a collective variable of RMSD of 

all Cα atoms, against native structure as in HP36. This can be interpreted as the 

reconstructed free energy landscape projection onto the RMSD space. We first 

histogrammed the RMSD values for all sampled structures at 300 K (either directly from 

MD simulations running at 300 K or extracting 300 K trajectories from REMD simulations), 

using a bin size of 0.1, in the range 0–7 Å. We then defined the relative free energy for each 

bin, using Equation 13:

ΔGi = − RTlog
Ni
N (13)

where R is the gas constant (1.9858775×10−3 kcal-K−1-mol−1), T is 300 K, and N is the 

largest bin population. The error bars on PMF plots reflect the absolute deviation of free 

energies for each bin calculated from the two independent simulations starting from different 

conformations.
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Unrestrained proteins.: CLN025, Trp-cage, HP36 and Homeodomain variant were 

simulated without restraints in REMD, employing ff14SBonlysc and GBNeck2 with 

mbondi3 radii; both LCPO and our pairwise SA were used in separate simulations. Surface 

tension was 7 cal/(mol Å2) unless otherwise specified. For each system, two production runs 

starting from fully extended or experimental structure were simulated. For CLN025, 6 

replicas (252.3 K – 389.1 K, see Table S5) REMD were done for 1.3 μs in GB, 1.5 μs in 

LCPO and 8 μs in pairwise SASA. A backbone RMSD cutoff of 2.2 Å was used for 

calculating fraction of folded, consistent with our previous study3. For Trp-cage, 8 replicas 

(247.7 K – 387.3 K, see Table S5) REMD were simulated for 1.7 μs in GB, 1.4 μs in LCPO 

and 4 μs in pairwise SASA. A backbone RMSD cutoff of 2.0 Å was used for calculating 

fraction of folded27. In both CLN025 and Trp-cage, the last half of the trajectories of the two 

runs were used for melting curve plotting. For Homeodomain variant, 12 replicas (288.7 K – 

440.3 K, see Table S5) REMD were simulated for 4 μs for GB and pairwise GB/SA. A 

backbone RMSD cutoff of 5.0 Å was used for fraction of folded calculations. For HP36, 8 

replicas (250.0 K – 349.0 K, see Table S5) REMD were simulated for 4.2 μs in GB. As 

simulations in LCPO used a surface tension of 10 cal/(mol Å2) for 650 ns, the pairwise 

SASA used the same surface tension to be consistent. REMD simulations were run for 24 μs 

to converge. Cluster analysis was done on the lowest temperature trajectories (250K) using 

the same protocol as for HC16 GB trajectories, based on all 36 Cα atoms. Another set of 

HP36 REMD simulations were carried out in ff14SB39 with GBNeck2 for 20 μs to explore 

whether the observed misfolding of HP36 could arise from force field inaccuracies.

3. RESULTS

3.1 SASA estimation by the proposed algorithm

3.1.1 Parameterization on atomic SASA of training set—As stated in Methods, 

we defined 30 pwSASA types, each with two parameters σ and ε, to characterize variation 

of SASA with the possible pairwise atomic contacts found in proteins. All 60 parameters 

were optimized to minimize least square errors with respect to the ICOSA-based SASA 

numerical changes for all the heavy atoms in the scrambled peptide training set. The 

optimization took multiple rounds to best reproduce ΔSASAatom−i
icosa  in Equation 10. We 

verified that reducing the pwSASA types or the peptide species worsens the fit quality, but 

using fewer frames for each peptide ensemble made less difference. The resulting σ and ε 
values are provided in Table S2, along with the calculated max-SASA parameters.

The final set of parameters reasonably reproduces the atomic SASA for heavy atoms in the 

trained peptides, shown separately for each of the 30 pwSASA types in Figure 4. Among all 

the types, hydrogen atoms are defined as ‘1H’ type and excluded in both reference and 

estimation. Nitrogen atoms ‘4NCC’ that bond with 3 other heavy atoms in sp3 hybridization 

were set to zero SASA, for they are highly buried in trained peptides and test proteins. The 

estimated atomic SASA values scatter around the diagonals that represent perfect fittings. In 

particular, the diagonals go through the densest data (dark red) regions for all atom types, 

which indicates excellent agreement for the most frequently sampled atomic SASA values. 

The coefficients of determination (R2 for the linear regression between ICOSA values and 

our estimations) vary from 0.28 (‘5CCN2’) to 0.91 (‘1SC’). However, those with lower 
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correlation tend to adopt a small range of SASA values (e.g. ‘2NCC’, “3CCC”); the R2 for 

atom types sampling atomic SASA over 20 Å are all above 0.50. For the atom types that are 

seldom exposed to solvent (e.g. “4xxx”, 5xxx”), the pairwise estimate also indicates burial 

with close to 0 Å atomic SASA.

