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Abstract

In an effort to improve the quality of statistics in the clinical urology literature, statisticians at 

European Urology, The Journal of Urology, Urology and BJUI came together to develop a set of 

guidelines to address common errors of statistical analysis, reporting and interpretation. Authors 

should “break any of the guidelines if it makes scientific sense to do so” but would need to provide 

a clear justification. Adoption of the guidelines will in our view not only increase the quality of 

published papers in our journals but improve statistical knowledge in our field in general.

It is widely acknowledged that the quality of statistics in the clinical research literature is 

poor. This is true for urology just as it is for other medical specialties. In 2005, Scales et al. 

published a systematic evaluation of the statistics in papers appearing in a single month in 

one of the four leading urology medical journals: European Urology, The Journal of 
Urology®, Urology and BJUI. They reported widespread errors, including 71% of papers 

with comparative statistics having at least one statistical flaw[1]. These findings mirror many 
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others in the literature, see, for instance, the review given by Lang and Altman[2]. The 

quality of statistical reporting in urology journals has no doubt improved since 2005, but 

remains unsatisfactory.

The four urology journals in the Scales et al. review have come together to publish a shared 

set of statistical guidelines[3]. Statistical reviewers at the four journals will systematically 

assess submitted manuscripts using the guidelines to improve statistical analysis, reporting 

and interpretation. Adoption of the guidelines will, in our view, not only increase the quality 

of published papers in our journals but improve statistical knowledge in our field in general. 

Asking an author to follow a guideline about, say, the fallacy of accepting the null 

hypothesis, would no doubt result in a better paper, but we hope that it would also enhance 

the author’s understanding of hypothesis tests.

The guidelines are didactic, based on the consensus of the statistical consultants to the 

journals. We avoided, where possible, making specific analytic recommendations and 

focused instead on analyses or methods of reporting statistics that should be avoided. We 

intend to update the guidelines over time and hence encourage readers who question the 

value or rationale of a guideline to write to the authors.

1. The golden rule: Break any of the guidelines if it makes scientific sense 

to do so.

Science varies too much to allow methodologic or reporting guidelines to apply universally.

2. Reporting of design and statistical analysis

2.1. Follow existing reporting guidelines for the type of study you are reporting, such as 
CONSORT for randomized trials, ReMARK for marker studies, TRIPOD for prediction 
models, STROBE for observational studies, or AMSTAR for systematic reviews.

Statisticians and methodologists have contributed extensively to a large number of reporting 

guidelines. The first is widely recognized to be the Consolidated Standards of Reporting 

Trials (CONSORT) statement on the reporting of randomized trials, but there are now many 

other guidelines, covering a wide range of different types of study. Reporting guidelines can 

be downloaded from the Equator Web site (http://www.equator-network.org).

2.2. Describe cohort selection fully.

It is insufficient to state, for instance, “the study cohort consisted of 1144 patients treated for 

benign prostatic hyperplasia at our institution”. The cohort needs to be defined in terms of 

dates (e.g. “presenting March 2013 to December 2017”), inclusion criteria (e.g. “IPSS > 

12”) and whether patients were selected to be included (e.g. for a research study) vs. being a 

consecutive series. Exclusions should be described one by one, with the number of patients 

omitted for each exclusion criterion to give the final cohort size (e.g. “patients with prior 

surgery (n=43), allergies to 5-ARIs (n=12) and missing data on baseline prostate volume 

(n=86) were excluded to give a final cohort for analysis of 1003 patients”). Note that 

inclusion criteria can be omitted if obvious from context (e.g. no need to state “undergoing 
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radical prostatectomy for histologically proven prostate cancer”); on the other hand, dates 

may need to be explained if their rationale could be questioned (e.g. “March 2013, when our 

specialist voiding clinic was established to December 2017”).

2.3. Describe the practical steps of randomization in randomized trials.

Although this reporting guideline is part of the CONSORT statement, it is so critical and so 

widely misunderstood that it bears repeating. The purpose of randomization is to prevent 

selection bias. This can be achieved only if those consenting patients cannot guess a 

patient’s treatment allocation before registration in the trial or change it afterward. This 

safeguard is known as allocation concealment. Stating merely that “a randomization list was 

created by a statistician” or that “envelope randomization was used” does not ensure 

allocation concealment: a list could have been posted in the nurse’s station for all to see; 

envelopes can be opened and resealed. Investigators need to specify the exact logistic steps 

taken to ensure allocation concealment. The best method is to use a password-protected 

computer database.

2.4. The statistical methods should describe the study questions and the statistical 
approaches used to address each question.

Many statistical methods sections state only something like “Mann-Whitney was used for 

comparisons of continuous variables and Fisher’s exact for comparisons of binary 

variables”. This says little more than “the inference tests used were not grossly erroneous for 

the type of data”. Instead, statistical methods sections should lay out each primary study 

question separately: carefully detail the analysis associated with each and describe the 

rationale for the analytic approach, where this is not obvious or if there are reasonable 

alternatives. Special attention and description should be provided for rarely used statistical 

techniques.

2.5. The statistical methods should be described in sufficient detail to allow replication 
by an independent statistician given the same data set.

Vague reference to “adjusting for confounders” or “non-linear approaches” is insufficiently 

specific to allow replication, a cornerstone of the scientific method. All statistical analyses 

should be specified in the Methods section, including details such as the covariates included 

in a multivariable model. All variables should be clearly defined where there is room for 

ambiguity. For instance, avoid saying that “Gleason grade was included in the model”; state 

instead “Gleason grade group was included in four categories 1, 2, 3 and 4 or 5”.

