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Abstract

Building a data-driven model to localize the origin of ventricular activation from 12-lead 

electrocardiograms (ECG) requires addressing the challenge of large anatomical and physiological 

variations across individuals. The alternative of a patient-specific model is, however, difficult to 

implement in clinical practice because training data must be obtained through invasive procedures. 

Here, we present a novel approach that overcomes this problem of the scarcity of clinical data by 

transferring the knowledge from a large set of patient-specific simulation data while utilizing 

domain adaptation to address the discrepancy between simulation and clinical data. The method 

that we have developed quantifies non-uniformly distributed simulation errors, which are then 

incorporated into the process of domain adaptation in the context of both classification and 

regression. This yields a quantitative model that, with the addition of 12-lead ECG data from each 

patient, provides progressively improved patient-specific localizations of the origin of ventricular 

activation. We evaluated the performance of the presented method in localizing 75 pacing sites on 

three in-vivo premature ventricular contraction (PVC) patients. We found that the presented model 

showed an improvement in localization accuracy relative to a model trained on clinical ECG data 

alone or a model trained on combined simulation and clinical data without considering domain 

shift. Further, we demonstrated the ability of the presented model to improve the real-time 

prediction of the origin of ventricular activation with each added clinical ECG data, progressively 

guiding the clinician towards the target site.
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I. INTRODUCTION

VEntricular arrhythmia involves abnormal electrical activity inside the ventricles, which 

predisposes the heart to mechanical catastrophe. Localizing the origin of abnormal 

ventricular activation is of therapeutical importance in the treatment of many ventricular 

arrhythmias, such as premature ventricular contraction (PVC) and scar-related ventricular 

tachycardia [1], [2]. Because the origin of ventricular activation largely determines the QRS 

morphology of 12-lead ECG [2], one current technique involves physically stimulating 

multiple myocardial sites until finding the site at which pacing reproduces the QRS 

morphology of the arrhythmia (i.e., the pace-matched site). This practice – known as pace-

mapping – is of a trial-and-error nature and relies on a clinicians ability to rapidly interpret 

ECG data. A quantitative model that uses 12-lead ECG data to automatically and 

progressively guide the clinician to the origin of ventricular activation in real time has the 

potential to improve the accuracy and efficiency of localizing the site of pace-match.

One potential strategy is to train a model from pace-mapped ECG data with labeled sites of 

pacing from a large cohort of patients (i.e., a population model). This approach was 

pioneered in [3] where a support vector machine (SVM) was used to localize the origin of 

ventricular activation into ten predefined segments of the left ventricle (LV). Recently, 

multiple linear regression was used to predict the 3D coordinate of the origin of ventricular 

activation from 12-lead ECG [4]. However, there exist large anatomical and physiological 

variations in ECG data across individuals, which lead to a limited accuracy when a 

population model is applied to a new patient. Furthermore, a population model lacks the 

flexibility to be improved by new data from a specific patient of interest, making it 

unsuitable for providing the clinician with real-time progressive guidance towards the target 

site.

An alternative strategy is to build a customized prediction model for each patient that can be 

improved by each added pace-mapping data on the patient. However, if relying on pace-

mapping data only, a sufficient number of locations will need to be paced on each patient 

before the model can make accurate predictions. Moreover, as shown in [4], the prediction 

accuracy is heavily reliant on the distance between the training sites and the actual target 

site. This strategy is impractical to implement in clinical practice and defeats the models 

intended purpose of guiding pace-mapping. One way to overcome this limitation is to utilize 

ECG data generated from image-based patient-specific simulation, which incorporates both 

rich physiological knowledge and patient-specific anatomical information derived from 

tomographic scans (e.g., CT or MRI). This has been exploited in existing works [5], [6], 

where a patient-specific ECG database of ectopic activations is generated from image-based 

simulation and used to develop methods, such as template matching, to localize the origin of 

ventricular activation given clinical ECG data. The abundance of simulation data potentially 

provides knowledge about ECG originating from all possible locations on a ventricle, 

without requiring any pace-mapping to be carried out on a patient to train a model. However, 

the accuracy of this type of model can be affected by the discrepancy between the simulated 

and real ECG data due to assumptions, simplifications, and potential errors in the simulation 

model.
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In the present study, we associate the above challenge with a common machine-learning 

scenario where there is limited data for training in the domain of interest (target domain) but 

an abundance of data in a related domain (source domain) [7]. Domain adaptation is a sub-

field of transfer learning that addresses this challenge by considering the data distributional 

shifts between the source and target domain. Significant progress has been made in domain 

adaptation, especially in the field of computer vision [7]. For example, in [8], a feature 

transformation matrix between the source and target domains was learned using metric 

learning. Subsequently, a max-margin domain transform (MMDT) method was presented to 

jointly learn the matrix of feature transformation and the parameter of an SVM classifier [9]. 

Among existing works in domain adaptation, however, little attention is given to potential 

errors that may be non-uniformly distributed within the source data. We argue that, in the 

application context of this study, there is a potential presence of errors that vary across the 

simulation data, which needs to be quantified and incorporated into domain adaptation.

Specifically, using domain adaptation, we transfer the knowledge from simulated ECG data 

to minimize the need for pace-mapping data in predicting the origin of ventricular activation. 

To account for potential errors in simulation data, we have devised a novel strategy to 

measure the quality of simulation data utilizing a small amount of clinical data. In a 

classification setting, we incorporate simulation errors into the SVM-based MMDT 

algorithm [9] and use it to localize the origin of ventricular activation into one of 24 

predefined ventricular segments. In a regression setting, we incorporate simulation errors 

into the metric learning algorithm presented in [8] and use it to predict the 3D coordinate of 

the origin of ventricular activation. This allows us to introduce a scheme to improve the 

model with each added clinical ECG data, guiding the clinician progressively closer to the 

target site in real time.