For the totally buried heavy atoms, our algorithm sometimes produces negative SASA 

values. The appearance of a small number of negate atomic SASA values also was 

previously observed by Guvench at al54. Our pairwise burial algorithm assumes the mutually 

buried surface areas could be averaged to a pairwise fashion, which can be captured by one 

monotonic function. While our fitting works well for the more exposed instances of a 

pwSASA type, the accuracy suffers for the most buried examples of that pwSASA type. For 

example, for the ‘1SC’ type atoms that have SASA > 30 Å2, data points fall closely around 

the diagonal and visually correlate well, compared with lower accuracy for the instances 

with SASA < 30 Å2. This observation applies to almost all other pwSASA types. When 

atoms become deeply buried, our current algorithm continues to assign (small) shielding 

contributions from atoms in the tail of the sigmoidal function. A better-designed switching 

function might eliminate these negative SASA values, but in the current implementation we 

did not explore this more since our goal was to develop a simple, fast approach, and the 

frequency of observing the slightly negative SASA values is quite low overall. Furthermore, 

the changes in the SASA are more important than the absolute values.

3.1.1 Accuracy of atomic SASA values in protein ensemble test set—We next 

used the pwSASA parameters that were fit on the scrambled peptides to calculate atomic 

SASA values for the diverse structures in the ensembles for the test set of 18 proteins. As 

seen in Figure S5, the results are highly similar to those from the peptide training data 

(Figure 4). For some pwSASA types (such as 1CC and 1OC2), the data appear to cluster 

into 2 groups, suggesting that the fit could be improved somewhat by additional splitting of 

these pwSASA types and refitting. This may be explored in a future update to the 

parameters.

As discussed above, our approach to estimating atomic SASA through a pairwise 

calculations has significant similarity to that of Guvench et al.54 A direct comparison of 

performance by SASA type is not possible since their atom types differ from ours. 

Moreover, the Guvench types include H atoms, leading to significantly different absolute 

atomic SASA values for most heavy atoms. However, we tested the Guvench method on our 

protein ensemble test set. As seen in Figure S6, accuracy of the Guvench atomic SASA 

values for each SASA type are generally of comparable accuracy as our pwSASA, with the 

exception of three SASA types for which the accuracy of SASA estimation is significantly 

lower. These calculations employed the default parameters reported by Guvench et al.; 

examination of the polynomial curves estimating the atomic SASAs shows that the curves 

for these three atom types significantly deviate from the exact SASA values (Figure S7). We 

retrained their c0-c4 parameters data and obtained polynomial curves that reflect an 

improved match to the atomic SASA values (Figure S7, with additional details, methods 
and new parameters provided in Supporting Information).
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3.1.3 Estimation of molecular SASA in the protein ensemble test set—
Generally, we would expect that high correlations of the atomic SASA values (calculated to 

obtain forces) would also result in accurate molecular SASA values when the atomic values 

are summed. However, we observed that the sum of estimated atomic SASA values 

systematically deviates from the numerical molecular values, which was also encountered in 

Dynerman et al.’s work where computed SASA values (desolvation energy changes 

calculated from SASA, to be specific) systematically deviate from numerical numbers in a 

proportional manner45. We ascribe it to be a negative consequence of tolerating inaccuracies 

in atomic SASA pairwise estimation. The occurrence of negative SASAs, along with 

correlation in errors for different atoms, attribute to cumulative errors in molecular SASA 

estimations, which was further adjusted by linear transformations described below.

Given the systematic error from summing our simple pairwise atomic SASA estimates, we 

decided to empirically adjust the sum of our atomic estimations to more closely match 

molecular values. By comparing total SASA values we found that a universal scaling factor 

0.6 worked well in terms of energy and forces; this is equivalent to scaling the designated 

surface tension γ by 0.6. It is recommended for users to bear in mind that molecular SASA 

values for the test set directly estimated as sums of atomic SASA values systematically 

deviate from numerical ICOSA calculations (Figure S8). The total SASA shown in Figure 5 

were obtained from summed atomic SASA through scaling by 0.6 and adding an offset, 

which compensates for the difference of ICOSA SASA and the scaled shielded sums (see 

details in Supporting Info, Equations S7-S11 and Figure S9). In Amber, we encoded the 

scaling factor directly so users could obtain comparable results for different SASA 

algorithms when setting a particular surface tension value.

After transformations, the estimated molecular SASA values become better estimates of the 

numerical values for the 18 test protein systems in Figure 5. The coefficients of 

determination range from 0.54 for BBL, 0.69 for λ-repressor, to above 0.8 for CLN025, Trp-

cage, Fip35, GTT, HP36, HC16, NTL9 (39 and 52 residues), ProteinB, Homeodomain, 

NuG2variant, Hypothetical protein 1WHZ, α3D, and Top7. Overall, in 15 out of the 18 

protein test systems, we can estimate the SASA to well correlate with numerical calculations 

(Pearson correlation efficient, R2 > 0.81) across the range of sampled conformations. This is 

encouraging given that the parameters were trained on short peptides with scrambled 

sequences; even though the local pairwise atom contacts are similar between the training and 

test sets, the transferability to larger proteins is still reassuring.