3. Inference and p-values (see also “Use and interpretation of p-values” 

below)

3.1. Don’t accept the null hypothesis.

In a court case, defendants are declared guilty or not guilty, there is no verdict of “innocent”. 

Similarly, in a statistical test, the null hypothesis is rejected or not rejected. If the p-value is 

0.05 or more, investigators should avoid conclusions such as “the drug was ineffective”, 

“there was no difference between groups” or “response rates were unaffected”. Instead, 
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authors should use phrases such as “we did not see evidence of a drug effect”, “we were 

unable to demonstrate a difference between groups” or simply “there was no statistically 

significant difference in response rates”.

3.2. P-values just above 5% are not a trend, and they are not moving.

Avoid saying that a p-value such as 0.07 shows a “trend” (which is meaningless) or 

“approaches statistical significance” (because the p-value isn’t moving). Alternative 

language might be: “although we saw some evidence of improved response rates in patients 

receiving the novel procedure, differences between groups did not meet conventional levels 

of statistical significance”.

3.3. P-values and 95% confidence intervals do not quantify the probability of a 
hypothesis.

A p-value of, say, 0.03 does not mean that there is 3% probability that the findings are due to 

chance. Additionally, a 95% confidence interval should not be interpreted as a 95% certainty 

the true parameter value is in the range of the 95% confidence interval. The correct 

interpretation of a p-value is the probability of finding the observed or more extreme results 

when the null hypothesis is true; the 95% confidence interval will contain the true parameter 

value 95% of the time were a study to be repeated many times using different samples.

3.4. Don’t use confidence intervals to test hypotheses.

Investigators often interpret confidence intervals in terms of hypotheses. For instance, 

investigators might claim that there is a statistically significant difference between groups 

because the 95% confidence interval for the odds ratio excludes 1. Such claims are 

problematic because confidence intervals are concerned with estimation, not inference. 

Moreover, the mathematical method to calculate confidence intervals may be different from 

those used to calculate p-values. It is perfectly possible to have a 95% confidence interval 

that includes no difference between groups even though the p-value is less than 0.05 or vice 
versa. For instance, in a study of 100 patients in two equal groups, with event rates of 70% 

and 50%, the p-value from Fisher’s exact test is 0.066 but the 95% C.I. for the odds ratio is 

1.03 to 5.26. The 95% C.I. for the risk difference and risk ratio also exclude no difference 

between groups.

3.5. Take care interpreting results when reporting multiple p-values.

The more questions you ask, the more likely you are to get a spurious answer to at least one 

of them. For example, if you report p-values for five independent true null hypotheses, the 

probability that you will falsely reject at least one is not 5%, but >20%. Although formal 

adjustment of p-values is appropriate in some specific cases, such as genomic studies, a 

more common approach is simply to interpret p-values in the context of multiple testing. For 

instance, if an investigator examines the association of 10 variables with three different 

endpoints, thereby testing 30 separate hypotheses, a p-value of 0.04 should not be 

interpreted in the same way as if study tested only a single hypothesis with a p-value of 0.04.
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3.6. Do not report separate p-values for each of two different groups in order to address 
the question of whether there is a difference between groups.

One scientific question means one statistical hypothesis tested by one p-value. To illustrate 

the error of using two p-values to address one question, take the case of a randomized trial of 

drug versus placebo to reduce voiding symptoms, with 30 patients in each group. The 

authors might report that symptom scores improved by 6 (standard deviation 14) points in 

the drug group (p=0.03 by one-sample t-test) and 5 (standard deviation 15) points in the 

placebo group (p=0.08). However, the study hypothesis concerns the difference between 

drug and placebo. To test a single hypothesis, a single p-value is needed. A two-sample t-test 

for these data gives a p-value for 0.8 – unsurprising, given that the scores in each group were 

virtually the same - confirming that it would be unsound to conclude that the drug was 

effective based on the finding that change was significant in the drug group but not in 

placebo controls.

3.7. Use interaction terms in place of subgroup analyses.

A similar error to the use of separate tests for a single hypothesis is when an intervention is 

shown to have a statistically significant effect in one group of patients but not another. One 

approach that is more appropriate is to use what is known as an interaction term in a 

statistical model. For instance, to determine whether a drug reduced pain scores more in 

women than men, the model might be as follows:

Final Pain Score = β0 + β1 Baseline Pain Score + β2 Drug + β3 Sex + β4 Drug × Sex

It is sometimes appropriate to report estimates and confidence intervals within subgroups of 

interest, but p-values should be avoided.

3.8. Tests for change over time are generally uninteresting.

A common analysis is to conduct a paired t-test comparing, say, erectile function in older 

men at baseline with erectile function after 5 years of follow-up. The null hypothesis here is 

that “erectile function does not change over time”, which is known to be false. Investigators 

are encouraged to focus on estimation rather than inference, reporting, for example, the 

mean change over time along with a 95% confidence interval.

3.9. Avoid using statistical tests to determine the type of analysis to be conducted.

Numerous statistical tests are available that can be used to determine how a hypothesis test 

should be conducted. For instance, investigators might conduct a Shapiro-Wilk test for 

normality to determine whether to use a t-test or Mann-Whitney, Cochran’s Q to decide 

whether to use a fixed- or random-effects approach in a meta-analysis or use a t-test for 

between-group differences in a covariate to determine whether that covariate should be 

included a multivariable model. The problem with these sorts of approaches is that they are 

often testing a null hypothesis that is known to be false. For instance, no data set perfectly 

follows a normal distribution. Moreover, it is often questionable that changing the statistical 

approach in the light of the test is actually of benefit. Statisticians are far from unanimous as 

to whether Mann-Whitney is always superior to t-test when data are non-normal, or that 
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fixed effects are invalid under study heterogeneity, or that the criterion of adjusting for a 

variable should be whether it is significantly different between groups. Investigators should 

generally follow a prespecified analytic plan, only altering the analysis if the data 

unambiguously point to a better alternative.

