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Abdominal aortic aneurysm (AAA) remains the second most
frequent vascular disease with high mortality but has no approved
medical therapy. We investigated the direct role of apelin (APLN)
in AAA and identified a unique approach to enhance APLN action
as a therapeutic intervention for this disease. Loss of APLN
potentiated angiotensin II (Ang II)-induced AAA formation, aortic
rupture, and reduced survival. Formation of AAA was driven by
increased smooth muscle cell (SMC) apoptosis and oxidative stress
in Apln−/y aorta and in APLN-deficient cultured murine and human
aortic SMCs. Ang II-induced myogenic response and hypertension
were greater in Apln−/y mice, however, an equivalent hyperten-
sion induced by phenylephrine, an α-adrenergic agonist, did not
cause AAA or rupture in Apln−/y mice. We further identified Ang
converting enzyme 2 (ACE2), the major negative regulator of the
renin-Ang system (RAS), as an important target of APLN action in
the vasculature. Using a combination of genetic, pharmacological,
and modeling approaches, we identified neutral endopeptidase
(NEP) that is up-regulated in human AAA tissue as a major enzyme
that metabolizes and inactivates APLN-17 peptide. We designed
and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2,
that is resistant to NEP cleavage. This stable APLN analog amelio-
rated Ang II-mediated adverse aortic remodeling and AAA forma-
tion in an established model of AAA, high-fat diet (HFD) in Ldlr−/−

mice. Our findings define a critical role of APLN in AAA formation
through induction of ACE2 and protection of vascular SMCs,
whereas stable APLN analogs provide an effective therapy for
vascular diseases.
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AAA is defined as an enlargement of the AA to >1.5-fold of
its normal size, and the overall AAA prevalence is estimated

to be 6% in men and 1.6% in women (1–3). The asymptomatic
nature of AAA makes the diagnosis extremely challenging,
whereas ruptured AAA accounts for ∼15,000 deaths in the
United States annually (4). Open surgical repair or endovascular
repair are the only treatment options for patients with advanced
AAA. Importantly, several modes of medical therapy have failed
to provide benefits in patients with AAAs (1–3). Therefore, a
better understanding of the cellular dysregulation and signaling
networks responsible for the formation and progression of AAA
is necessary for the discovery of novel and effective therapies.
Homeostasis of endothelial cells and vascular SMCs (VSMCs),

the major cell populations of the vascular wall, play a crucial role
in AAA development and disease progression. Activation of the
RAS and production of Ang II lead to adverse vascular remodeling

as well as many other cardiovascular pathologies (5). Meanwhile,
the APLN pathway has emerged as a major peptide hormone
pathway capable of exerting beneficial metabolic and cardio-
vascular effects (6–10). APLN is widely expressed in mammals
including in endothelial cells and VSMCs (11, 12). The APLN
precursor peptide is processed into several peptides including
APLN-17 (13, 14), the most potent APLN peptide in the car-
diovascular system. ACE2 is the major negative regulator of the
RAS and converts Ang II into the vasculoprotective peptide,
Ang 1–7 (5, 15–17).
In this study, we defined a marked susceptibility of the ab-

dominal aorta lacking APLN to the development of AAA in
response to Ang II. This was driven by reduced ACE2 levels,
deficiency, oxidative stress, and apoptotic cell death of VSMCs.
We identified NEP as a key enzyme that degrades and inacti-
vates the active APLN-17 peptide, developed a stable APLN-
17 analog resistant to NEP degradation, and established the

Significance

Vascular diseases remain a major health burden, and AAAs lack
effective medical therapy. We demonstrate a seminal role for
APLN in AAA pathogenesis based on loss-of-function and gain-
of-function approaches and included human vascular SMCs
and AA tissue obtained from patients. We identified NEP as
a dominant inactivating enzyme for native APLN-17. This
allowed us to design and synthesize a stable and bioactive
APLN analog resistant to NEP degradation that showed pro-
found therapeutic effects against AAA. Our study clearly de-
fines the APLN pathway as a central node in the pathogenesis
of AAA and elucidate a therapeutic strategy of enhancing the
APLN pathway by using a stable APLN analog to treat AAA.