In most cases, our fast estimations tend to slightly overestimate the ICOSA molecular SASA 

differences (indicated by slope < 1), but the same effect is also observed in LCPO-based 

SASA predictions for the same test set (Figure S10); this can be attenuated by decreasing the 

chosen surface tension. Notably, the cases for which our estimation qualities are worse than 

average (BBA, BBL, NuG2variant and λ-repressor) are also challenging and among the 

worst predictions for LCPO. This suggests there may be some specificities in these proteins, 

where local geometric features are insufficient for predicting solvation properties.

It is possible that pwSASA estimation accuracy could be further improved by refining the 

functional forms for our pairwise estimates, or fitting pair-dependent shielding parameters 
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and avoiding the approximations invoked by using combining rules. . However, a SASA-

only nonpolar term is itself a crude estimation of non-electrostatic solvation, perhaps 

suggesting that adding further complexity and computation cost may not be worthwhile. 

However, before this work, except nonpolar term, all the other energy terms were accessible 

on GPUs. Having the nonpolar term left out hindered the possibility of extensive tests with a 

more complete description of solvation, and quantitative analysis of the impact of SASA-

based nonpolar solvation on well-converged ensembles for non-trivial systems. Thus our 

focus here is not on an ideal SASA calculation, but what benefits, if any, can be obtained 

from simple SASA-based approaches amenable for generating very long protein MD 

simulations. Once these are implemented in a form fast enough to converge ensembles for 

non-trivial proteins, it will become possible to examine the extent to which further 

optimization can improve agreement with experiment. In the next section, the acceleration in 

MD simulations achieved by GPU implementation is illustrated and described in detail. The 

efficiency of the pwSASA algorithm is compared to LCPO. Convergence is comparable 

within the same simulation time, but the overall wallclock speed (computational cost) of the 

simulations is sped up by more than an order of magnitude using pwSASA.

3.2 Speed up in MD simulations

The parameter set for pwSASA was coded in a modified version of Amber version 1637. 

Setting the gbsa flag to 3 in GB simulations activates GB/SA using pwSASA in the sander, 

pmemd or pmemd.cuda (all precisions) programs. Compared with the existing hybrid 

GPU/CPU algorithm74 needing the CPUs for the LCPO algorithm and GPU for remaining 

terms in the force field, pwSASA calculates all energy/force terms on GPUs, if designated, 

and thus accelerates the MD production run by tens of times.

After implementation in the Amber software, simulation benchmarks establishing the 

performance of simulating unrestrained HP36 are shown in Figure 6 below. On CPUs, 

simulations using GB, GB/SA (LCPO) and GB/SA (pwSASA) are similar in speed, with 

LCPO being slightly slower. However, pwSASA was really targeted to GPU-style massive 

parallelism. Compared to less than 40 ns/day with 8-core CPU clusters, the slowest GPU 

calculation (GTX 970) provides 665 ns/day using pwSASA. Importantly, adding pwSASA 

calculations incurs little additional overhead compared to simulations without it (676 ns/

day). As the compute capability of GPU increases, the speed accelerations over LCPO 

reached 31× (single GTX 980). These accelerations are comparable to standard Amber GPU 

performance26, and are also consistent with our design of the algorithm. The only 

information needed is how far each central heavy atom is from its close neighbor atoms 

within the solvent accessible distances, and with no recursive neighbor-neighbor calculations 

required. These distances have already been pre-calculated and cached for the electrostatic, 

van der Waals, and polar part of solvation computations, and the pwSASA calculation can be 

embedded in the same loops and parallel decomposition schemes. Our nonpolar calculation 

is also implemented fully on the GPU, without the need to transfer back and forth between 

GPUs and CPUs, as is necessary by the current LCPO code.

An efficient GPU-parallelizable algorithm requires the same instructions be executed for 

every neighbor atom j of i indistinguishably. In LCPO (gbsa=1), the SASA of a central atom 
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i is dependent on not only the neighbors of i, but also the overlaps of the neighbors with each 

other. For example, in Figure 2, atom j1 and j2 are both neighbors of atom i. In determination 

of the SASA for atom i, not only atom pair (i,j1) and (i,j2) are involved, but atom pair (j1,j2) 

also contributes. This extra consideration makes LCPO a many-body algorithm and not as 

suitable for GPU parallelization. Therefore, even if GPU devices are employed for GB/

(LCPO)SA simulations, the SA portion becomes a major bottleneck. In pwSASA, the same 

Equation 5 is used for all two atom pairs (with different corresponding parameters), thus it is 

an ideal fit for GPU parallelization. Importantly, we could still get reasonable results by 

adopting the two-body algorithm, because our 30 pwSASA atom types provide pre-

adjustments estimating three-body effects in a mean-field way, without impacting parallel 

performance.