3.10. When reporting p-values, be clear about the hypothesis tested and ensure that the 
hypothesis is a sensible one.

P-values test very specific hypotheses. When reporting a p-value in the results section, state 

the hypothesis being tested unless this is completely clear. Take, for instance, the statement 

“Pain scores were higher in group 1 and similar in groups 2 and 3 (p=0.02)”. It is ambiguous 

whether the p-value of 0.02 is testing group 1 vs. groups 2 and 3 combined or the hypothesis 

that pain score is the same in all three groups. Clarity about the hypotheses being tested can 

help avoid the testing of inappropriate hypotheses. For instance, p-values for differences 

between groups at baseline in a randomized trial is testing a null hypothesis that is known to 

be true (informally, that any observed differences between groups are due to chance).

4. Reporting of study estimates

4.1. Use appropriate levels of precision.

Reporting a p-value of 0.7345 suggests that there is an appreciable difference between p-

values of 0.7344 and 0.7346. Reporting that 16.9% of 83 patients responded entails a 

precision (to the nearest 0.1%) that is nearly 200 times greater than the width of the 

confidence interval (10% to 27%). Reporting in a clinical study that the mean calorie 

consumption was 2069.9 suggests that calorie consumption can be measured extremely 

precisely by a food questionnaire. Some might argue that being overly precise is irrelevant, 

because the extra numbers can always be ignored. The counter-argument is that investigators 

should think very hard about every number they report, rather than just carelessly cutting 

and pasting numbers from the statistical software printout. The specific guidelines for 

precision are as follows:

• Report p-values to a single significant figure unless the p is close to 0.05, in 

which case, report two significant figures. Do not report “NS” for p-values of 

0.05 or above. Very low p-values can be reported as p<0.001 or similar. A p-

value can indeed be 1, although some investigators prefer to report this as >0.9. 

For instance, the following p-values are reported to appropriate precision: 

<0.001, 0.004, 0.045, 0.13, 0.3, 1.

• Report percentages, rates and probabilities to 2 significant figures, e.g. 75%, 

3.4%, 0.13%.

• Do not report p-values of zero, as any experimental result has a non-zero 

probability.

• Do not give decimal places if a probability or proportion is 1 (e.g. a p-value of 

1.00 or a percentage of 100.00%). The decimal places suggest it is possible to 

have, say, a p-value 1.05. There is a similar consideration for data that can only 

Assel et al. Page 6

J Urol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



take integer values. It makes sense to state that, for instance, the mean number of 

pregnancies was 2.4, but not that 29% of women reported 1.0 pregnancies.

• There is generally no need to report estimates to more than three significant 

figures.

• Hazard and odds ratios are normally reported to two decimal places, although 

this can be avoided for high odds ratios (e.g. 18.2 rather than 18.17).

4.2. Avoid redundant statistics in cohort descriptions.

Authors should be selective about the descriptive statistics reported and ensure that each and 

every number provides unique information. Authors should avoid reporting descriptive 

statistics that can be readily derived from data that have already been provided. For instance, 

there is no need to state 40% of a cohort were men and 60% were women, choose one or the 

other. Another common error is to include a column of descriptive statistics for two groups 

separately and then the whole cohort combined. If, say, the median age is 60 in group 1 and 

62 in group 2, we do not need to be told that the median age in the cohort as a whole is close 

to 61.

4.3. For descriptive statistics, median and quartiles are preferred over means and 
standard deviations (or standard errors); range should be avoided.

The median and quartiles provide all sorts of useful information, for instance, that 50% of 

patients had values above the median or between the quartiles. The range gives the values of 

just two patients and so is generally uninformative of the data distribution.

4.4. Report estimates for the main study questions.

A clinical study typically focuses on a limited number of scientific questions. Authors 

should generally provide an estimate for each of these questions. In a study comparing two 

groups, for instance, authors should give an estimate of the difference between groups, and 

avoid giving only data on each group separately or, simply saying that the difference was or 

was not significant. In a study of a prognostic factor, authors should give an estimate of the 

strength of the prognostic factor, such as an odds ratio or hazard ratio, as well as reporting a 

p-value testing the null hypothesis of no association between the prognostic factor and 

outcome.

4.5. Report confidence intervals for the main estimates of interest.

Authors should generally report a 95% confidence interval around the estimates relating to 

the key research questions, but not other estimates given in a paper. For instance, in a study 

comparing two surgical techniques, the authors might report adverse event rates of 10% and 

15%; however, the key estimate in this case is the difference between groups, so this 

estimate, 5%, should be reported along with a 95% confidence interval (e.g. 1% to 9%). 

Confidence intervals should not be reported for the estimates within each group (e.g. adverse 

event rate in group A of 10%, 95% CI 7% to 13%). Similarly, confidence intervals should 

not be given for statistics such as mean age or gender ratio.
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4.6. Do not treat categorical variables as continuous.