Author contributions: W.W., J.C.V., Z.K., and G.Y.O. designed research; W.W., M.S., C.F.,
S.H., P.C., M. Paul, F.W., M. Poglitsch, M.B., and G.Y.O. performed research; W.W., C.F.,
S.T., D.S.M., N.P.G., J.C.V., and J.M.P. contributed new reagents/analytic tools; W.W., M.S.,
C.F., R.B., S.H., P.C., M. Paul, F.W., S.T., D.S.M., M. Poglitsch, M.B., Z.K., and G.Y.O. ana-
lyzed data; and W.W. and G.Y.O. wrote the paper.

Conflict of interest statement: Our apelin analogs have been submitted for patenting.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: gavin.oudit@ualberta.ca.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1900152116/-/DCSupplemental.

Published online June 12, 2019.

13006–13015 | PNAS | June 25, 2019 | vol. 116 | no. 26 www.pnas.org/cgi/doi/10.1073/pnas.1900152116

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1900152116&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gavin.oudit@ualberta.ca
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1900152116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1900152116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1900152116


therapeutic effects of this developed stable APLN analog in
preventing vascular disease and formation of AAA.

Results
Loss of APLN Enhances Susceptibility to AAA. Histological analyses
of human AAA revealed severely disrupted medial structure
characterized by fragmented elastin fibers associated with the
loss of SMCs and increased cell death in AAA specimens com-
pared with the nondiseased aorta (NDA) (Fig. 1 A and B and SI
Appendix, Fig. S1A and Table S1). These structural changes in the
aneurysmal aorta were associated with increased APLN levels
compared with nonaneurysmal aorta (Fig. 1 C and D and SI Ap-
pendix, Fig. S1B) and APLN was increased in Ang II-infused wild-
type (WT) (Apln+/y) mice aorta (Fig. 1 E and F). A similar pattern
was also seen in the thoracic aorta from patients with bicuspid
aortic valve and aortopathy (SI Appendix, Fig. S2A).
Ang II is a well-known mediator of adverse vascular remodeling

and is widely used in AAA models (18–21). The up-regulation of
APLN levels in the diseased aorta suggest that the APLN pathway
is responsive to disease. To determine the role of APLN in AAA,
we tested the effects of Ang II in WT (Apln+/y) and APLN
knockout (Apln−/y) mice. Four weeks of Ang II infusion resulted

in high incidence of severe AAA in the Apln−/y but not in parallel
WT mice (Fig. 2A). The AAA in Apln−/y mice was associated with
aortic dissection, intramural hematoma, and increased mortality due
to aortic rupture (Fig. 2 B and C). Among the 23 Apln−/y mice that
received Ang II, 5 died fromAAA rupture, 18 survived, and 12 of the
survivors developed AAA (Fig. 2 A–C). Vascular ultrasound imaging
showed progressive greater dilation, localized aneurysm formation,
and decreased compliance (aortic expansion index) in the abdominal
aorta of Ang II-infused Apln−/y compared with Apln+/y mice, whereas
no difference was observed between the genotypes at baseline (Fig.
2D). Consistent with the phenotypic changes in the abdominal aorta,
thoracic aorta also displayed adverse remodeling inApln−/y compared
with Apln+/y mice (SI Appendix, Fig. S2B). Histological analyses
confirmed disruption of the elastin lamellae in the aortic media and
excess fibrotic deposition in the adventitia in Apln−/y mice compared
with the uniform thickening of the aortic wall in Apln+/y mice in
response to Ang II (Fig. 2E). Overall, our findings demonstrate that
APLN is a major determinant in the pathogenesis of AAA.