We evaluate the presented method on three PVC patients in localizing a total of 75 pacing 

sites from 12-lead ECG [10]. Then, we compare the results with three alternative approaches 

to patient-specific modeling: a model trained only on clinical ECG data, a model trained on 

combined simulation and clinical data without considering domain shift, and a model trained 

on combined simulation and clinical data with domain adaptation but without addressing 

potential simulation errors. In this comparison, we investigate the effect of using a varying 

number of clinical ECG data (4–15) for training. Further, we retrospectively emulate the 

proposed scheme of progressive prediction on the three patients. Finally, we compare the 

localization accuracy of the presented method with that obtained by a physics-based 

approach, known as electrocardiographic imaging (ECGI), on the same patients [11]. Our 

results show that the presented method has the potential to provide real-time guidance for 

localizing the origin of ventricular activation within a small number of pacing sites. We 

make the following key contributions in this paper:

• We introduce the concept of domain adaptation to transfer knowledge from 

abundant simulation data to a small amount of clinical data, in order to localize 

the origin of ventricular activation from 12-lead ECG data.

• We devise a novel method to quantify and incorporate non-uniformly distributed 

simulation errors to improve the accuracy of domain adaptation.
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• We introduce and emulate a strategy to progressively guide clinicians to the 

origin of ventricular activation in real time.

• We demonstrate the efficacy of incorporating knowledge from simulation data 

while addressing the discrepancy between simulated and clinical data through a 

comprehensive comparison study.

• We compare the performance of the presented data-driven approach to a physics-

based approach in localizing the origin of ventricular activation on the same 

dataset, with an in-depth discussion of the differences in performance

II. IMAGE-BASED ECG SIMULATION WITH ERROR QUANTIFICATION

The presented method consists of two main elements. First, using a patient-specific model, a 

large set of ECG data is simulated from ventricular activation originating at various locations 

of the ventricles. Second, using a small amount of clinical data, the quality of the simulated 

ECG data is measured according to its origin of ventricular activation.

A. Image-based Patient-specific ECG Simulation

The process of generating a simulated 12-lead ECG database includes three main steps. 

First, a patient-specific anatomical model of the heart and torso is extracted from medical 

images. Second, a personalized cardiac electrophysiological model is used to simulate 

activations originating from all possible ventricular locations. Third, for each simulated 

activation within the heart, 12-lead ECG is simulated on the torso based on electromagnetic 

theory.

1) Image-based Personalized Anatomical Models: From cardiac tomographic 

scans (e.g., CT or MRI) of a patient, a 3D bi-ventricular model is first customized to the 

patient. a 3D fiber structure of the patient-specific ventricular model is constructed to allow 

anisotropic conduction. Fiber orientations at the epicardial and endocardial surfaces are 

mapped from a canine ventricular fibrous model established in [12]. Fiber orientations inside 

the myocardium are then interpolated from those on the surface, assuming a linear 

counterclockwise rotation [13].

Because ECG data are affected by the anatomical shape of the torso and the position of 

surface electrodes [14], a patient-specific torso model is also extracted from the tomographic 

scans of a patient (subject). We assume the torso to be an isotropic and homogeneous 

volume conductor.

2) Personalized Cardiac Electrophysiological Modeling: On the patient-specific 

ventricular model, activation sequences originating at different ventricular locations are 

simulated using the macroscopic mono-domain Aliev-Panfilov model [15]:

∂u
∂t = ∇(D∇u) − cu(u − a)(u − 1) − uz
∂z
∂t = ∈ (u, z)( − z − cu(u − a − 1))

(1)
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where u stands for the transmembrane potential (TMP), z for the recovery current, and D for 

the diffusion tensor. ǫ, c, and a are parameters that control local TMP shape. This model is 

solved numerically on the patient-specific ventricular model using the mesh-free method as 

detailed in [16]. A large set of simulation data is generated using each node in the 

ventricular mesh as the origin of ventricular activation. On average, we consider a 

ventricular mesh with a spatial resolution of ∼5-mm. This is the size of a typical ablation 

lesion and is the highest resolution that is clinically necessary to localize an origin of 

ventricular activation.

3) Simulation of Patient-specific ECG Database: On the patient-specific heart-

torso model, the relationship between the TMP and the surface ECG is governed by the 

quasi-static electromagnetic theory:

σk ∇2ϕtk(r) = ∇( − Di(r)∇u(r)), ∀r ∈ Ωh (2)

σt ∇
2ϕt(r) = 0, ∀r ∈ Ωt /h (3)

where Di is the intracellular conductivity tensor, σk is the bulk conductivity, σt is the torso 

conductivity, φtk is the extracellular potential in the myocardium, φt is the body surface 

potential, Ωh is the domain of the ventricular mesh, and Ωt/h is the domain between the 

ventricular surfaces and body surface. These equations are solved on the 3D patient-specific 

heart-torso model using the combined Boundary-Element and Meshfree strategy as 

described in [16].

Twelve-lead ECG can be extracted from the simulated body-surface ECG maps, producing a 

simulated database of 12-lead ECG with known origin of ventricular activation. Because the 

Aliev-Panfilov model is unitless, the simulated ECGs are scaled in both amplitude and time 

to a physiologically meaningful range. The amplitude is scaled by 110φ 90 to bring the 

Aliev-Panfilov model output (0 1) to the physiological range of TMP ( 90 20 mV). For 

temporal scaling, a mean ratio is calculated between QRS durations in simulated and clinical 

ECG data, which is then applied to all simulated ECGs.