A variable such as Gleason grade groups are scored 1 – 5, but it is not true that the difference 

between group 3 and 4 is half as great as the difference between group 2 and 4. Variables 

such as Gleason grade group should be reported as categories (e.g. 40% grade group 1, 20% 

group 2, 20% group 3, 20% group 4 and 5) rather than as a continuous variable (e.g. mean 

Gleason score of 2.4). Similarly, categorical variables such as Gleason should be entered 

into regression models not as a single variable (e.g. a hazard ratio of 1.5 per 1-point increase 

in Gleason grade group) but as multiple categories (e.g. hazard ratio of 1.6 comparing 

Gleason grade group 2 to group 1 and hazard ratio of 3.9 comparing group 3 to group 1).

4.7. Avoid categorization of continuous variables unless there is a convincing rationale.

A common approach to a variable such as age is to define patients as either old (≥ 60) or 

young (<60) and then enter age into analyses as a categorical variable, reporting, for 

example, that “patients aged 60 and over had twice the risk of an operative complication 

than patients aged less than 60”. In epidemiologic and marker studies, a common approach 

is to divide a variable into quartiles and report a statistic such as a hazard ratio for each 

quartile compared to the lowest (“reference”) quartile. This is problematic because it 

assumes that all values of a variable within a category are the same. For instance, it is likely 

not the case that a patient aged 65 has the same risk as a patient aged 90, but a very different 

risk to a patient aged 64. It is generally preferable to leave variables in a continuous form, 

reporting, for instance, how risk changes with a 10-year increase in age. Non-linear terms 

can also be used, to avoid the assumption that the association between age and risk follows a 

straight line.

4.8. Do not use statistical methods to obtain cut-points for clinical practice.

There are various statistical methods available to dichotomize a continuous variable. For 

instance, outcomes can be compared either side of several different cut-points, and the 

optimal cut-point chosen as the one associated with the smallest p-value. Alternatively, 

investigators might choose a cut-point that leads to the highest value of sensitivity + 

specificity, that is, the point closest to the top left-hand corner of a Receiver Operating Curve 

(ROC). Such methods are inappropriate for determining clinical cut-points because they do 

not consider clinical consequences. The ROC curve approach, for instance, assumes that 

sensitivity and specificity are of equal value, whereas it is generally worse to miss disease 

than to treat unnecessarily. The smallest p-value approach tests strength of evidence against 

the null hypothesis, which has little to do with the relative benefits and harms of a treatment 

or further diagnostic work up.

4.9. The association between a continuous predictor and outcome can be demonstrated 
graphically, particularly by using non-linear modeling.

In high-school math we often thought about the relationship between y and x by plotting a 

line on a graph, with a scatterplot added in some cases. This also holds true for many 

scientific studies. In the case of a study of age and complication rates, for instance, an 

investigator could plot age on the x axis against risk of a complication on the y axis and 

show a regression line, perhaps with a 95% confidence interval. Non-linear modeling is 
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often useful because it avoids assuming a linear relationship and allows the investigator to 

determine questions such as whether risk starts to increase disproportionately beyond a 

given age.

4.10. Do not ignore significant heterogeneity in meta-analyses.

Informally speaking, heterogeneity statistics test whether variations between the results of 

different studies in a meta-analysis are consistent with chance, or whether such variation 

reflects, at least in part, true differences between studies. If heterogeneity is present, authors 

need to do more than merely report the p-value and focus on the random-effects estimate. 

Authors should investigate the sources of heterogeneity and try to determine the factors that 

lead to differences in study results, for example, by identifying common features of studies 

with similar findings or idiosyncratic aspects of studies with outlying results.

4.11. For time-to-event variables, report the number of events but not the proportion.

Take the case of a study that reported: “of 60 patients accrued, 10 (17%) died”. While it is 

important to report the number of events, patients entered the study at different times and 

were followed for different periods, so the reported proportion of 17% is meaningless. The 

standard statistical approach to time-to-event variables is to calculate probabilities, such as 

the risk of death being 60% by five years or the median survival – the time at which the 

probability of survival first drops below 50% - being 52 months.

4.12. For time-to-event analyses, report median follow-up for patients without the event 
or the number followed without an event at a given follow-up time.

It is often useful to describe how long a cohort has been followed. To illustrate the 

appropriate methods of doing so, take the case of a cohort of 1,000 pediatric cancer patients 

treated in 1970 and followed to 2010. If the cure rate was only 40%, median follow-up for 

all patients might only be a few years, whilst the median follow-up for patients who survived 

was 40 years. This latter statistic gives a much better impression of how long the cohort had 

been followed. Now assume that in 2009, a second cohort of 2000 patients was added to the 

study. The median follow-up for survivors will now be around a year, which is again 

misleading. An alternative would be to report a statistic such as “312 patients have been 

followed without an event for at least 35 years”.

4.13. For time-to-event analyses, describe when follow-up starts and when and how 
patients are censored.

A common error is that investigators use a censoring date which leads to an overestimate of 

survival. For example, when assessing the metastasis-free survival a patient without a record 

of metastasis should be censored on the date of the last time the patient was known to be free 

of metastasis (e.g. negative bone scan, undetectable PSA), not at the date of last patient 

contact (which may not have involved assessment of metastasis). For overall survival, date 

of last patient contact would be an acceptable censoring date because the patient was indeed 

known to be event-free at that time. When assessing cause-specific endpoints, special 

consideration should be given the cause of death. The endpoints “disease-specific survival” 

and “disease-free survival” have specific definitions and require careful attention to methods. 
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With disease-specific survival, authors need to consider carefully how to handle death due to 

other causes. One approach is to censor patients at the time of death, but this can lead to bias 

in certain circumstances, such as when the predictor of interest is associated with other cause 

death and the probability of other cause death is moderate or high. Competing risk analysis 

is appropriate in these situations. With disease-free survival, both evidence of disease (e.g. 

disease recurrence) and death from any cause are counted as events, and so censoring at the 

time of other cause death is inappropriate. If investigators are specifically interested only in 

the former, and wish to censor deaths from other causes, they should define their endpoint as 

“freedom from progression”.