3.3 Stability of the hydrophobic core in the HC16 model system

3.3.1 Calibration model system and rationale—We next carried out a quantitative 

comparison of explicit and implicit solvent results on a controlled peptide fragment, in 

which the role of the solvent model could be isolated from other variables that confound 

direct comparison to experiment such as protein force field accuracy. We use the 

hydrophobic core of HP36, a peptide of 16 residues termed “HC16” (Figure 3), with a 

packed hydrophobic core made of side chains protruding from two α-helices.

In the restrained HC16 model system, we used consistent computational methods and 

simulation protocols except for the nonpolar term: (GB) GB as the polar term and no 

nonpolar term used; (TIP3P) TIP3P as a full solvation description of both polar and nonpolar 

terms; and (GB/SA) GB as the polar term and nonpolar term incorporated through SASA, 

modulated by scaling the surface tension. Comparing ensembles from LCPO and pwSASA 

evaluates our SASA approximation, and comparing the TIP3P, GB and GB/SA simulations 

allows tuning of an appropriate surface tension value and evaluation of the extent to which 

this approximation can improve reproduction of explicit solvent results.

3.3.2 Quantification of discrepancies between GB and TIP3P—As stated earlier, 

proteins solvated in the GBneck2 model alone exhibit low folding stability3. We 

hypothesized that this is due to lack of nonpolar solvation stabilizing the hydrophobic core, 

and that an explicit solvent model like TIP3P may produce a more accurate result. 

Therefore, we first investigate structurally and energetically the conformational equilibrium 

of HC16 in both GB and TIP3P to see if expected stability differences are recapitulated, by 

comparing well-converged simulations that are largely identical except for nonpolar 

solvation.

Although the PMF profiles all exhibit dominant global minima at low RMSD values as 

shown in Figure 7A, differences manifest as discrepancies in the sampled structural 

ensembles. Without the nonpolar term, GB predicts a smaller energy gap and flatter energy 

surface for the unfolded conformations. The GB PMF falls below the TIP3P PMF as soon as 

the RMSD advances beyond the native-like minimum, with maximum energy difference 

close to 2 kcal/mol (at around 4 Å Cα-RMSD). Furthermore, the cluster analysis (see Table 

S7) of the simulated GB trajectory manifests in the compositions of three dominant 
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conformations of various SASA values as shown in Figure 7B. Compared to the second 

dominant cluster (4.1 Å Cα-RMSD, cluster 2), the native cluster (1.0 Å Cα-RMSD, cluster 

1) has smaller SASA, suggesting that a nonpolar term could stabilize the native-like cluster. 

The third cluster (5.4 Å Cα-RMSD), with SASA falling between cluster 1 and 2, could also 

be modestly stabilized with respect to cluster 2. The combination of the lower hydrophobic 

core stability in GB MD, along with the difference in SASA between the clusters with and 

without hydrophobic core suggests that a SASA-based algorithm might appropriately 

stabilize the native cluster and improve agreement between implicit and explicit solvent.

3.3.3 The pwSASA PMF closely matches LCPO—Before we compare the effect of 

SASA-based nonpolar solvation (GB/SA) to explicit solvent result, we first compared the 

effects obtained using two different GB/SA methods in Amber: gbsa=1 and 3 for LCPO and 

our pairwise method, respectively. This allows us to evaluate the ability of our pairwise 

approximation to recapitulate the ensemble shifts obtained with LCPO, as compared to the 

analysis in 3.1.2 that focused solely on the accuracy with which we could reproduce LCPO-

based SASA values.

As shown in Figure 7C, the PMFs illustrating the free energy landscape profiles using LCPO 

and our method agree quite well (within +/− 0.3 kcal/mol) when the same surface tension 

value is used for both methods. Using either model, increasing the surface tension results in 

less unfolded structures in the structural ensemble, which suggests that at least for this 

peptide, the nonpolar term plays a modulating role in hydrophobic core stability in implicit 

solvent.

There are still small local disagreements between our method and LCPO, at the scale of <0.3 

kcal/mol. These are reasonable for two reasons: (1) the SASA estimations for atoms and 

molecules are of somewhat different accuracies compared with the numerical references, (2) 

although the PMF uncertainties appear small when using the RMSD as collective variable, 

these may underestimate the true uncertainty in the data. In Figure 8 we show an alternate 

convergence analysis in which the population of native-like structures (< 2.0 Å all Cα-

RMSD) is accumulated as a function of time for two independent REMD simulations for 

each of the two GB/SA methods. Even after several microseconds of REMD, the fractions of 

native-like for LCPO vary by ~ 10% depending on the initial structure. pwSASA MD 

appears to converge more quickly than LCPO MD, but more extensive testing would be 

needed to determine the generality of this observation.

