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SUMMARY

Circular RNAs (circRNAs) are an intriguing class of RNA due to their covalently closed structure, 

high stability, and implicated roles in gene regulation. Here, we used an exome capture RNA 

sequencing protocol to detect and characterize circRNAs across >2,000 cancer samples. When 

compared against Ribo-Zero and RNase R, capture sequencing significantly enhanced the 

enrichment of circRNAs and preserved accurate circular-to-linear ratios. Using capture 

sequencing, we built the most comprehensive catalogue of circRNA species to date: MiOncoCirc, 

the first database to be composed primarily of circRNAs directly detected in tumor tissues. Using 

MiOncoCirc, we identified candidate circRNAs to serve as biomarkers for prostate cancer and 

were able to detect circRNAs in urine. We further detected a novel class of circular transcripts, 

termed read-through circRNAs, that involved exons originating from different genes. MiOncoCirc 
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will serve as a valuable resource for the development of circRNAs as diagnostic or therapeutic 

targets across cancer types.
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INTRODUCTION

Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are 

produced from pre-mRNAs through a process called backsplicing and were initially 

proposed to be splicing-associated noise (Capel et al., 1993). However, recent studies have 

shown that circRNAs may be involved in miRNA inhibition (Hansen et al., 2013), epithelial-

mesenchymal transition (Conn et al., 2015), and tumorigenesis (Guarnerio et al., 2016). 

Further, circRNA expression can be tissue-specific (Conn et al., 2015) and some evidence 

support the translation of some circRNAs (Pamudurti et al., 2017; Legnini et al., 2017). 

When compared to linear counterparts, circRNAs are highly stable and can be found in 

exosomes, cell-free saliva, and plasma (Li et al., 2015; Bahn et al., 2016). Therefore, with 

improved detection and characterization methodologies, circRNAs may be potential 

biomarkers or therapeutic targets.

Advances in high-throughput sequencing technology and novel bioinformatics algorithms 

have facilitated the systematic detection of circRNAs (Salzman et al., 2013). Although short-

read paired-end RNA-seq technology does not fully unveil the whole body of circRNAs, it 

can reliably identify backspliced junctions and thus allows for the robust identification and 

quantification of several circRNA species per sample. Detection of circRNAs through high-

throughput RNA-sequencing (RNA-seq) technologies requires a protocol that can profile 

non-polyadenylated (non-poly(A)) transcripts (Hansen et al., 2013; Jeck et al., 2013). 

Currently, RNase R and Ribo-Zero are the gold standard methods for detecting circRNAs. 

With exoribonuclease RNase R, enrichment of circRNAs within samples is achieved at the 

expense of degrading linear RNAs (Jeck et al., 2013). This method, therefore, proves 

impractical for further downstream analysis since it interferes with the quantification of 

mRNA. On the other hand, Ribo-Zero enriches circRNAs while depleting rRNAs and 

preserving linear transcripts but requires at least 5 μg of total RNA to yield reliable results 

(Giannoukos et al., 2012).

Here, we present a novel use of our exome capture RNA-seq protocol (Cieslik et al., 2015) 

to profile circRNAs across more than 800 human cancer samples. In exome capture 

sequencing, RNA probes that target gene bodies hybridize with cDNA fragments and enrich 

exonic circRNA. Upon validation against Ribo-Zero and RNase R, our method consistently 

achieved significantly better enrichment for circRNAs than Ribo-Zero, and, unlike RNase R 

treatment, preserved accurate circular-to-linear ratios. We not only detected more circRNA 

transcripts per gene, but also uncovered circularized read-through transcripts. Furthermore, 

we used less than 5 μg of total RNA to achieve our results, thus demonstrating our protocol 

as a preferable alternative to Ribo-Zero when using samples with limited total RNA, an 
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important advantage in clinical settings for analysis of biospecimens. To extend the catalog 

of reported circRNAs, we developed a compendium, MiOncoCirc, that will be an open, 

comprehensive resource for facilitating the exploration of circRNA as a new type of cancer 

biomarker and for aiding in the elucidation of circRNA function. Of note, MiOncoCirc is the 

first cancer-focused circRNA resource to be generated from an extensive array of tumor 

tissues.