4.14. For time-to-event analyses, avoid reporting mean follow-up or survival time, or 
estimates of survival in those who had the event.

All three estimates are problematic in the context of censored data.

4.15. For time-to-event analyses, make sure that all predictors are known at time zero or 
consider alternative approaches such as a landmark analysis or time-dependent 
covariates.

In many cases, variables of interest vary over time. As a simple example, imagine we were 

interested in whether PSA velocity predicted time to progression in prostate cancer patients 

on active surveillance. The problem is that PSA is measured at various times after diagnosis. 

Unless they were being careful, investigators might use time from diagnosis in a Kaplan-

Meier or Cox regression but use PSA velocity calculated on PSAs measured at one and two-

year follow-up. As another example, investigators might determine whether response to 

chemotherapy predicts cancer survival, but measure survival from the time of the first dose, 

before response is known. It is obviously invalid to use information only known “after the 

clock starts”. There are two main approaches to this problem. A “landmark analysis” is often 

used when the variable of interest is generally known within a short and well-defined period 

of time, such as adjuvant therapy or chemotherapy response. In brief, the investigators start 

the clock at a fixed “landmark” (e.g. 6 months after surgery). Patients are only eligible if 

they are still at risk at the landmark (e.g. patients who recur before six months are excluded) 

and the status of the variable is fixed at that time (e.g. a patient who gets chemotherapy at 7 

months is defined as being in the no adjuvant group). Alternatively, investigators can use a 

time-dependent variable approach. In brief, this “resets the clock” each time new 

information is available about a variable. This would be the approach most typically used for 

the PSA velocity and progression example.

4.16. When presenting Kaplan-Meier figures, present the number at risk and truncate 
follow-up when numbers are low.

Giving the number of risk is useful for helping to understand when patients were censored. 

When presenting Kaplan-Meier figures a good rule of thumb is to truncate follow-up when 

the number at risk in any group falls below 5 (or even 10) as the tail of a Kaplan-Meier 

distribution is very unstable.
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5. Multivariable models and diagnostic tests

5.1. Multivariable, propensity and instrumental variable analyses are not a magic wand.

Some investigators assume that multivariable adjustment “removes confounding”, “makes 

groups similar” or “mimics a randomized trial”. There are two problems with such claims. 

First, the value of a variable recorded in a data set is often approximate and so may mask 

differences between groups. For instance, clinical stage might be used as a covariate in a 

study comparing treatments for localized prostate cancer. But stage T2c might constitute a 

small nodule on each prostate lobe or, alternatively, most of the prostate consisting of a 

large, hard mass. The key point is that if one group has more T2c disease than the other, it is 

also likely that the T2c’s in that group will fall towards the more aggressive end of the 

spectrum. Multivariable adjustment has the effect of making the rates of T2c in each group 

the same, but does not ensure that the type of T2c is identical. Second, a model only adjusts 

for a small number of measured covariates. That does not exclude the possibility of 

important differences in unmeasured (or even unmeasurable) covariates. A common 

assumption is that propensity methods somehow provide better adjustment for confounding 

than traditional multivariable methods. Except in certain rare circumstances, such as when 

the number of covariates is large relative to the number of events, propensity methods give 

extremely similar results to multivariable regression. Similarly, instrumental variables 

analyses depend on the availability of a good instrument, which is less common than is often 

assumed. In many cases, the instrument is not strongly associated with the intervention, 

leading to a large increase in the 95% confidence interval or, in some cases, an 

underestimate of treatment effects.

5.2. Avoid stepwise selection.

Investigators commonly choose which variables to include in a multivariable model by first 

determining which variables are statistically significant on univariable analysis; alternatively, 

they may include all variables in a single model but then remove any that are not significant. 

This type of data-dependent variable selection in regression models has several undesirable 

properties, increasing the risk of overfit and making many statistics, such as the 95% 

confidence interval, highly questionable. Use of stepwise selection should be restricted to a 

limited number of circumstances, such as during the initial stages of developing a model, if 

there is poor knowledge of what variables might be predictive.

5.3. Avoid reporting estimates such as odds or hazard ratios for covariates when 
examining the effects of interventions.

In a typical observational study, an investigator might explore the effects of two different 

approaches to radical prostatectomy on recurrence while adjusting for covariates such as 

stage, grade and PSA. It is rarely worth reporting estimates such as odds or hazard ratios for 

the covariates. For instance, it is well known that a high Gleason score is strongly associated 

with recurrence: reporting a hazard ratio of say, 4.23, is not helpful and a distraction from 

the key finding, the hazard ratio between the two types of surgery.
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5.4. Rescale predictors to obtain interpretable estimates.

Predictors sometimes have a moderate association with outcome and can take a large range 

of values. This can lead to uninterpretable estimates. For instance, the odds ratio for cancer 

per year of age might be given as 1.02 (95% CI 1.01, 1.02; p<0.0001). It is not helpful to 

have the upper bound of a confidence interval be equivalent to the central estimate; a better 

alternative would be to report an odds ratio per ten years of age. This is simply achieved by 

creating a new variable equal to age divided by ten to obtain an odds ratio of 1.16 (95% CI 

1.10, 1.22; p<0.0001) per 10-year difference in age.