3.3.4 GB/SA solvation with reasonable surface tension can reproduce TIP3P 
profile—When nonpolar solvation energy is incorporated, GB/SA models could resurface 

the energy profile of HC16 towards the TIP3P result, by stabilizing the dominant native-like 

conformation while sampling less of the unfolded conformations (Figure 7B). A surface 

tension γ of 7 cal/(mol Å2) is found to agree best with the TIP3P result, although as 

expected the details do not agree exactly. This choice of the calibrated surface tension is 

close to the value of 7.2 cal/(mol Å2) used in MM/PBSA and MM/GBSA methods 

implemented in Amber as the Free Energy Workflow (FEW75); this is encouraging that the 

good agreement obtained with our method is not simply a result of empirical fitting.
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Further consistency in GB/SA and TIP3P simulations is evident with closer examination of 

the PMF profiles shown in Figure 7A. When the nonpolar term is absent, the cluster 2, 

which is an extended helical structural ensemble, appears on the GB energy surface with a 

Cα-RMSD at around 4.1 Å in Figure 7B with an occurrence of 15.0 % (see occurrence data 

in Table S7) at 300K, measured by within 2 Å from this 4.1 Å misfolded structure. This 

structural ensemble is not abundant in TIP3P solvent results, with occurrence < 0.2% in the 

TIP3P ensemble. In GB/SA simulations, this misfolded structure is also diminished to < 2% 

(in two GB/SA methods with γ = 7 cal/(mol Å2)). But we also noticed that by increasing 

surface tension, in both LCPO algorithm and our method, another energy minimum appears 

at around 5.4 Å as cluster 3 in Figure 7B with close to 3% occurrence, with respect to <0.2% 

in explicit solvent results. This 5.4 Å misfolded structure inversely orients the two helices of 

HC16 with misplacement of core Phenylalanine residues, and of relatively smaller SASA 

values. It is hard to attribute the cause as it could be a force field or solvent inaccuracy, or it 

may also be the convergence is still challenging in explicit solvent simulations and the 

population of this misfolded structure is difficult to calculate with high precision.

3.4 Application to unrestrained proteins

Our algorithm provides a fast way to estimate the SASA of atoms and molecules in various 

conformations. Validated on a carefully controlled short peptide, we demonstrated that the 

nonpolar term is beneficial for core stability. With GPU compatibility, it is now possible to 

rapidly evaluate the extent to which a simple SASA-based nonpolar term can improve 

prediction of protein structure and stability in the context of complex conformational 

ensembles. Such analyses on multiple systems were largely out of reach in the past due to 

the computational cost of SASA calculations on larger peptides and proteins during MD.

We included the GPU-compatible nonpolar solvation term while simulating the four proteins 

(CLN025, Trp-cage tc5b, HP36 and Homeodomain variant) without restraints. The 

simulated ensembles, with nonpolar term (pwSASA and LCPO) or without (GB polar 

solvation only), were compared to experimental measures (CD or NMR). As always, one 

must use caution in such comparisons, since inaccuracies in the solute force field also 

impact agreement with experiment. Furthermore, the accuracy of the solvent models 

employed here is likely less reliable away from 300K. Nevertheless, the trends in the data 

may provide useful insight within these limitations.

As shown in Figure 9A, compared with CLN025 GB-only simulations, conformational 

ensembles across the simulated temperature range show higher population of native-like 

conformations using pwSASA, which also agrees reasonably with LCPO results. While still 

not as thermally stable as measured in CD65, the improvement in stabilizing β-hairpin 

structures is encouraging; experimentally, the fraction of native folded hairpin is over 90% at 

300K, while it is less than 20% in our Amber ff14SBonlysc and GB-Neck2 results here 

(without SASA). By incorporating the nonpolar solvation term, this value is elevated to 

~70% in our method and ~80% in LCPO. This discrepancy between these two nonpolar 

methods corresponds to only ~0.30 kcal/mol, consistent with the differences observed for 

HC16. It is likely that better agreement with experiment could be obtained by increasing 
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surface tension from 7 cal/(mol Å2) to a larger value, but we decided to only test the value 

optimized using TIP3P with HC16 as discussed above.

We next simulated Trp-cage tc5b, and again observed a significantly better agreement with 

experiment when the nonpolar term was added (Figure 9B). With GB/SA, we obtained near-

quantitative agreement between our simulated Trp-cage tc5b and experimental thermal 

stability profiles. This further suggests that the ability to perform GB/SA with adequate 

sampling may significantly improve protein modeling efforts. At 300K, our method and 

LCPO both accurately reproduce the experimental value of ~80%, compared to less accurate 

< 30% fraction of folded as seen in the GB-only result. Higher fractions of native structure 

can significantly improve the performance of methods5, 76 that use GB MD to model protein 

structure. Our predicted Tm of 323K also is close to the experimental value of around 

317K66. This thermal stability of Trp-cage shows better accuracy than the GB-only model 

(predicted Tm at 283K) and other models, compared with predicted Tm down-shifted to 

206K77 using Charmm22* force field and modified TIP3P water model, or up-shifted to 

above 400K using ff94 force field and GB-HCT model78, or OPLS-AA force field and 

TIP3P water79.

When pwSASA-based nonpolar term is incorporated in Homeodomain variant simulations, 

the increase of thermal stability with respect to GB-only result is again observed (Figure 

9C). With pwSASA, native structures at all simulated temperatures are of higher stability 

compared to with GB-only simulations that are in worse agreement with experimental data. 