RESULTS

Exome capture RNA-seq is an effective method to profile circRNAs

Our previously described exome capture transcriptome protocol, exome capture RNA-seq, is 

a poly(A)-independent RNA sequencing method that targets the gene body, thus rendering it 

suitable for the study of circRNAs (Cieslik et al., 2015). We validated the performance of 

exome capture RNA-seq against Ribo-Zero sequencing, the most frequently used high-

throughput method for detecting circRNAs. Relative to Ribo-Zero, capture sequencing 

consistently detected more circRNA species per library in a panel of cell lines and frozen 

tissues (Figure 1A, Table S1). Furthermore, using VCaP prostate cancer cells, we validated 

that the majority of circRNA species present in the Ribo-Zero library were also present in 

the matched capture library from this cell line (Figure 1B). The circular to linear fractions 

were retained in capture as in Ribo-Zero (Figure 1C). In addition, in post RNase R 

treatment, capture sequencing yielded an overall elevated circular-to-linear ratio of all 

circRNA species (Figure 1D), thus confirming that our capture sequencing method detected 

true circular molecules and not potential ligation artifacts inherent to the protocol.

Building the MiOncoCirc compendium with exome capture RNA-seq

Using data generated with the exome capture RNA-seq protocol, we developed MiOncoCirc, 

an accessible compendium of cancer-focused circRNAs for the scientific community. The 

version of MiOncoCirc reported here was comprised of 868 samples obtained from 

previously published data sets of clinical samples (Mody et al., 2015, Robinson et al., 2015, 

Robinson et al., 2017) and cancer cell lines as well as pooled normal tissues (Figure 2A, 

Table S1). The protocol and bioinformatics pipeline used to create MiOncoCirc are detailed 

in Figure 2B and STAR Methods. Briefly, the transcriptome for each sample was profiled by 

paired-end, strand specific capture RNA-seq with moderate depth (median 49M ± 14M 

paired-reads). To detect backspliced (circular) reads from RNA-seq libraries, we used the 

pipeline CIRCexplorer (Zhang et al., 2014). CIRCexplorer has been shown to achieve high 

sensitivity and specificity among current circRNA bioinformatics tools (Hansen at al., 2015). 

In addition, we employed our in-house computational pipeline CODAC to discover read-

through circRNAs (rt-circRNA), a novel class of circRNAs only recently discovered (Liang 

et al., 2017). CODAC was initially developed to call structural rearrangements in paired-end 

RNA-seq but has been extended to the annotation of circRNAs, especially to those involving 

more than one gene. Information about circRNAs and rt-circRNAs can be found on our 

MiOncoCirc website, which also enables the querying and downloading of circRNA 

abundances across different cancer types, as well as the expression of their parent genes 

(Figure 2C, STAR Methods).
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The characteristics of circRNAs in MiOncoCirc

MiOncoCirc uncovered a significant number of circRNA species in addition to the species 

provided by CircBase, a compendium of circRNA compiled from different sources (Glažar 

et al., 2014). To analyze the overlap, we first used a stringent cut-off that included only 

circRNAs that appeared in at least five different samples from the data sets (Table S2). Using 

this criterion, MiOncoCirc and CircBase significantly overlapped in terms of circular 

transcripts (Figure 3A, Fisher Exact Test P < 1 × 10−16) and parent genes (Figure S1A, 

Fisher Exact Test P < 2.2 × 10−16). The overlap was even more significant if the criteria 

were relaxed to include circRNAs detected in any one sample (Figure S1B). Among genes 

that were found in both databases to produce circRNAs, MiOncoCirc detected twice the 

number of circular isoforms (Figure S1C). The non-overlapping sets of genes and circular 

transcripts may have resulted from differences in tissue types included in the two 

compendia. For instance, the cell lines included in the CircBase compendium are heavily 

endometrial, fibroblastic, and myoblastic while the tissues in MiOncoCirc are primarily 

epithelial (carcinoma) and mesenchymal (sarcoma). Indeed, when we compared the 

circRNAs in MiOncoCirc with CircBase from the same cell/tissue type (lung and breast, 

both epithelial), we found significant overlap (Figure S1D).