B. Quantification of ECG Simulation Quality

A general discrepancy exists between simulated and clinical data due to assumptions and 

simplifications involved in simulation models. This discrepancy, however, may vary 

spatially. As a result, simulated ECG data originating from certain ventricular locations may 

be less similar to clinical ECG data than to data originating from other ventricular locations. 

In our dataset, simulated ECG data originating within the septum are in general observed to 

be less similar to their clinical counterparts, compared with ECG data originating from other 

ventricular locations. Therefore, we propose to model this spatially non-uniform quality of 

simulation by utilizing a small amount of available clinical ECG data obtained during 

pacemapping.
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We denote the simulated data (source domain DS ) as {xi
s}

i = 1
N

 with labels {yi
s}

i = 1
N

 and target 

data (target domain {x j
t }

j = 1
M

 with labels {y j
t }

j = 1
M

, where the number of simulated data N is 

significantly larger than the number of clinical data M. We measure the quality of the 

simulated ECG data as a function of the origin of the ventricular activation in the following 

three steps:

1. Measure the quality of simulated ECG data using available clinical 
data: Correlation coefficients between a paced ECG and the target ECG from the 

ventricular tachycardia (VT) are a primary metric used to identify the pace-matched site in 

conventional pace-mapping [17]. We therefore base the quantification of simulation quality 

on this metric. Given a pair of simulated x j
s and clinical ECG data x j

t  originating from the 

same location, we measure their similarity using the Pearson correlation coefficient: 

ρj = cov(x j
s,x j

t )/(σ(x j
s),σ(x j

t )) . This yields a partial map that shows how the quality of the 

simulation data varies in space at limited locations where clinical ECG data are available.

2. Learn the spatially-varying similarity map across the ventricles: To estimate 

the quality of the simulation data at locations where clinical ECGs are not available, we train 

a regression model for the similarity measure ρ(x, y, z) as a function of the spatial coordinate 

(x, y, z). We use support vector regression (SVR) model with the radial basis kernel [18]. 

Trained with ρj at limited spatial locations obtained in Step 1, it generates the similarity 

measure across the ventricles.

3. Scale the similarity map to emphasize the penalty for large errors: We 

intend to utilize the similarity map to recognize and penalize inaccurate simulation data in 

domain adaptation. We argue that simulation data of reasonable quality (e.g., ρ(x, y, z) ≥ 0.5) 

should be treated similarly, whereas a drastically increasing penalty should be applied as the 

quality decreases below that range (e.g., ρ(x, y, z) < 0.5). We thus scale ρ(x, y, z) with a 

modified sigmoid function: Ψ(x, y, z) = 1/(1 + e−10ρ(x, y, z) − 0.3) which can be visualized in 

Fig. 1. Evaluating Ψ(x, y, z) on each node in the cardiac mesh yields us the quality measure 

{Ψi
s}

i = 1
N

 for all simulated ECG data.

Intuitively, as more clinical data become available, the learned similarity map will more 

faithfully reflect the actual distribution of the ECG simulation error according to the origin 

of ventricular activation. Fig. 2 shows an example of the agreement between the actual 

simulation quality at selected sites and the learned similarity map as more clinical data are 

used for training. Note that the low similarity between the simulated and clinical data at 

selected points C and D was not captured in the learned similarity map until more clinical 

ECG data were incorporated for training.

III. DOMAIN ADAPTATION WITH UNCERTAINTY

In this section, we modify existing domain adaptation methods using the similarity map 

obtained in section II-B to address the shift between simulated and clinical ECG data during 
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knowledge transfer. We consider the localization of the origin of ventricular activation in 

two settings. First, we predict the exact 3D coordinates of the origin of ventricular activation 

using a regression model, which also allows for the development of progressive prediction 

with each added pacing site. Second, we localize a predefined anatomical segment as the 

origin of activation in the form of a classification solution.

A. Regression-based Domain Adaptation

Regression-based domain adaptation has not been well investigated, except in a theoretical 

study in [19]. Here, we present a distance-based approach to first learn an optimal distance 

metric between the simulated and clinical domain, and we then use the learned distance 

metric in combination with the k-nearest-neighbor (kNN) method to predict the coordinates 

of the activation origin of ventricular activation from ECG data.

To learn the distance metric between a source and target domain, Saenko et al [8] presented 

an approach based on the concept of Mahalanobis distance as described in [20]. Given data 

in the source domain x j
s and target domain x j

t , their Mahalanobis distance can be measured 

by dW(xi
s, x j

t ) = (xi
s − x j

t )TW(xi
s − x j

t ), parameterized by a positive-definite matrix W. To learn 

W from training data, dW(xi
s, x j

t ) is regularized to be close to a given Mahalanobis distance 

function parameterized by W0, with a set of similarity and dissimilarity constraints [20]:

min
w

KL(p(x; W0) (p(x; W))

s . t . dW(xi
s, x j

t ) ≤ u yi
s = y j

t

dW(xi
s, x j

t ) ≥ l yi
s ≠ y j

s

(4)

where KL is the Kullback-Leibler divergence, and p(x; W) = 1
Z exp − 1

2dW(x, μ)  is a 

multivariate Gaussian, with Z being the normalizing constant and W−1 the covariance of the 

distribution. W0, per the standard definition of Mahalanobis distance, is often taken as the 

covariance matrix between the source and target data. The distance between W0 and W is 

minimized by minimizing the Kullback-Leibler divergence between the two multivariate 

Gaussian [8]. The constraints specify that two data points sharing the same label should have 

a dW smaller than a relatively small value of u; otherwise, their dW should be larger than a 

relatively large value of l. In practice, for example, u can be assigned as the 5th percentile 

value of all Euclidean distances between the source and target data, and l as the 95th 

percentile value.