Accordingly, the simulated melting temperature for Homeodomain is elevated to over 320K, 

compared to GB-only that is under 50% folded even at the lowest simulated temperature. 

Compared with experimental measured Tm beyond 372K, better agreement with GB/SA is 

possibly achievable with a larger surface tension, similar to CLN025. However, as the fold 

and topology of a protein gets more complicated, it is less reasonable to ascribe the 

simulated thermal instability to solely the lack of nonpolar term, as the inaccuracies in 

computational models are likely to be magnified with more atoms and degrees of freedom. 

The errors compared to experiment can arise from errors in the force field as well as from 

solvent models. These challenging issues need further investigation.

In the case of HP36 Villin headpiece, when only polar solvation with GB is included, at 

300K, less than 5% of conformations adopt folded structures (measured by fractions of 

conformations < 3.5 Å Cα-RMSD excluding flexible termini), see Figure 10A. With 

pwSASA, the stability of native-like conformations is predicted to be over 20% at 300K, in 

better agreement with experiment. At 300K, two native-like conformations are populated in 

the GB-only trajectory that have occurrences of 1.4% and 1.7%; with GB/SA, both are 

stabilized to 18.1% and 14.1%, shown as cluster 1 and cluster 3 in Figure 10B (see detailed 

measurements in Supporting Info Table S8).

Looking across the temperature range, the native-like structure is significantly increased in 

stability at 300K and above when the SASA term is added (Figure 10A), as we observed for 

CLN025 and Trp-cage. However, decreasing fractions of folded at 288.4K and below result 

in a melting curve with a downward bell shape, suggesting a cold denaturation, which is 

unexpected in implicit solvent. We analyzed the lower temperature ensembles to gain more 
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insight. At 250K, the native-like structures populated in GB3 (cluster 1, 30.4% and cluster 3, 

18.3%) are diminished to 8.7% and 2.8% respectively in GB/SA simulations (see Figure 

10C and more details in Table S8). The native structures are displaced by a misfolded 

structure ensemble (cluster 2 in Figure 10B) that occupies 75.9% of the GB/SA ensemble. 

Being significantly more compact and of smaller SASA (see Figure 10B and data in Table 

S8), this 6.87 Å misfolded structure ensemble is stabilized by ~ 2 kcal/mol in nonpolar 

solvation energy relative to the native-like structures.

Consequently, in all temperature trajectories of REMD simulations starting from the NMR 

structure, the fractions of native-like structure decrease in the first hundreds of nanoseconds, 

which is not only observed with our method, but also with LCPO (Figure S11). There are 

two reasonable explanations for GB/SA methods destabilizing the native structure of HP36. 

The most obvious is that the SASA-based nonpolar solvation term fails to accurately 

recapitulate the missing nonpolar effect. The solute-solvent dispersive interactions might be 

indispensable for HP36 stability in simulations; as suggested by Gallicchio et al.15, this 

dispersive term is almost independent of SASA but depends strongly on atomic composition. 

Alternatively, although the SASA term stabilizes the misfolded structure, it is possible that 

this accurately reflects the true nonpolar solvation preference, and the observation of large 

amounts of misfolded structure in the ensemble is due to force field inaccuracy, providing 

insufficient penalization to counteract the nonpolar solvation effect.

The ff14SBonlysc force field was employed throughout all the training (HC16) and test 

cases (CLN025, Trp-cage and Homeodomain), as it was previously demonstrated to be 

capable of folding small proteins3 with GBNeck227 implicit solvent. The ff14SB force 

field39 added empirical adjustment in the backbone φ parameters to improve agreement80 

between experimental data and simulations in TIP3P explicit solvent. Since our tests here 

employ GB and not TIP3P, we initially did not use ff14SB, but it provides an opportunity to 

explore the sensitivity of the misfolding to the protein force field in addition to the SASA 

role described above. As seen in Figure 10A, using the ff14SB force field produces a 

dramatically different view of the influence of the SASA term on HP36 simulations. GB-

only simulations using ff14SBonlysc and ff14SB predict similar melting behavior for HP36 

across the simulated temperature range; the predicted Tm is ~100 K lower than 

experiment68. When the pwSASA term is added, ff14SB elevates the stability of HP36 at all 

simulated temperatures and reflects a significantly improved match with experimental 

melting data68, as seen for the other 3 systems discussed above. Importantly, the misfolded 

structures that dominated the low-temperature ensembles using ff14SBonlysc are no longer 

highly populated with ff14SB. Figure 10C illustrates and Table S8 summarizes the predicted 

structural ensembles at 250K compared across four models. The divergence of the observed 

impact of adding SASA to the two force field variants is a frustrating reminder of the 

complexity of using comparisons to experiment as a method to evaluate the accuracy of one 

component of the overall energy function (and a strong argument against using experimental 

results to empirically adjust a single component of a model).
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4. CONCLUSIONS