5.5. Avoid reporting both univariate and multivariable analyses unless there is a good 
reason.

Comparison of univariate and multivariable models can be of interest when trying to 

understand mechanisms. For instance, if race is a predictor of outcome on univariate 

analysis, but not after adjustment for income and access to care, one might conclude that 

poor outcome in African-Americans is explained by socioeconomic factors. However, the 

routine reporting of estimates from both univariate and multivariable analysis is discouraged.

5.6. Avoid ranking predictors in terms of strength.

It is tempting for authors to rank predictors in a model, claiming, for instance, “the novel 

marker was the strongest predictor of recurrence”. Most commonly, this type of claim is 

based on comparisons of odds or hazard ratios. Such rankings are not meaningful since, 

among other reasons, it depends on how variables are coded. For instance, the odds ratio for 

hK2, and hence whether or not it is an apparently “stronger” predictor than PSA, will 

depend on whether it is entered in nanograms or picograms per ml. Further, it is unclear how 

one should compare model coefficients when both categorical and continuous variables are 

included. Finally, the prevalence of a categorical predictor also matters: a predictor with an 

odds ratio is 3.5 but a prevalence if 0.1% is less important that one with a 50% prevalence 

and an odds ratio of 2.0.

5.7. Discrimination is a property not of a multivariable model but rather of the predictors 
and the data set.

Although model building is generally seen as a process of fitting coefficients, discrimination 

is largely a property of what predictors are available. For instance, we have excellent models 

for prostate cancer outcome primarily because Gleason score is very strongly associated 

with malignant potential. In addition, discrimination is highly dependent on how much a 

predictor varies in the data set. As an example, a model to predict erectile dysfunction that 

includes age will have much higher discrimination for a population sample of adult men than 

for a group of older men presenting at a urology clinic, because there is a greater variation in 

age in the population sample. Authors need to consider these points when drawing 

conclusions about the discrimination of models. This is also why authors should be cautious 

about comparing the discrimination of different multivariable models where these were 

assessed in different datasets.
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5.8. Correction for overfit is strongly recommended for internal validation.

In the same way that it is easy to predict last week’s weather, a prediction model generally 

has very good properties when evaluated on the same data set used to create the model. This 

problem is generally described as overfit. Various methods are available to correct for 

overfit, including crossvalidation and bootstrap resampling. Note that such methods should 

include all steps of model building. For instance, if an investigator uses stepwise methods to 

choose which predictors should go into the model and then fits the coefficients, a typical 

crossvalidation approach would be to: (1) split the data into ten groups, (2) use stepwise 

methods to select predictors using the first nine groups, (3) fit coefficients using the first 

nine groups, (4) apply the model to the 10th group to obtain predicted probabilities, and (5) 

repeat steps 2–4 until all patients in the data set have a predicted probability derived from a 

model fitted to a data set that did not include that patient’s data. Statistics such as the AUC 

are then calculated using the predicted probabilities directly.

5.9. Calibration should be reported and interpreted correctly.

Calibration is a critical component of a statistical model: the main concern for any patient is 

whether the risk given by a model is close to his or her true risk. It is rarely worth reporting 

calibration for a model created and tested on the same data set, even if techniques such as 

crossvalidation are used. This is because calibration is nearly always excellent on internal 

validation. Where a pre-specified model is tested on an independent data set, calibration 

should be displayed graphically in a calibration plot. The Hosmer-Lemeshow test addresses 

an inappropriate null hypothesis and should be avoided. Note also that calibration depends 

upon both the model coefficients and the dataset being examined. A model cannot be 

inherently “well calibrated.” All that can be said is that predicted and observed risk are close 

in a specific data set, representative of a given population.

5.10. Avoid reporting sensitivity and specificity for continuous predictors or a model.

Investigators often report sensitivity and specificity at a given cut-point for a continuous 

predictor (such as a PSA of 10 ng /mL), or report specificity at a given sensitivity (such as 

90%). Reporting sensitivity and specificity is not of value because it is unclear how high 

sensitivity or specificity would have to be so as to be high enough to justify clinical use. 

Similarly, it is very difficult to determine which of two tests, one with a higher sensitivity 

and the other with a higher specificity, is preferable because clinical value depends on the 

prevalence of disease and the relative harms of a false-positive compared with a false-

negative result. In the case of reporting specificities at fixed sensitivity, or vice versa, it is all 

but impossible to choose the specific sensitivity rationally. For instance, a team of 

investigators may state that they want to know specificity at 80% sensitivity, because they 

want to ensure they catch 80% of cases. But 80% might be too low if prevalence is high, or 

too high if prevalence is low.

5.11. Report the clinical consequences of using a test or a model.

In place of statistical abstractions such as sensitivity and specificity, or an ROC curve, 

authors are encouraged to choose illustrative cut-points and then report results in terms of 

clinical consequences. As an example, consider a study in which a marker is measured in a 
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group of patients undergoing biopsy. Authors could report that if a given level of the marker 

had been used to determine biopsy, then a certain number of biopsies would have been 

conducted and a certain number of cancers found and missed.

5.12. Interpret decision curves with careful reference to threshold probabilities.

It is insufficient merely to report that, for instance, “the marker model had highest net 

benefit for threshold probabilities of 35 – 65%”. Authors need to consider whether those 

threshold probabilities are rational. If the study reporting benefit between 35 – 65% 

concerned detection of high-grade prostate cancer, few if any urologists would demand that 

a patient have at least a one-in-three chance of high-grade disease before recommending 

biopsy. The authors would therefore need to conclude that the model was not of benefit.

6. Conclusions and interpretation

6.1. Draw a conclusion, don’t just repeat the results.

Conclusion sections are often simply a restatement of the results. For instance, “a 

statistically significant relationship was found between body mass index (BMI) and disease 

outcome” is not a conclusion. Authors instead need to state implications for research and / or 

clinical practice. For instance, a conclusion section might call for research to determine 

whether the association between BMI is causal or make a recommendation for more 

aggressive treatment of patients with higher BMI.