By further examining the circRNA species in MiOncoCirc, we found that the genes that 

generated circRNAs tended to form multiple circular isoforms. The number of circular 

isoforms increased proportionally with the number of exons per gene (Figure 3B). One 

extreme example from our compilation, the gene BIRC6, could generate more than 500 

different circular isoforms. Motif analysis of the exon-intron boundaries revealed that the 

majority (>99.2%) of circRNAs were flanked by the canonical splicing motif, AG-GT 

(Figure S1E). Among the non-canonical splicing signals, the most commonly observed were 

GC-AG (0.7%) or AT-AC (0.05%), while the rest were from other combinations of non-

canonical motifs.

We further determined that the average abundance of the parent genes (as quantified by 

FPKM) only weakly correlated with the average abundance of their associated circRNAs (in 

normalized backspliced reads, see STAR Methods; Spearman’s ρ = 0.12, Figures S2A and 

3C). These results indicate that the baseline expression of the parent gene is not a reliable 

predictor of the corresponding abundance of its circRNA. In addition, the Spearman’s rank 

correlations of the circRNAs and their parental expression across all 868 samples and within 

two sample cohorts (prostate and breast cancers) were low (all medians ρ < 0.3, Figure 3D). 

These findings suggest that the variability of circRNA abundances cannot be directly 

explained by the variability of their parental expression, but rather, may involve regulatory 

splicing mechanisms or varying rates of circRNA turnover in tumors.

We also discovered a subset of circRNAs in MiOncoCirc that could be consistently detected 

in ≥ 90% of our samples and with higher abundances (≥ 5×) than the median abundance of 

all circRNAs (marked as “high” in Figures 3E and S2A). This subset of highly abundant 

circRNAs was generated from 589 genes with low and modest average expression (≤ 50 
FPKM) (Figure 3C) and enriched for functional categories fundamental to cells (Figure 

S2B). While these genes were not more highly expressed than the parental genes of other 

circRNAs (Figure S2C), they possessed interesting genomic features. First, the circRNAs 
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generated from this subset of genes were characterized by significantly longer flanking 

introns (Wilcoxon rank-sum test P< 2.2 × 10−16, Figure 3F) that harbored more repetitive 

elements (Wilcoxon rank-sum test P< 4.5 × 10−8, Figure S2D) than the introns flanking 

circRNAs with lower abundance (marked as “low”). Long flanking introns, which may 

harbor more repetitive and reverse complement elements that promote circularization, were 

found to be the hallmark of circular RNA biogenesis (Ivanov et al., 2015). Indeed, even the 

class of circRNAs with “low” abundance in our compendium exhibited significantly longer 

flanking introns with more repetitive elements than all introns genome-wide (Wilcoxon 

rank-sum test P< 2.2 × 10−16, Figures 3F and S2D). Additionally, genes generating 

circRNAs with outlier expression were significantly longer and contained more exons 

(Figures S2E–F). Together, these results suggest that this “high” class of circRNAs is more 

consistently detected and presented at higher abundance because their unique genomic 

structures support circularization.

The prevalence and characteristics of read-through circRNAs

Circular RNAs produced from exons originating from different genes were previously 

reported to be products of gene fusions, in which each fusion partner donated their exons for 

backsplicing, and were named f-circRNAs (Guarnerio et al., 2016). We recently developed a 

novel annotation pipeline, CODAC, that could annotate backsplicing events involving two 

genes (see STAR Methods). Since pairs of homologous/paralogous genes can give rise to 

mapping ambiguities and false positives, we performed preliminary filtering (see STAR 

Methods) as well as indicated pairs with high degrees of similarity in Table S3. Although we 

did not detect any f-circRNAs in MiOncoCirc resulting from chromosomal translocations 

and deletions, we discovered a novel class of circular transcripts that involved exons 

originating from two adjacent genes on the same strand: the read-through circRNA (rt-

circRNA). Without the genomic information from matched whole-genome sequencing 

(WGS) and whole-exome sequencing (WES) acquired through our integrative clinical 

sequencing approach (Robinson et al., 2017), rt-circRNAs would have appeared deceptively 

similar to linear transcripts resulting from tandem duplications in RNA-seq (Figures 4A–B). 