In this work, we propose a fast, GPU-friendly pairwise SASA-based nonpolar solvation 

approach for protein simulations on GPUs. In this pwSASA approach, we estimate the 

atomic and molecular SASAs of proteins using a simple function inspired by the Lennard-

Jones function already being used during MD, which result in comparable accuracy as 

LCPO algorithm46 in reproducing numerical ICOSA40 SASA values. Accuracy is also 

similar to prior work by Guvench et al., who proposed a pairwise approach that is very 

similar to that described here, but with a 4th-order polynomial approach to SASA 

estimation. By calculating pairwise burial SASA from atom distances, our method 

accelerates MD simulations up to 30 times compared to the LCPO implementation, with 

only ~ 20% overhead compared to CPU or GPU simulations that omit the SASA term. The 

main speed advance arises from employing GPU devices for SASA calculations and 

reducing constant communications with CPUs; the previous Amber CPU/GPU 

implementation74 using LCPO suffers from dramatic speed loss when the SASA calculation 

for every time integration step is still done on CPUs, even though all other energy terms are 

evaluated on the GPU26. Compared with other analytical approaches43–44, 46, 48–49 including 

LCPO, our two-body algorithm is suitable for inexpensive gaming GPU devices that are 

built for highly parallel calculations.

To ensure that our purely two-body algorithm is able to capture reasonably the SASA values 

in proteins, we pre-treat all protein atoms by grouping them into SASA types. This allows 

implicit incorporation of many-body contributions based on local geometry, and the 

remaining neighbor shielding is calculated using the non-recursive pair distances. 

Parameters were optimized on a peptide library covering all of the defined protein SASA 

types, sampling diverse conformations and SASA ranges. The objective function for training 

was designed to reproduce the SASA changes in atomic numerical ICOSA values, instead of 

the absolute atomic or molecular SASA numbers. The accuracy of this simple approach is 

encouraging, though it falls short of more complex algorithms for estimating SASA during 

MD81. The resulting 90 parameters are encoded in a new implementation as gbsa=3 in 

Amber version 18.

The evaluation of our nonpolar term and the calibration of surface tension were done in a 

helically restrained model system which is derived from the hydrophobic core of HP36. This 

small peptide was also simulated in LCPO and TIP3P explicit solvent. Our method achieves 

similar outcomes as LCPO as well as TIP3P solvent when surface tension values of 7 cal/

(mol Å2) were used.

Three small proteins (CLN025, Trp-cage, and HP36) without restraints were simulated and 

compared to experimental results. The simulated melting curves for CLN025 and Trp-cage, 

with nonpolar term, are more consistent with experimental measures as compared to without 

this term. Our method reasonably reproduces LCPO-based MD results. In the case of HP36, 

results were more complicated. Adding SASA-based nonpolar solvation for HP36 

destabilized the NMR structure for both LCPO and pwSASA, but we showed that this 

apparent negative impact was not observed when using a different variant of the protein 
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force field. Further work on more systems will be needed to isolate these two variables when 

comparing to experimental results.

Although clear weaknesses have been recognized, the SASA-based nonpolar model has been 

shown to work reasonably well with extensive parameterization against experimental 

solvation free energies of small nonpolar molecules55, 82. The application in biomolecules 

faces more challenges due to the tradeoff between computational cost and accuracy issues. 

Complete nonpolar solvation is a combination of solute-solvent dispersion energy 

(△Gvdw)16, 22, along with the hydrophobic effect and surface tension that depend on the size 

scale and shape of molecules55, 83–85, the curvature, and temperature85. Methods to 

accurately calculate these contributions have not reached a consensus and are not readily 

calculated on GPUs to test impact on complex protein ensembles. But with the 

implementation of our new algorithm, despite its relative crudeness, the bottleneck in 

computational cost is reduced with order of magnitude accelerations for peptide and protein 

modeling. This can permit a greater exploration of success and failure cases for more 

complex biomolecules, possibly improving structure prediction and refinement, and also 

providing insight into future, more accurate nonpolar solvation models.

It is promising that protein modeling in implicit solvent continues to gain in physical 

accuracy as well as increase in speed. This is an important distinction since current protein 

simulations are typically limited by conformational sampling, rather than accuracy 

(especially for protein folding/misfolding, aggregation, intrinsically disordered proteins and 

more). Fast and accurate implicit solvation treatments may provide a valuable alternative to 

explicit solvent for such systems, but it remains to be seen how well these simple SASA-

based approaches can improve modeling of the entire free energy landscape, as compared to 

just modeling native conformations as shown here.
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ABBREVIATIONS

GPU Graphics Processing Unit

SASA Solvent Accessible Surface Area

LCPO Linear Combinations of Pairwise Overlap

GB Generalized Born

GB/SA Generalized Born/Surface Area

REMD Replica Exchange Molecular Dynamics

PMF Potential of Mean Force
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Figure 1. 
Thermodynamic cycle of the solvation process. Solvation free energy (△Gsol) is 

decomposed into polar (△Gpol) and nonpolar(△Gnp) contributions. The steps involve 

uncharging the solute in vacuum ΔGpol
v , removing the solute-solvent interaction in vacuum 

(no free energy change), creating a solute cavity (ΔGnp
cav), establishing uncharged solute-

solvent interaction in solvent (ΔGnp
vdw), and charging the solute in solvent (ΔGpol

w ). The figure 

is adapted from Levy et al.22
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Figure 2. 
2D illustration of the proposed pwSASA approach for calculating shielded_SASAi,j.