6.2. Avoid using words such as “may” or “might”.

A conclusion such as that a novel treatment “may” be of benefit would only be untrue if it 

had been proven that the treatment was ineffective. Indeed, that the treatment may help 

would have been the rationale for the study in the first place. Using words such as may in the 

conclusion is equivalent to stating, “we know no more at the end of this study than we knew 

at the beginning”, reason enough to reject a paper for publication.

6.3. A statistically significant p-value does not imply clinical significance.

A small p-value means only that the null hypothesis has been rejected. This may or may not 

have implications for clinical practice. For instance, that a marker is a statistically significant 

predictor of outcome does not imply that treatment decisions should be made on the basis of 

that marker. Similarly, a statistically significant difference between two treatments does not 

necessarily mean that the former should be preferred to the latter. Authors need to justify any 

clinical recommendations by carefully analyzing the clinical implications of their findings.

6.4. Avoid pseudo-limitations such as “small sample size” and “retrospective analysis”, 
consider instead sources of potential bias and the mechanism for their effect on findings.

Authors commonly describe study limitations in a rather superficial way, such as, “small 

sample size and retrospective analysis are limitations”. But a small sample size may be 

immaterial if the results of the study are clear. For instance, if a treatment or predictor is 

associated with a very large odds ratio, a large sample size might be unnecessary. Similarly, 

a retrospective design might be entirely appropriate, as in the case of a marker study with 
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very long-term follow-up, and have no discernible disadvantages compared to a prospective 

study. Discussion of limitations should include both the likelihood and effect size of possible 

bias.

6.5. Consider the impact of missing data and patient selection.

It is rare that complete data is obtained from all patients in a study. A typical paper might 

report, for instance, that of 200 patients, 8 had data missing on important baseline variables 

and 34 did not complete the end of study questionnaire, leading to a final data set of 158. 

Similarly, many studies include a relatively narrow subset of patients, such as 50 patients 

referred for imaging before surgery, out of the 500 treated surgically during that timeframe. 

In both cases, it is worth considering analyses to investigate whether patients with missing 

data or who were not selected for treatment were different in some way from those who 

were included in the analyses. Although statistical adjustment for missing data is complex 

and is warranted only in a limited set of circumstances, basic analyses to understand the 

characteristics of patients with missing data are relatively straightforward and are often 

helpful.

6.6. Consider the possibility and impact of ascertainment bias

Ascertainment bias occurs when an outcome depends on a test, and the propensity for a 

patient to be tested is associated with the predictor. PSA screening provides a classic 

example: prostate cancer is found by biopsy, but the main reason why men are biopsied is 

because of an elevated PSA. A study in a population subject to PSA screening will therefore 

overestimate the association between PSA and prostate cancer. Ascertainment bias can also 

be caused by the timing of assessments. For instance, frequency of biopsy in prostate cancer 

active surveillance will depend on prior biopsy results and PSA level, and this induces an 

association between those predictors and time to progression.

6.7. Do not confuse outcome with response among subgroups of patients undergoing 
the same treatment: patients with poorer outcomes may still be good candidates for that 
treatment.

Investigators often compare outcomes in different subgroups of patients all receiving the 

same treatment. A common error is to conclude that patients with poor outcome are not 

good candidates for that treatment and should receive an alternative approach. This is to 

confuse differences between patients for differences between treatments. As a simple 

example, patients with large tumors are more likely to recur after surgery than patients with 

small tumors, but that cannot be taken to suggest that resection is not indicated for patients 

with tumors greater than a certain size. Indeed, surgery is generally more strongly indicated 

for patients with aggressive (but localized) disease and such patients are unlikely to do well 

on surveillance.

6.8. Be cautious about causal attribution: correlation does not imply causation.

It is well-known that “correlation does not imply causation” but authors often slip into this 

error in making conclusions. The introduction and methods section might insist that the 

purpose of the study is merely to determine whether there is an association between, say, 

Assel et al. Page 15

J Urol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treatment frequency and treatment response, but the conclusions may imply that, for 

instance, more frequent treatment would improve response rates.

Use and interpretation of p-values

That p-values are widely misused and misunderstood is apparent from even the most cursory 

reading of the medical literature. One of the most common errors is accepting the null 

hypothesis, for instance, concluding from a p-value of 0.07 that a drug is ineffective or that 

two surgical techniques are equivalent. This particular error is described in detail in 

guideline 3.1.

The more general problem, which we address here, is that p-values are often given excessive 

weight in the interpretation of a study. Indeed, studies are often classed by investigators into 

“positive” or “negative” based on statistical significance. Gross misuse of p-values has led 

some to advocate banning the use of p-values completely[4].

We follow the American Statistical Association statement on p-values and encourage all 

researchers to read either the full statement[5] or the summary[6]. In particular, we 

emphasize that the p-value is just one statistic that helps interpret a study, it does not 

determine our interpretations. Drawing conclusions for research or clinical practice from a 

clinical research study requires evaluation of the strengths and weakness of study 

methodology, the results of other pertinent data published in the literature, biological 

plausibility and effect size. Sound and nuanced scientific judgment cannot be replaced by 

just checking whether one of the many statistics in a paper is or is not less than 0.05.