In general, rt-circRNAs comprised a small portion of all circRNAs in each sample (average 

2.5%, Figure S3A) and were detected at lower abundance (average 3.1× lower, Wilcoxon 

rank-sum test P-Value = 1 × 10−12, Figure S3B) than most other circRNAs from a single 

gene.

Similar to circRNAs generated from single genes, the expression of the respective parental 

genes upstream and downstream of rt-circRNAs varied greatly (Figures S3C–D). The rt-

circRNAs also demonstrated the genomic trademarks of typical circRNAs in that they were 

flanked by introns that were longer (Wilcoxon rank-sum test P-Value = 2.2 × 10−16, Figure 

4C) and harbored more repetitive elements (Wilcoxon rank-sum test P-Value = 3 × 10−9, 

Figure 4D). In addition, pairs of genes that generated rt-circRNAs were slightly shorter than 

any random pairs of adjacent genes on the same strand (median 37kb vs. median 48.8kb 

apart, Wilcoxon rank-sum Test P-Value = 1 × 10−4, Figure S3E).

Some of these backspliced reads involving two genes were commonly found across different 

cancer types (Figure 4E) and were even detected in normal tissues or in samples with normal 
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copy-number (diploid) of the parent genes (Figure S4A and Table S3), which further 

suggested that they were true common transcriptomic processes rather than rare genomic 

events. To further experimentally validate by RT-qPCR that this class of readthrough 

transcript was circularized, we searched for transcripts that were expressed in cell lines and 

selected a backspliced event spanning two adjacent genes, TTTY15 and USP9Y, which were 

less than 9 kb apart on chromosome Y and detected in several prostate cancer tissue samples 

(Figure 4F). The product of outward facing primers involving exon 3 of TTTY15 and exon 3 

of USP9Y were detected via RT-qPCR in LNCaP prostate cancer cells, as well as the 

product of inward facing primers involving the same pair of exons (see STAR Methods). 

However, only the product of outward facing amplification was resistant to RNase R 

degradation (Figure 4F), and the backspliced exon-exon junctions of USP9Y and TTTY15 
were validated by Sanger sequencing (Figure S4B), confirming that the target was a circular 

molecule.

Among the most commonly found rt-circRNAs (Figure 4E), we also identified an event that 

involved exon 2 of the well-known tumor suppressor RB1 with an upstream gene, ITM2B 
(Figure S4C). An RB1-ITM2B backspliced transcript involving exon 2 of RB1 and exon 3 

of ITM2B (ITM2Be3-RB1e2) was reported in a few melanoma cases (Berger et al., 2010) 

and was confirmed to be the result of focal amplification via SNP array. In contrast, the 

ITM2Be2-RB1e2 rt-circRNA from the MiOncoCirc compilation was commonly found 

across cancer types and even detected in normal samples (Table S3). Copy-number analysis 

from one case of non-small cell lung cancer (NSCLC) and bladder cancer (BLCA) inferred 

from target capture panels (Robinson et al., 2017) did not show any copy-number 

alterations, further confirming that ITM2Be2-RB1e2 was a rt-circRNA (Figure S4C).

Finally, even though read-through circularization was largely widespread across cancer types 

(Figure 4E), we were able to nominate a small set of select rt-circRNAs that were tissue-

specific in the MiOncoCirc compendium (Figure S5A). Their tissue specificity could be 

explained by the tissue-specific expression of the genes involved in the generation of the 

corresponding rt-circRNAs (Figure S5B). The overlap between all tissue-specific genes and 

rt-circRNA parental genes was minimal, which was consistent with our ability to detect a 

limited number of tissue-specific rt-circRNAs (Figure S5C).

The properties of circRNAs in cancer

Non-coding RNAs, such as lncRNAs (long non-coding RNAs), pseudogenes, and miRNAs, 

have demonstrated lineage-specific patterns (Kalyana-Sundaram et al., 2012; Guo et al., 

2014; Iyer et al., 2015). We investigated whether the overall set of genes that could form 

circRNAs exhibited lineage specificity in cancer samples. To test this, we analyzed 17 

different cancer cohorts from the MiOncoCirc compendium consisting of a range of 

lineages. Since many samples from these cohorts were obtained from metastatic sites, 

contamination from tissue at the biopsy site was a possible caveat. To enrich for signals 

specific to the tissue of origin, we considered a gene to be positive for circRNA production 

if it formed at least one circRNA that could be consistently detected in at least 30% of a 

cancer lineage (STAR Methods). Based on these analyses, we determined that genes that 

formed circRNAs in our compendium could be classified into three categories: tissue-
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specific (n=895), less tissue-specific (n=2,329), and ubiquitous (n=1,469) (Figure 5A and 