While the similarity/dissimilarity between two data points is in a binary fashion in the 

setting of classification, it is in a continuous fashion in the setting of regression. Here, we 

argue that the dissimilarity between the ECG data originating from two ventricular locations 

should be proportional to the distance between the two origins. Therefore, we modify the 

dissimilarity lower bound of l to be a function of the distance between two origins: 
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l(di j
st) =

(B − A)(di j
st − mindst)

(max dst − min dst)
+ di j

st, where di j
st is the Euclidean distance between a source origin 

(coordinate yi
s) and a target origin (coordinate y j

t ) of interest, dst includes Euclidean distances 

between every pair of source and target data, and B and A are pre-defined ranges of lower 

bound in terms of the percentile values in dst. Here, we use 80th and 95th percentiles. In this 

way, the closer the pair is in the origin of activation, the smaller the lower bound will be for 

their dissimilarity measure.

For source and target ECG originating from the same location, the similarity upper bound u 

holds with the exception that we also take into account the simulation quality: if Ψi
s between 

xi
s and x j

t  is lower than a certain threshold, we will remove it from the similarity constraint. 

This gives us a modified optimization problem:

min
w

KL(p(x; W0) (p(x; W))

s . t . dW(xi
s, x j

t ) ≤ u yi
s = y j

t , Ψi
s ≥ ∈

dW(xi
s, x j

t ) ≥ l(di j
st) yi

s ≠ y j
t

(5)

where ∈ = N 5
100 + 0.5 Ψ(x, y, z) and N is the number of source data. This is solved as 

described in [20].

Progressive Prediction for Real-time Guidance: The ultimate context in which we 

envision the application of the proposed regression model is to provide real-time, continuous 

guidance in the process of pace-mapping We thus present a scheme in which, at the 

beginning of the pace-mapping procedure, an initial prediction of the location of the origin 

of ventricular activation will be obtained using only the simulation data. The clinician will 

pace the predicted location and examine the morphology of the generated clinical 12-lead 

ECG. The model will be updated by the newly obtained 12-lead ECG data using the domain 

adaptation regression technique described above. A new prediction will be made and new 

pace-mapping data will be collected at the predicted site. This process will continue until the 

clinician finds a pace-matched site of interest. As more pace-mapping data become available 

for adapting the model from the simulated data, the presented model is expected to guide the 

clinician progressively toward the target site.

B. Classification-based Domain Adaptation

The classification setting involves localizing the origin of ventricular activation into one of 

several predefined anatomical segments of the ventricles – a problem frequently considered 

in previous studies [3]. In this setting, we use a classic domain adaptation technique known 

as the MMDT [9]. It simultaneously learns a linear transformation W between the source 

and target domain in a similar way to that described in [8], along with an SVM optimal for 

the source and transformed target data, formulated for a K-class problem as:
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min
w,θk, bk

J(W, θk, bk) = 1
2 W F

2 + Σ
k = 1

K 1
2 θk 2

2

+ CS Σ
i = 1

ns
ζ yi

s, xi
s

1
,

θk

bk

+CT Σ
i = 1

nT
ζ yi

t, W ⋅ xi
t

1
,

θk

bk

(6)

where the affine hyperplane θk and offset bk are parameters of the SVM, and k = 1, 2, · · · , 
K. ζ() is the hinge loss with the corresponding parameters CS and CT. In the standard 

MMDT, a predefined value of CS and CT is used for hinge losses across all source and target 

data, respectively. Here, we propose that the parameter controlling hinge losses from the 

source domain vary with each simulated ECG dataset. Specifically, we multiply CS by the 

quality measure Ψi
s that is associated with each individual xi

s as defined in section II-B. This 

gives us a modified cost function:

min
w,θk, bk

J(W, θk, bk) = 1
2 W F

2 + Σ
k = 1

K 1
2 θk 2

2

+ CS Σ
i = 1

ns
Ψi

s . ζ yi
s, xi

s

1
,

θk

bk

+CT Σ
i = 1

nT
ζ yi

t, W ⋅ xi
t

1
,

θk

bk

(7)

In this way, a high-quality simulation ECG signal with Ψi
s ≈ 1 will be unaffected during the 

optimization, whereas a low-quality ECG signal with 0 < Ψi
s < 1 will have a reduced effect 

on the optimization of SVM parameters, until close to having no effect as Ψi
s approaches 0. 

Following [9], equation (7) is solved by an iterative procedure. In each iteration, SVM 

parameters are first estimated using both source data and target data transformed by the 

previously learned W. Then, W is updated as described in [9].

IV. EXPERIMENTS AND RESULTS

In this section, we first describe the simulated and clinical data used in the experiments, as 

well as the data processing procedure. Next, we compare the performance of the presented 

method with three alternative patient-specific prediction models in terms of both 

classification and regression settings. Then, we present results from retrospectively 

emulating the use of the presented regression method in guiding ablation procedures. 

Finally, we compare the presented method with an alternative physics-based approach on the 

same dataset.
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A. Data and Data Processing

The presented method is evaluated on 12-lead ECG data collected during endocardial pacing 

from three PVC patients, made available through the Experimental Data and Geometric 

Analysis Repository (EDGAR) database [10]. For each patient, there is a mean of 25±6 

ECG data points from distinct sites of endocardial pacing with known coordinates. From 

each pacing site, a mean of 28 ± 8 ECG beats are available.