Concluding remarks

These guidelines are not intended to cover all medical statistics but rather the statistical 

approaches most commonly used in clinical research papers in urology. It is quite possible 

for a paper to follow all of the guidelines yet be statistically flawed or to break numerous 

guidelines and still be statistically sound. On balance, however, the analysis, reporting and 

interpretation of clinical urologic research will be improved by adherence to these 

guidelines.

Funding support:

Supported in part by the Sidney Kimmel Center for Prostate and Urologic Cancers, P50-CA92629 SPORE grant 
from the National Cancer Institute to Dr. H. Scher, and the P30-CA008748 NIH/NCI Cancer Center Support Grant 
to Memorial Sloan-Kettering Cancer Center.

References

[1]. Scales CD Jr., Norris RD, Peterson BL, Preminger GM, Dahm P. Clinical research and statistical 
methods in the urology literature. The Journal of urology. 2005;174:1374–9. [PubMed: 
16145441] 

[2]. Lang TA, Altman DG. Basic statistical reporting for articles published in biomedical journals: the 
“Statistical Analyses and Methods in the Published Literature” or the SAMPL Guidelines. 
International journal of nursing studies. 2015;52:5–9. [PubMed: 25441757] 

Assel et al. Page 16

J Urol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[3]. Vickers AJ, Sjoberg DD, European U. Guidelines for reporting of statistics in European Urology. 
European urology. 2015;67:181–7. [PubMed: 25037638] 

[4]. Woolston C Psychology journal bans P-values. Nature. Nature: Nature; 2015.

[5]. Wasserstein RL, Lazar NA. The ASA’s Statement on p-Values: Context, Process, and Purpose. 
The American Statistician. 2016;70:129–33.

[6]. [10/22/2018] https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf Accessed

Assel et al. Page 17

J Urol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf

	Abstract
	The golden rule: Break any of the guidelines if it makes scientific sense to do so.
	Reporting of design and statistical analysis
	Follow existing reporting guidelines for the type of study you are reporting, such as CONSORT for randomized trials, ReMARK for marker studies, TRIPOD for prediction models, STROBE for observational studies, or AMSTAR for systematic reviews.
	Describe cohort selection fully.
	Describe the practical steps of randomization in randomized trials.
	The statistical methods should describe the study questions and the statistical approaches used to address each question.
	The statistical methods should be described in sufficient detail to allow replication by an independent statistician given the same data set.

	Inference and p-values (see also “Use and interpretation of p-values” below)
	Don’t accept the null hypothesis.
	P-values just above 5% are not a trend, and they are not moving.
	P-values and 95% confidence intervals do not quantify the probability of a hypothesis.
	Don’t use confidence intervals to test hypotheses.
	Take care interpreting results when reporting multiple p-values.
	Do not report separate p-values for each of two different groups in order to address the question of whether there is a difference between groups.
	Use interaction terms in place of subgroup analyses.
	Tests for change over time are generally uninteresting.
	Avoid using statistical tests to determine the type of analysis to be conducted.
	When reporting p-values, be clear about the hypothesis tested and ensure that the hypothesis is a sensible one.

	Reporting of study estimates
	Use appropriate levels of precision.
	Avoid redundant statistics in cohort descriptions.
	For descriptive statistics, median and quartiles are preferred over means and standard deviations (or standard errors); range should be avoided.
	Report estimates for the main study questions.
	Report confidence intervals for the main estimates of interest.
	Do not treat categorical variables as continuous.
	Avoid categorization of continuous variables unless there is a convincing rationale.
	Do not use statistical methods to obtain cut-points for clinical practice.
	The association between a continuous predictor and outcome can be demonstrated graphically, particularly by using non-linear modeling.
	Do not ignore significant heterogeneity in meta-analyses.
	For time-to-event variables, report the number of events but not the proportion.
	For time-to-event analyses, report median follow-up for patients without the event or the number followed without an event at a given follow-up time.
	For time-to-event analyses, describe when follow-up starts and when and how patients are censored.
	For time-to-event analyses, avoid reporting mean follow-up or survival time, or estimates of survival in those who had the event.
	For time-to-event analyses, make sure that all predictors are known at time zero or consider alternative approaches such as a landmark analysis or time-dependent covariates.
	When presenting Kaplan-Meier figures, present the number at risk and truncate follow-up when numbers are low.

	Multivariable models and diagnostic tests
	Multivariable, propensity and instrumental variable analyses are not a magic wand.
	Avoid stepwise selection.
	Avoid reporting estimates such as odds or hazard ratios for covariates when examining the effects of interventions.
	Rescale predictors to obtain interpretable estimates.
	Avoid reporting both univariate and multivariable analyses unless there is a good reason.
	Avoid ranking predictors in terms of strength.
	Discrimination is a property not of a multivariable model but rather of the predictors and the data set.
	Correction for overfit is strongly recommended for internal validation.
	Calibration should be reported and interpreted correctly.
	Avoid reporting sensitivity and specificity for continuous predictors or a model.
	Report the clinical consequences of using a test or a model.
	Interpret decision curves with careful reference to threshold probabilities.

	Conclusions and interpretation
	Draw a conclusion, don’t just repeat the results.
	Avoid using words such as “may” or “might”.
	A statistically significant p-value does not imply clinical significance.
	Avoid pseudo-limitations such as “small sample size” and “retrospective analysis”, consider instead sources of potential bias and the mechanism for their effect on findings.
	Consider the impact of missing data and patient selection.
	Consider the possibility and impact of ascertainment bias
	Do not confuse outcome with response among subgroups of patients undergoing the same treatment: patients with poorer outcomes may still be good candidates for that treatment.
	Be cautious about causal attribution: correlation does not imply causation.

	Use and interpretation of p-values
	Concluding remarks
	References