APLN Deficiency Promotes Ang II-Induced Hypertension and VSMC
Stress. We next explored the mechanism for the enhanced sus-
ceptibility of APLN-deficient mice to Ang II-induced AAA. We
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Fig. 1. Up-regulation of APLN levels in vascular disease. (A and B) Adverse structural remodeling in surgical resected AAA specimens from patients as
revealed by Movat’s pentachrome (A) and anti-calponin staining to visualize SMCs (red, B) of NDA and AAA. The arrow heads in AAA images point to elastin
fiber fragments. L = aortic lumen. (B) Elastin fiber autofluorescence appears green. DAPI staining (blue) was used to visualize the nuclei. Averaged SMC
content (calponin-positive staining), and apoptotic SMCs (positive for TUNEL in green and DAPI staining) in the NDA and AAA are shown as boxes with scatter
plots on the right. n = 6/group. The arrows in AAA images point to apoptotic cells. (C) Immunostaining for APLN (red) with DAPI nuclear staining (blue), and
Western blots for APLN (D) in NDA and AAA specimens with averaged quantification of APLN levels shown in boxes with scatter plots; n = 7/group in C, n = 4/
group in D. (E) Immunostaining for APLN (red) with DAPI nuclear staining (blue), and Western blots (F) in abdominal aorta from WT mice receiving saline as
vehicle (Veh) or Ang II for 4 wk (1.5 mg/kg/d) with averaged quantification of APLN levels shown in boxes and scatter plots; n = 4/group. *P < 0.05 compared
with the NDA group; #P < 0.05 compared with the Veh group; A.U., arbitrary units.
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determined the impact of Apln deficiency on vascular function
and showed stronger Ang II-induced vasoconstriction in Apln−/y

mesenteric resistance arteries compared with Apln+/y arteries
associated with marked suppression of basal phospho-eNOS
(Ser1177) levels (Fig. 3A and SI Appendix, Fig. S3 A and B). In
vivo telemetric blood pressure measurement demonstrated that,
although baseline blood pressure was equivalent in both geno-
types, Ang II resulted in a greater increase in mean arterial blood
pressure (MABP) during the day and night in Apln−/y compared
with parallel Apln+/y mice (Fig. 3B). In contrast to Ang II effects,
the intrinsic myogenic response and maximal vasoconstriction in
response to high extracellular potassium was equivalent in both
genotypes (SI Appendix, Fig. S3 C–E). To test whether the Ang
II-induced higher blood pressure in Apln−/y mice accounted for
AAA formation, we used another hypertensive agent, phenyl-
ephrine (PE), to induce the same degree of hypertension. In-
terestingly, no AAA was observed in either Apln−/y mice or their
parallel control Apln+/y mice after 4 wk of PE infusion (SI Ap-
pendix, Fig. S4). These results demonstrate that the APLN-
deficient vasculature is intrinsically susceptible to the adverse
effects of Ang II-induced vascular remodeling.
We investigated the cellular basis for the enhanced suscepti-

bility to AAA formation in Apln−/y mice and found reduced
VSMC density, increased apoptotic cell death, and cleaved cas-
pase 3 levels following 2 wk (SI Appendix, Fig. S5A) and 4 wk
of Ang II infusion (Fig. 3 C and D). These cellular phenotypes
were concordant with a marked suppression of survival signaling

pathways, Akt and Erk1/2 pathways, whereas preventing Ang II-
mediated phosphorylation of p38 and JNK1/2 MAPK (SI Ap-
pendix, Fig. S6). These changes were associated with elevated
oxidative stress as evident by the increased number of dihydro-
ethidium (DHE)-positive cells in the aortic wall coupled with
elevated NADPH oxidase (Fig. 3 E and F and SI Appendix, Fig.
S5B) and in situ gelatinase activities reflecting the action of
matrix metalloproteinases 2 and 9 (SI Appendix, Fig. S7).
Next, we characterized the impact of APLN deficiency on