Patient-specific heart-torso geometry models are also available for each patient, from which 

the simulated 12-lead ECG is generated as described in section II-A. On average, 1637 35 

ECG data are simulated for each patient, corresponding to origins of ventricular activation 

evenly distributed throughout the 3D myocardium at a resolution of 4.9 ± 0.8 mm.

QRS integrals are extracted from each beat of the clinical ECG data and simulated ECG 

data. To capture the morphology of the QRS complex, we define features in the form of 

incremental integrals at 10-ms intervals until reaching a maximum of 120-ms. This results in 

a 12-dimensional feature vector on each ECG lead and, across 12 leads, a 144-dimensional 

feature vector. Fig.3 provides two representative examples of histograms of the extracted 

ECG features in simulated versus clinical data: Even though the amount of clinical data is 

limited, the shift in data distribution between the two domains is visible, underscoring the 

need for domain adaptation techniques.

For classification, the origin of ventricular activation is assigned a label as one of the 26 

segments, with 17 segments on the left ventricle following the American Heart Association 

standard [21] and 9 segments on the right ventricle as shown in Fig 4 following [22]. For 

regression, the 3D coordinates of the origin of ventricular activation are used.

B. Classification Results

In the classification setting, the presented model (referred to as MMDT with error modeling) 

is compared with three alternative patient-specific modeling approaches: a standard SVM 

trained on clinical data only, a standard SVM trained on combined simulation and clinical 

data without considering domain adaptation, and an SVM trained with the standard MMDT 

method for domain adaptation but without considering simulation errors. All four models are 

trained and tested using the same software package [23]. For the standard SVMs in the first 

two models, the parameter C for hinge losses is tuned using 5-fold cross-validation. 

Parameter C from the second model, tuned on simulation data, is then used as CT for the two 

MMDT-based models with CS set to be 0.05.

Intuitively, when a good number of clinical ECG data exist for training, a high accuracy can 

be expected from models based on clinical data. However, as the number of clinical data 

used for training decreases, this accuracy will decrease. Therefore, we repeat the comparison 

study as the number of clinical data for training decreases from 25 to 4 for subject 1, and 

from 15 to 4 for subject 2 and subject 3. In each experiment, the model is trained on a 

randomly selected set of the specified size, while another randomly selected set of 

approximately 15% subject-specific data is held out for testing. This process repeats 20 

times for each specified training data set size to obtain a measure of mean accuracy with the 

associated variance.
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For each given model, the percentage of time that the prediction of the origin of ventricular 

activation is correct (i.e., that the origin is localized into the correct segment) is reported as 

the top-one hit. We have observed that, when the prediction of the origin of ventricular 

activation is incorrect, the predicted segment tends to lie immediately adjacent to the actual 

(correct) segment. Thus, we also report the percentage of time that the origin of ventricular 

activation is localized into the correct segment or into the segment immediately adjacent to 

the correct segment (top-two hit). Fig. 5 shows the mean localization accuracy of each 

model for the three subjects.

As shown, a model trained exclusively on clinical data has a reasonable accuracy when the 

number of training data is not too low (solid green line). However, this accuracy quickly 

drops as the number of clinical data decreases. By incorporating simulation data without 

considering the domain shift between simulation and clinical data (black dotted line), the 

classification accuracy shows a general improvement. However, the amount of improvement 

varies from subject to subject, which might be related to varying levels of agreement 

between simulation and clinical data. Note that the amount of improvement is significant 

when the number of clinical data is small. With modeling approaches that include domain 

adaptation (blue dotted line) and domain adaptation that accounts for the non-uniform 

simulation errors (the presented method; red dotted line), we see further improvements in 

accuracy. The presented method, in general, achieves the highest accuracy except in 

occasional cases. The improvement margins that these two methods yield, however, again 

vary from case to case.

C. Regression Results

In the regression setting, similarly, the presented method is compared with the following 

three models: a standard KNN using clinical ECG data only, a standard KNN using 

simulation data only, and a KNN based on the optimal distance metric learned between 

simulated and clinical domain using equation (5) but without removing data with low 

simulation quality (Ψi
s < ∈ ) from the similarity constraint. For all KNNs, no kernels are 

used and the number of neighbors is set empirically to be n2 , where n is the number of 

samples in the training set.

The comparison study is carried out in a similar setting to that described in section IV-B, 

repeated as the number of clinical data used in training decreases and repeated for random 

splitting of training and test data in each case. The regression accuracy is reported in terms 

of the Euclidean distance between the predicted and actual origin of activation. Fig. 6 shows 

the mean prediction error as a function of the number of clinical data used in training for 

each of the three subjects.

Similar to the observation in the classification setting, when only clinical data are available 

for training (red bar), the mean prediction error increases substantially as the number of 

clinical data decreases. The incorporation of simulation data results in a moderate reduction 

in the prediction error when the number of clinical data is small (blue bar). However, when 

the number of training clinical data is not low, the prediction error is significantly higher. 

This demonstrates that the difference between simulated and clinical data may have a more 

Alawad and Wang Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant effect on regression than on classification. Introducing domain adaptation results 

in a further reduction in prediction error in most of the cases (green bar), although the error 

is still higher or similar to that obtained by using clinical data only. This indicates that 

domain adaptation is able to address the shift between simulation and clinical data, but only 

to a limited extent.

By considering nonuniform simulation error during domain adaptation, the presented 

method (yellow bar) further reduces the prediction error, to the extent that it yields the 

lowest prediction error in all but three cases. Considering the rather limited performance of 

the other three models, this significant improvement highlights the importance of 

considering the discrepancy between simulated and clinical data in a regression setting.