(A) atom i in yellow is the central atom of interest; its SASA (central dotted circle) shielded 

by atom j1 in red and atom j2 in blue are calculated, respectively, using the pairwise 

distances Ri,j. Atom j3 in gray is beyond the cutoff distance to atom i thus contributes zero to 

shielded_SASAi,j.

(B) Our formula (black) is a transformation of the standard Lennard-Jones 6–12 formula 

(gray), by a reflection over the y-axis followed by an up-right shift. Dashed lines indicate the 
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repulsive Lennard-Jones region that is eliminated in our function through application of a 

distance cutoff that also ensures force continuity. Details of the derivation are provided in 

Figure S1 and Equation S1–6.

Huang and Simmerling Page 32

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
HC16 (Hydrophobic-Core 16-residue) sequence and conformation as adopted in the NMR 

structure of HP36 (PDB code: 1VII63). The sequence of HP21 which has been characterized 

in experiment62 is also listed for comparison. The two helices shown in pink were restrained 

with hydrogen bonds shown in black dotted lines. Side chains of three Phe (comprising the 

hydrophobic core of HP36) and capped termini are denoted.
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Figure 4. 
2D histograms of pairwise atomic SASA of each pwSASA type, versus ICOSA-based 

numerical values in the training set. Perfect agreement would coincide with the diagonal 

dashed lines. The color indicates the kernel density estimated using scipy gaussian_kde73.
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Figure 5. 
2D histograms for each protein, showing fitted molecular SASA versus ICOSA numerical 

values for the test set. Perfect agreement is indicated by the diagonal dashed lines. The color 

indicates the kernel density estimated using scipy gaussian_kde73.
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Figure 6. 
Performance benchmarks on CPUs and single gaming GPUs, simulating HP36 in GB and 

GB/SA (LCPO and pwSASA) models. The speed up multiples (percentages) denoted are 

calculated from the respective ns simulation/day achieved in our method divided by that 

obtained using LCPO on the same architecture.
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Figure 7. 
Structural equilibria of restrained HC16 simulated in GB, TIP3P and GB/SA water models 

at 300K. (A) PMFs for structural equilibria of HC16 measured by Cα-RMSD, by varying 

the effectiveness of nonpolar solvation, from no nonpolar effect (pure GB), to increased 

nonpolar effect as surface tensions in GB/SA simulations increase, and to full solvation with 

TIP3P. (B) 2D scatter plot of ICOSA/numerical SASA versus Cα-RMSD against NMR 

structure fragment of HC16. The top three cluster representative structures are indicated in 

Huang and Simmerling Page 37

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the figure. (C) PMFs for structural equilibria of HC16 measured by Cα-RMSD comparing 

two GB/SA methods (LCPO and pwSASA) and GB.
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Figure 8. 
Fraction of folded calculated on HC16 for each temperature trajectory throughout the 

REMD simulations. Convergences from two different initial starting structures (NMR: 

opaque lines, unfolded: semi-transparent lines) are observed in pwSASA (solid lines) and 

LCPO (dashed lines), both using surface tension of 5 cal/(mol Å2).
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Figure 9. 
Thermal stability profiles for (A) CLN025, (B) Trp-cage tc5b and (C) Homeodomain, 

respectively in GB and GB/SA REMD simulations, compared to experimental data65–67.
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Figure 10. 
HP36 melting curves and simulated structural equilibria using four models. (A) Thermal 

stability profiles for HP36 from experiment and calculated from GB and pairwise GB/SA 

REMD simulations using ff14SBonlysc and ff14SB. GB with ff14SBonlysc (denoted: GB) 

in blue, GB/SA with ff14SBonlysc (denoted: GB/SA: our method) in red, GB with ff14SB 

(denoted: GB(14sb)) in cyan, and GB/SA with ff14SB (denoted: GB/SA: our method (14sb) 

in orange. (B) 2D scatter plot of SASA versus Cα-RMSD excluding flexible termini for all 

structures in the combined 250K trajectories simulated using four models. Structures from 
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the 7 most populated clusters are indicated with black dots; other structures are in gray. 

Representative structures from the top 7 clusters are colored by secondary structure and 

illustrated with arrows pointing from their corresponding (RMSD, SASA) coordinates 

shown as red dots. (C) Comparison of the top 7 cluster populations across four models. Each 

bar in the chart refers to the fraction (population) of a certain cluster in the simulated 250K 

trajectory using a certain model. The color scheme is the same as in (A). Cα-RMSD 

excluding flexible termini values and the cluster order are denoted on the x-axis. The error 

bars are calculated from the first and second halves of trajectories.
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