VSMCs in response to Ang II in vitro. In cultured primary aortic
SMCs from human and mouse aorta (SI Appendix, Fig. S8),
APLN expression was knocked down using specific APLN-
siRNA (siAPLN), whereas scrambled siRNA (siNS) was used
as the control (Fig. 4A). Ang II treatment increased Apln mRNA
levels in control human and mouse SMCs (siNS) but induced a
markedly higher rate of apoptotic cell death in the siAPLN
SMCs of both species (Fig. 4B) accompanied by elevated
oxidative stress and DHE levels in these SMCs (Fig. 4C). ACE2
has emerged as a major negative regulator of the RAS by converting
Ang II into Ang 1–7 (5). We identified Ang II-mediated tran-
scriptional up-regulation of Ace2 mRNA in human and murine
VSMCs (Fig. 4D) in association with increased ACE2 protein
levels in diseased murine aortas (Fig. 4 E and F). Suppression of
APLN markedly inhibited Ang II-mediated rise in Ace2 mRNA
and ACE2 levels (Fig. 4 D–F). These data demonstrate that Ang
II-induced AAA in Apln−/y mice is due to the intrinsic suscep-
tibility of the vasculature to adverse remodeling due to the lack
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of APLN-mediated up-regulation of ACE2 and its prosurvival
effects on VSMCs.

NEP Is a Key Enzyme that Inactivates APLN Peptides. Our results
suggest that enhancing APLN action may be a therapeutic
strategy for preventing or slowing the progression of AAA, a
disease lacking effective medical therapy. We hypothesized that
up-regulation of neutral endopeptidase (EC 3.4.24.11, NEP, and
neprilysin) (22, 23) in disease degrades endogenous APLN
thereby promoting AAA formation. Western blot analysis and
immunostaining showed that NEP levels are increased in dis-
eased murine and human aortas (Fig. 5 A and B and SI Appendix,
Fig. S9). We next examined the ability of NEP in inactivating
APLN peptides which could provide a fundamental mechanism
for the pathogenesis of AAA. Computer modeling and simula-
tion demonstrated a feasible model of APLN-17 binding with the
active catalytic site in NEP (His583, His587, and Glu646) result-
ing in the cleavage of APLN-17 at 2 distinct sites, Arginine8-
Lysine9 and Lysine9-Serine10 (Fig. 5C and SI Appendix, Fig.
S10). Other active site residues in NEP that facilitate the binding
of APLN-17 in the catalytic pocket are Arg102, Arg110, Glu533,
Val541, Ser546, Ser547, Ile585, Glu646, Ile648, Gly655, Ala657,
Tyr697, Val710, His711, and Arg717 (Fig. 5C). To confirm this
prediction, we used a biochemical assay and found that ex vivo
incubation of APLN-17 in human plasma with recombinant NEP
resulted in efficient degradation of APLN whereas the application
of a NEP inhibitor, sacubitrilat, elevated steady-state APLN levels
(Fig. 6A) with corresponding inverse changes detected in plasma
APLN 17 products, APLN 9–17 and APLN 10–17 peptides (SI

Appendix, Fig. S11). The APLN degradation products were com-
pletely inactive demonstrating a key functional role of NEP in
degrading APLN (Fig. 6B). We next tested the in vivo role of NEP
in metabolizing APLN-17. Genetic loss or pharmacological in-
hibition (by sacubitrilat) of NEP potentiated the hypotensive ac-
tion of APLN-17 (Fig. 6C) and markedly elevated plasma levels of
APLN-17 (Fig. 6D). These results highlight a dominant role for
NEP in metabolizing and inactivating the endogenous APLN-17
peptide, which implied the NEP resistant APLN analog is much
needed for therapeutic use in vivo.

APLN Analogs Have Improve Pharmacokinetics and Equivalent
Pharmacodynamics. Native APLN peptides are easily degraded
and have short half-lives (14, 24, 25). Therefore, we designed and
tested 35 different analogs and were able to identify and develop a
long-lasting stable APLN-17 analog NMeLeu9Nle15Aib16BrPhe17-
APLN-17 (abbreviated as APLN-NMeLeu9A2) (Fig. 7A) and
confirmed a marked improvement in plasma levels and hypo-
tensive effects (Fig. 7 B and C). The APLN receptor (formerly
known as APJ) is the only known native receptor for APLN
peptides in mammals (26). Binding studies with the murine
APLN receptor showed that murine Gi activation and β-arrestin
recruitment were maintained by APLN-NMeLeu9A2 at similar
levels compared with native APLNs, minimizing the possibility of
off-target effects of APLN analogs (Fig. 7 D–G). Our NEP re-
sistant APLN-17 analog (APLN-NMeLeu9A2) represents a thera-
peutic approach for AAAs.
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Therapeutic Effects of a Stable APLN Analog in an Experimental
Model of AAA. To test the therapeutic potential of our synthetic
APLN analog designed to be resistant to NEP-mediated degradation,