Similar to the observation in the classification setting, the performance improvement of the 

presented method is not as good when the number of clinical data for training is low. This 

again may be attributed to the difficulty in obtaining a good estimate of the simulation error 

when the number of clinical data is limited.

D. Emulation of Clinical Procedures

Next, we utilize the available pace-mapping data on each patient to retrospectively emulate 

how the proposed scheme of progressive prediction would guide a pace-mapping procedure. 

For each subject and each target site for testing, as the model makes a prediction, from all 

available pace-mapping sites we identify the one nearest to the predicted location. Clinical 

ECG data from the selected site are added to the training data and the model will be re-

trained. This process repeats until reaching the following criterion: the correlation coefficient 

between the newly-collected ECG and the target ECG is ≥ 0.9 (successful termination), or 

no available pace-mapping site lies within 15-mm of the predicted site (premature 

termination).

We carried out the emulation on a total of 75 clinical pacing sites available from all three 

subjects. Successful completion of an emulation largely depends on whether retrospective 

pace-mapping data are available within a 15-mm distance from a predicted site. As a results, 

only 43 cases continued beyond the first prediction and many cases were terminated 

prematurely. Fig. 7 illustrates the mean reduction in prediction error with each added pacing 

site, along with the number of cases that are not yet terminated at that step. Generally, the 

mean reduction in prediction error with each added pacing site is ≥ 2-mm. Considering two 

cases that are successfully terminated and those that have continued beyond four steps, the 

presented model has an initial localization error of 31.9± 12.4 mm that is reduced to 

18.5± 8.8 mm within 3.2± 1.4 steps. Fig. 8 shows two examples where a final localization 

error of 7.6-mm and 10-mm are achieved using 3 and 5 pacing sites, respectively, after the 

initial prediction.

E. Localization of Pacing Sites: Comparison of Data-Driven Approach to Physics-based 
Electrocardiographic Imaging Approach

A physics-based approach is an alternative to a data-driven approach in the localization of 

the origin of ventricular activation. Known as electrocardiographic imaging (ECGI), this 

type of approach is built on the construction of a forward biophysical model between cardiac 
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electrical sources and body-surface ECG data, on which the inverse solution of cardiac 

source activity can be obtained. Many existing ECGI approaches have been evaluated on 

their ability to localize the origin of ventricular activation, in application contexts such as 

pacing sites [11], [24], PVC [25], [26], and scar-related VT [24], [27]. In [11], an ECGI 

method based on spline parameterization and transmural regularization was applied to 

localize the origin of ventricular activation on the same dataset used in this paper.

Here, we present a detailed case-by-case comparison of the localization accuracy obtained 

by the ECGI method and the presented method. The ECGI solution was obtained from each 

beat of 120-lead ECG data for each pacing site. The presented method is tested on 12-lead 

ECG data. Specifically, for each unique pacing site to be localized, we consider 20 trials, 

each with ten randomly selected clinical ECG data points as the training data to adapt the 

simulated data. ECG data from the same pacing site as the test case are excluded from the 

training data. These 20 trials are repeated for each ECG beat from the same pacing site.

The results are summarized in the box plots shown in Figs. 9. For ECGI solutions, the 

localization accuracy is reported as the Euclidean distance between the true pacing site and 

the earliest site of activation determined from the ECGI-reconstructed activation pattern. The 

mean and standard deviation are calculated from the solutions from all ECG beats from the 

same pacing site. For the presented method, the mean localization accuracy for each pacing 

site is calculated from the Euclidean distance between the actual and predicted pacing sites 

from 20 random trials on all beats of ECG data.

Compared with the ECGI method, the presented method provides a smaller localization 

error in 85%, 80%, and 73% of the pacing sites in Subjects 1, 2, and 3, respectively. The 

mean localization errors with the presented method are significantly lower than with the 

ECGI approach (p < 0.01 for each subject, paired student-t test). In addition, while a large 

beat-to-beat variation in the localization accuracy was noted in [11], the beat-to-beat 

variations obtained by the presented method are significantly smaller than those obtained 

with the ECGI method (STD(B), p < 0.01, paired student-t test).

V. DISCUSSION

A. Segment Resolution and Prediction Accuracy

The accuracy in localizing the origin of ventricular activation to a predefined anatomical 

segment can be affected by the total number of segments being used. The results presented 

in section IV-B are obtained on a 26-segment model with an approximately 4 cm2 resolution, 

which is higher than that used in most existing work that uses a range of 10–16 segments 

[3]. This may explain the relatively low classification accuracy as reported in Fig. 5. Fig. 10 

shows the change in classification accuracy if 14 rather than 24 ventricular segments are 

used for Subject 1. As expected, the overall accuracy is substantially higher, and the top-two 

hit reaches 0.80 when domain adaptation is considered. Further decreasing the resolution 

may further improve the classification accuracy, but an optimal definition of anatomical 

segments should rely on the clinical question of interest.
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B. Data-driven versus Physics-based Methods

On a technical level, the presented data-driven models and physics-based ECGI approaches 

are drastically different. On a conceptual level, they can be considered as inverse approaches 

to inferring the origin of ventricular activation from ECG data. For ECGI approaches, the 

inversion is based on a biophysical forward model. For data-driven approaches, the inversion 

is learned from data. On the presented dataset, the data-driven approach appears to yield a 

significantly smaller localization error using 12-lead ECG data, compared with the ECGI 

method using 120-lead ECG data. This may be rationalized from the following two 

standpoints:

First, the presented data-driven approach utilizes the QRS morphology of the 12-lead ECG 

to extract a small number of unknowns specific to the task at hand: the 3D coordinate of the 

origin of ventricular activation. In comparison, the unknown in the ECGI approach presented 

in [11] is in the form of the spatiotemporal potential signals throughout the epicardial and 

endocardial surface - a general-purpose solution from which different information can be 

extracted, including the origin of ventricular activation. Therefore, the improvement in 

performance by the data-driven models on this specific task comes at the expense of 

generalizability. This may also suggest that, if accuracy is favored over generalizability in 

certain clinical applications, future ECGI approaches may consider customizing the 

formulation of their solutions to a smaller number of unknowns specific to the clinical 

questions at hand.