Table S3). The tissue specificity of the first group could be explained by the tissue 

specificity of the parental genes (Figure S6A). These data suggest that there are indeed 

lineage-specific genes that form circRNAs in the MiOncoCirc resource that could be used as 

biomarkers to discriminate between different tissue types.

To characterize whether the expression patterns of circRNAs varied between tumor and 

normal cells, we performed differential abundance analysis for circRNAs in 25 pairs of 

matched tumor/normal for localized primary prostate adenocarcinoma (PRAD) samples 

(Figures 5B and S6B). Among circular transcripts that showed differential abundance 

(n=652) in cancer compared to normal (FDR < 0.01), a majority (n=629) were 

downregulated in cancer (average log-fold change of circRNAs was −0.9, Figures 5C and 

S6B, Table S4). While the downregulation of some circRNAs could be explained by the 

downregulation of the parent genes (Figure 5C, purple data points), there were also 

circRNAs with relatively low abundance in prostate cancer (< −1.5× fold change compared 

to matched normal, FDR < 0.01) without significant associated changes in the parental gene 

expression (Figure 5C, blue data points, circ-FSX07 as an example).

In tumor tissues, we demonstrated that cellular proliferation may lead to the downregulation 

of circRNAs, a mechanism also proposed by Bachmayr-Heyda et al. (2015). In our 25 pairs 

of matched normal/PRAD, total circRNA abundance showed a consistent negative 

correlation with expressions of MKI67and PCNA, and with a panel of cell cycle progression 

genes (e.g., MCM10, T0P2A, KIAA0101, and NUSAP1), whose mRNA levels have been 

used as proliferation markers for prostate cancer (Cuzick et al., 2011, Figures 5D and S6C). 

A similar pattern was seen when individual circRNAs, such as FBXO7, were analyzed. 

Furthermore, we compared the global circRNA profile in non-matched tumor/normal across 

six other tissue types: bone-osteosarcoma (n=8), colon-colorectal adenocarcinoma (n=13), 

kidney-renal cell carcinoma (n=12), liver-hepatocellular carcinoma (n=10), lung-lung 

adenocarcinoma (n=10), and stomach-gastric adenocarcinoma (n=9). The normal samples of 

each tissue were pooled from healthy donors, and the tumor samples were from the 

MiOncoCirc cohort. Across diverse lineages, total circRNA abundance was lower in cancer 

compared to normal (Figure S7A), suggesting that the downregulation of circRNA was a 

universal observation regardless of cell lineage. To further confirm the negative correlation 

between total circRNA abundance and proliferation, we treated LNCaP cells with dinaciclib, 

a potent kinase inhibitor that inhibits a wide range of kinases (Parry et al., 2010) and thus 

decreases cellular proliferation. Capture sequencing was then performed on control (N=3) 

and dinaciclib-treated (N=3) samples. After 24 hours of treatment, we observed an overall 

increase in total circRNA abundance independent of any change in parent gene expression 

(Figures S7B–C, Table S4).

Interestingly, despite a general decrease in total circRNA abundance in cancer samples, we 

observed a small subset (n=23) of circRNAs to be expressed more highly in tumor samples 

compared to normal (Figures 5B and S6B). This subset included the circular isoforms of 

AKT3, SDK1, LUZP2, ABCC4, and AMACR, a gene whose mRNA is currently used as a 

biomarker of prostate cancer and was characterized previously by our group (Rubin et al., 

2002). The upregulation of these circRNAs could be directly explained by the elevated 
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expression of the parent genes (Figure 5C, red data points). This finding implicates a 

potential association between the upregulation of circRNAs and genomic amplification, a 

common mechanism for gene overexpression in cancer. For instance, AR, the androgen 

receptor gene, is frequently amplified in metastatic castration-resistant prostate cancer 

(mCRPC) (Robinson et al., 2015). We compared 70 cases of mCRPC with amplified AR (> 

than 5 copies) against 50 cases of hormone-naive primary prostate cancer without amplified 

AR and found that circ-AR (backspliced from exon 4 to exon 3) was detected in mCRPC 

(54/70 cases) but not in primary cancers at the current sequencing depth. This interesting 

result could be explained by the massive upregulation of AR via focal amplification in 

mCRPC samples (Figure S7D).