we utilized a well-established model of an AAA. We used a murine
model lacking low-density lipoprotein receptors (Ldlr−/−) given a
HFD and Ang II infusion (21, 27). Although the placebo-treated
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group (Ldlr−/−-Ang II + placebo) showed a 50% mortality mainly
due to aortic rupture in the abdominal region, treatment with the
APLN analog (Ldlr−/−-Ang II + APLN-NMeLeu9-A2) had no

incidence of aortic rupture after 4 wk of Ang II infusion (Fig. 8A).
Vascular ultrasound showed that the administration of APLN-
NMe17A2 prevented aortic lumen dilation and preserved aortic
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compliance (expansion index) (Fig. 8B). Structural analysis of the
abdominal aorta provided definitive evidence that Ang II-
mediated aortic pathology in Ldlr−/− mice was prevented by treat-
ment with APLN-NMe17A2. Importantly, mice receiving APLN-
NMeLeu9-A2 preserved SMC density and elastin structure, and
reduced apoptosis (TUNEL and cleaved caspase 3 levels) in the
aortic wall in response to 2 and 4 wk of Ang II infusion (Fig. 8 C
and D). Intriguingly, APLN analog supplementation increased
ACE2 levels in the aortic wall (Fig. 9 A and B), which has been
reported to have vasculoprotective effects (15). In isolated
VSMCs, Ang II-mediated production of reactive oxygen species
determined by DHE fluorescence and NADPH oxidase activity
were markedly attenuated by APLN-NMe17A2 (Fig. 9 C and D).
Our results highlighted a dominant role of the APLN pathway in
AAA and support the use of a stable APLN analog as a therapy
for AAA (Fig. 9E).

Discussion
Vascular diseases remain a major health burden, and AAs lack
effective medical therapy representing a progressive disease state
with a life-threatening but unpredictable risk for rupture (1, 2).
Currently, no pharmacological intervention effectively inhibits

the progressive expansion of human AAAs or prevents aortic
rupture (28, 29). In this study, we demonstrate a seminal role for
APLN in AAA pathogenesis using loss-of-function and gain-of-
function approaches. Using an Ang II-induced model of an
AAA, loss of APLN resulted in greater adverse remodeling and
propensity to develop an AAA, aortic rupture, and increased
mortality. Given the short half-life of native APLN peptides, we
identified NEP as a dominant inactivating enzyme for APLN-17.
This allowed us to design and synthesize a stable and bioactive
APLN analog that is resistant to NEP degradation, active in both
blood pressure in vivo as well as in vitro APLN receptor binding
studies; and it showed profound therapeutic effects for AAAs.
In aortic SMCs, APLN showed a dose-dependent protective

effect against Ang II-induced apoptosis and reactive oxygen spe-
cies stress, whereas loss of APLN exacerbated these responses,
consistent with a dominant role of apoptotic loss of VSMCs in the
progression of AAAs. A well-recognized characteristic in human
AAAs is the increased abundance and activation of matrix met-
alloproteinases in the diseased aortic tissues that was modulated
by the APLN pathway likely in response to changes in oxidative
stress. APLN action on endothelial cells including promoting
angiogenesis (6, 11, 12), APLN-mediated nitric oxide vasodilation
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(11), and direct antagonism of the Ang II/Ang II type 1 receptor
(10) highlights a key role of endothelial homeostasis as a critical
pathway protecting the aorta from AAA formation (29). Ang II
increases vascular tone, and excessive activation causes systemic
hypertension, which is a major risk factor for AAA, atherosclerosis,
and cardiac hypertrophy. The Ang II-induced vasoconstriction was
potentiated in Apln−/y arteries without affecting passive elasticity
and constrictive response to the α-adrenergic agonist PE. Indeed,
Ang II-induced greater hypertension in Apln−/y mice compared with
WT mice; however, this finding also poses a complexity in un-
derstanding the role of APLN in Ang II-induced adverse aortic
remodeling because of the potential involvement of hypertension.
As such, we used a PE-induced hypertension model and cultured
murine and human aortic SMCs to demonstrate the specific sus-
ceptibility of APLN-deficient VSMCs to the pathological effects
of Ang II.
Therapeutic supplementation with our stable APLN analog