Second, the accuracy of the inverse solution be it obtained using a data-driven or physics-

based approach is highly affected by the choice of model between the unknown in the heart 

and body-surface ECG. In ECGI approaches, the accuracy of the biophysical forward model 

is affected by many modeling assumptions and simplifications. For example, the effect of 

respiration may contribute to the large beat-to-beat variations in the localization accuracy 

observed in [11]. In addition, the thorax models of the three subjects can be associated with 

errors in geometry due to limited chest scans [11] as well as errors in conductivity values 

due to adoption of literature values and limited incorporation of anisotropy. These factors 

may further decrease the accuracy of ECGI solutions. While the presented data-driven model 

is learned from the same simulation setup, it is further adapted to available clinical data. This 

process of adaptation may play the role of correcting the error in a biophysical model that is 

not accommodated by most ECGI approaches.

C. Effect of Extremity Leads on the Similarity Map

As described in section II-B, all 12 leads of ECG data were included in the calculation of the 

similarity score between the simulated and clinical data. Because extremity leads are located 

farther away from the heart, it is possible that extremity leads are less affected by the origin 

of ventricular activation and, therefore, play an insignificant role in quantifying how the 

similarity between simulated and clinical ECG data varies with the origin of ventricular 

activation. To investigate the effect of incorporating these extremity leads into the 

calculation of the similarity score, we removed them from the calculation of the similarity 

score as described in section II-B, and repeated the experiments in section IV-B. Fig 11 

shows the exact segment localization on Subject 1 and Subject 2, when excluding extremity 
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leads from the calculation of similarity scores (green dotted line), compared with the 

original results (red dotted line). The predictions appear to be comparable in each case. This 

suggests that extremity leads have a negligible effect when evaluating how similarity 

between simulated and clinical data may change with the origin of ventricular activation. 

Further, it suggests that extremity leads may be left out of the calculation of similarity scores 

in future studies.

D. The Feasibility and Limit of Domain Adaptation

This paper provides a proof of concept that transferring knowledge from simulation data to 

clinical data can address the challenge of scarce clinical data in certain applications. The 

main focus and innovation is the finding that by learning the shift between the simulation 

and clinical data, we can better utilize the simulation data in the presence of simulation 

errors. In general, different levels of shifts exist between simulation and clinical data. At one 

end of the spectrum, where minimal shift exists, there are high-fidelity patient-specific 

models that are fully personalized to a patient, including not only in geometry but in 

electrophysiological properties. This, however, is often not possible and is not the focus of 

this paper.

We moved farther down the spectrum and considered a setting where simulation data were 

generated on a patient-specific geometrical model, but without further personalization on 

electrophysiological parameters. In addition, instead of a cellular biophysical model for 

electrophysiological simulation, we chose a simplified but well-accepted two-variable 

macroscopic model [15]. Similarly, for the propagation to the torso surface, we also made 

simplified assumptions on the thorax geometry and assumed conductivity homogeneity, even 

though it has been reported that the latter may affect both the amplitude [14] and 

morphology [28] of the simulated ECG. We consider this a good initial test ground for the 

presented concept, and the experimental results demonstrated its feasibility in this setting. 

Even though our method requires training data generated from each subject, we consider this 

a practical setup in applications because it involves only standard image-based modeling of 

the heart and torso, as well as simulation models that are computationally efficient without 

needing to be perfectly customized to a subject.

If we move farther to the other end of the spectrum, we make two primary hypotheses. First, 

as the simulation data and clinical data diverge, we hypothesize that the role of domain 

adaptation may become more important. Second, we hypothesize that there will be a limit to 

which the presented method will be able to adapt the shift between the two types of data. To 

test this, we intentionally degraded the quality of the simulation data and increased its shift 

from the clinical data. Specifically, instead of a patient-specific simulation, we trained our 

models on the simulation data from a different subject. Fig. 12 shows the results of the 

presented classification method when the model was trained on simulation data from Subject 

2 or Subject 3 but adapted to clinical data from Subject 1. In comparison with using 

simulation data without the proposed domain adaptation, the presented method achieved an 

improvement in accuracy by 0.041 ± 0.023 with a mean relative improvement of 0.322 

± 0.21. This margin is higher than that obtained in section III-B (0.035 ± 0.024 with an 

average relative improvement of 0.201 ± 0.15) when patient-specific simulation data were 

Alawad and Wang Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used for adaptation. The overall accuracy, as expected, was lower than with the use of 

patient-specific simulation.

This confirms our hypotheses that domain adaptation plays an increasingly important role as 

the simulation data degrades, but there is a limit to how much it can adapt. This suggests that 

– for reliable clinical use – it may be most advantageous to combine the presented domain 

adaptation method with high-fidelity patient-specific simulation data. While simulation data 

of low fidelity is used to augment clinical data, more advanced domain adaptation 

techniques may be needed in order to prevent most of the simulation data from being filtered 

out by the adaptation process. Furthermore, if it is desired to train the model using generic or 

population simulation data, significant challenges need to be resolved to adapt not only the 

domain shift between simulation and clinical data, but also the shift among individuals [29].

E. Practical Considerations and Other Limitations

1) Customization to Predictions on Specific Ventricular Surfaces: In the 

experiments that emulated how the presented method would guide pace-mapping, the 

prediction of the origin of ventricular activation considers the 3D myocardium of both 

ventricles. In clinical practice, because only one cardiac surface (left endocardium, right 

endocardium, or epicardium) can be accessed at a time, it may be more desirable to restrict 

the prediction within the surface being accessed. This can be done by including only 

simulated ECG data originating from the specific surface of interest for training. In this case, 

because the search space is reduced in size, the localization accuracy may be further 

improved.

2) Relationship to Recent Work in the Literature: In [30], patient-specific 

simulation data are used to predict excitation sites from ECG data using kernel ridge 

regression, which is then used to achieve personalization of a cardiac model from clinical 

surface ECG data. In [31], offline simulation data on a reference thorax anatomy is used to 

learn to regress myocardial activation times from body-surface ECG data, which is then 

transferred to patient-specific anatomies to achieve fast, personalized prediction online. Both 

studies share a similar motivation to the present work in transfering knowledge learned from 

simulation data to clinical ECG data, albeit in a different application context that considers 

the personalization of a computer model. In [29], a population-based prediction model is 

built for localizing the origin of ventricular activation from ECG data. To address the 

challenge of inter-subject variations, novel deep learning models are developed to 

disentangle the individual-level variations from ECG data. The presented approach of 

domain adaptation may provide an alternative to transfer the knowledge from population 

data to a small number of subject-specific data.

3) Other Limitations: The presented work is based upon the long hypothesized 

relationship between an origin of ventricular activation and the QRS morphology on 12-lead 

ECG [2]. Therefore, it is intended for rhythms arising from a single onset, such as in 

monomorphic VT. When a rhythm is known to arise from multiple sites of ventricular onset, 

the presented method does not apply.
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As a proof of concept, we have considered the classic methods of SVM and KNN in this 

paper. A next step is to realize the presented concept using more sophisticated machine 

learning models.

Finally, though promising results are obtained, the presented methods was evaluated on a 

small series of three patients with a moderate number of clinical pacing sites available that 

needed to be split between training and testing data. This prevented a quantitative evaluation 

of the similarity map built in section II, and limited the statistical significance of the results. 

In addition, the dataset used in this paper included pre-extracted heart-torso surface meshes 

and pre-registered clinical pacing sites to these meshes, excluding the evaluation of image-

based subject-specific anatomical modeling and registration of imaging and pace-mapping 

data in the presented pipeline. Future evaluations are warranted on a large number of 

patients with raw tomographic scans and clinical pace-mapping data.

VI. CONCLUSION

To address the problem of the scarcity of clinical data in building a patient-specific model to 

predict the origin of ventricular activation from 12-lead ECG data, we introduced a novel 

concept to transfer the knowledge from simulation data to a small amount of clinical data 

while addressing the shift between the two domains. We demonstrated the feasibility of this 

concept and its potential to guide pace-mapping procedures by progressively improving the 

prediction of the origin of ventricular activation with each added clinical data point. Our 

future work will focus on integration with high-fidelity simulation models, development of 

more advanced machine learning models, and expansion beyond the patient-specific setting.
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Fig. 1. 
Mapping function. This modified sigmoid function transforms ρi ≥ 0.5 to a similar output 

score ψi, but it transforms ρi < 0.5 to a drastically decreasing output score ψi. Th red dotted 

line shows an example when the input score is 0.5 the output estimated score will be 0.88
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Fig. 2. 
Illustration of the change in the learned similarity map as the number of clinical data 

increases (middle panel), in comparison with examples of clinical versus simulated ECG 

data with their actual correlation coefficients (CC) at selected sites (A, B, C, and D). This 

provides an example of the agreement between the actual simulation quality at selected sites 

and the learned similarity map as more clinical data are used for training.

Alawad and Wang Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Representative examples of histograms of features extracted from simulated versus clinical 

ECG data showing the discrepancy of distribution between the two datasets.
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Fig. 4. 
Schematics of the pre-defined 26-segment model.
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Fig. 5. 
Comparison of classification results (top-one, top-two hits) among alternative models on 

each of the three subjects.
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Fig. 6. 
Comparison of regression results (mean and standard deviation) among alternative models 

on each subject.
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Fig. 7. 
Results of retrospective emulation of the presented scheme of progressive prediction. This 

schematic shows the mean reduction in prediction error with each added clinical data point, 

along with the number of cases (N) tested in each step.
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Fig. 8. 
Two examples emulating how the presented scheme of progressive prediction would guide 

pace-mapping. Orange dots mark the targets, and yellow dots mark the models predictions in 

the annotated order.
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Fig. 9. 
Comparison of localization accuracy between the presented method and the ECGI method in 

[11] (Subject 1, 2 and 3 respectively). STD(A): standard deviation of localization accuracy 

associated with different ECG beats when the same training data are used (i.e., the same 

trial), averaged across all 20 trials. STD(B): standard deviation of localization accuracy 

associated with the use of different training data (all 20 trials) for each beat, averaged across 

all ECG beats from the same pacing site.
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Fig. 10. 
Comparison of classification accuracy when 14 versus 26 segments are used for localizing 

the activation origin.
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Fig. 11. 
The effect of keeping or removing extremity leads from the calculation of similarity scores 

on exact segment prediction for subject 1 and subject 2.
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Fig. 12. 
Improvement in accuracy achieved by the presented domain adaptation methods when 

simulation data from Subject 2 or Subject 3 are adapted to clinical data from Subject 1.
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