exhibited protective effects against AAA formation and up-
regulated ACE2 which promotes vascular protective remodeling.
Indeed, decreased ACE2 in the Apln−/y mesenteric artery could
contribute to the increased sensibility of these mice to Ang II-
induced AAA which highlights the vasculoprotective effect of
Ang 1–7 (30). Basal ACE2 levels were lowered in the Apln−/y

aorta compared with WT and failed to increase in response to
Ang II. As such, the Ang II-mediated up-regulation of APLN in
WT mice, which, in turn, up-regulates ACE2 leading to the

conversion of Ang II into the protective Ang 1–7 peptide (5, 30)
represents a critical negative feedback mechanism to confer
vascular protection. The beneficial effects of APLN extend be-
yond the ACE2 pathway since Ang II infusion in Ace2−/y mice
does not recapitulate the severe phenotype observed in the
Apln−/y mice. Indeed, we identified a unique susceptibility of the
APLN-deficient VSMCs to Ang II-mediated apoptotic cell
death. Apln-deficiency reduced Ang II-mediated phosphoryla-
tion of Akt and Erk1/2 in the aorta consistent with the ability of
the APLN peptide to activate a classic G protein coupled re-
ceptor leading to PI3 kinase activation and phosphorylation of
Akt and Erk1/2 pathways (6, 14, 31).
Enhancing APLN action offers promising therapeutic effects

on the aorta. We show that cleavage of APLN-17 by NEP
completely inactivates this peptide, and the marked increase in
NEP in a human aorta with AAA is likely a key mechanism of
the progression of AAA. Computational modeling of the in-
teraction between NEP and APLN-17 showed that the catalytic
residues that promote the cleavage of the peptide, and other
active site residues that assist APLN-17 binding are situated in
the C-terminal region of the enzyme which implicate a domain
specific enzyme catalysis. MICU2, a regulatory subunit of the
mitochondrial calcium uniporter complex is protected from Ang
II-mediated injury to the abdominal aorta associated with a
marked up-regulation of Apln expression (20), whereas APLN
also mediates protective effects in atherosclerosis (10) consistent
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with a vascular protective effect of APLN peptides. Our study
clearly defines the APLN pathway as a central node in the
pathogenesis of AAAs and the therapeutic strategy of enhancing
the APLN pathway in treating AA. Enhancing APLN improves
metabolic function and prevents sarcopenia and aging-related
loss in muscle function (8), protects the failing heart (9, 32, 33)
and pulmonary vasculature in patients with pulmonary arterial
hypertension (7), and, as such, APLN analogs may confer unique
therapeutic effects beyond AAAs.

Materials and Methods
All animal experiments were carried out in accordance with the Canadian
Council on Animal Care Guidelines, and animal protocols were reviewed and
approved by the Animal Care and Use Committee at the University of Alberta.
Diseased and nondiseased human abdominal aortic specimens were collected

at the University of Rochester, NY. Written consent was obtained from all par-
ticipants, and our study was approved by the University of Rochester, Research
Subjects Review Board. Ascending thoracic aorta from patients with bicuspid
aortic valve, aortic dilation, and nondiseased aorta were collected as described
before (34, 35). Materials and experimental procedures for animal models and
protocols, peptide analysis and metabolism, RNA isolation, Taqman PCR, cell
culture, tissue and cellular staining and immunofluorescence, flow cytometry,
ultrasonic vasculography, vascular myography, blood pressure measurement,
computer modeling, receptor binding, protein isolation, Western blotting, and
quantification and statistical analysis are described in SI Appendix, SI Materials
and Methods.
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