Because circRNAs are “spliced out” from mRNAs, any cellular process or transformation 

that has a profound impact on the transcriptome should likewise alter the circRNA landscape 

of the cell. Thus, we characterized the circRNA landscape of prostate cancers undergoing 

neuroendocrine differentiation. Neuroendocrine prostate cancer (NEPC) is a rare, aggressive 

subtype of prostate cancer that can arise post-hormonal therapy for PRAD (Beltran et al., 

2011) and has a poor prognosis (Conteduca et al., 2014). In our cohort, pathologists 

diagnosed eight NEPC cases based on cell morphology. To further validate neuroendocrine 

differentiation at the transcriptomic level, we performed differential gene (mRNA) analysis 

of the eight NEPC cases versus 35 CRPC cases with the highest tumor purity. Our eight 

NEPC cases were all characterized by the upregulation of neuroendocrine markers (e.g., 

SYP, CHGA, CHGB, NCAM1, ENO2, ASCL1, MYCN, and AURKA), and downregulation 

of genes in the AR signaling pathway (e.g., AR, AMACR, KLK3, KLK2, FKBP5, and 

PSCA) (Figure 6A). This gene expression signature agrees with the well-established 

literature on NEPC (Beltran et al., 2011). We then performed differential circRNA 

expression analyses (Figure 6B and Table S5) and uncovered 34 upregulated and 48 

downregulated circRNAs with statistical significance (P-Value < 0.01). In NEPC, the most 

significantly upregulated and downregulated circRNAs were circ-AURKA (Mann-Whitney 

U test P=3.17× 10−9) and circ-AMACR (Mann-Whitney U test P= 0.002), respectively 

(Figure 6C). This finding is consistent with the change in parental gene expression of 

AURKA and AMACR (Figure 6A). We carried out RT-qPCR in RNase R treated NCI-H660, 

a neuroendocrine cell line, and confirmed that circ-AURKA was generated from exon 6 

backspliced to exon 3 (Figure 6D). Finally, we confirmed that circ-AURKA was expressed 

more highly in the NEPC cell line NCI-H660 than in the non-NEPC prostate cell lines, 

LNCaP and VCaP, a result that was consistent with the expression of its parent gene (Figure 

6E).

The stability of circRNAs in prostate cancer cells and detection in urine of prostate cancer 
patients

Due to their lack of open ends, circRNAs are resistant to exoribonuclease (RNase R 

treatment) and are potentially more stable than their cognate linear transcripts, thus making 

them ideal candidates for biomarker development. To evaluate the stability of circRNAs 

identified in MiOncoCirc, total RNA was first isolated from LNCaP prostate cancer cells 

and incubated with RNase R for 30 minutes. The ratio of circular-to-linear RNA species was 

then quantified by RT-qPCR. All circRNA species tested showed resistance to 

Vo et al. Page 8

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exoribonuclease and were thus significantly more stable than their linear counterparts 

(Figure 7A). In an orthogonal method to assess the stability of circRNAs, we compared 

concentrations of circular and linear transcripts in LNCaP cells that were treated with 

actinomycin D, a transcription inhibitor, over time. In LNCaP cells harvested at 0, 2, 4, 8, 

and 24 hours after actinomycin D treatment, circRNA levels increased while mRNA levels 

decreased (Figure 7B), thus demonstrating the relatively higher stability of circular 

transcripts.

Identification of biomarker species that are resistant to degradation is desirable for clinical 

settings. To determine whether circRNAs are more stable than their cognate linear RNAs in 

biospecimens, we analyzed the stability of circRNA in human blood plasma. VCaP RNAs 

were incubated in the plasma to simulate an environment of circulating RNAs. Indeed, as 

assessed by the ratio of circular-to-linear transcripts of select candidates, circRNAs were 

more stable than linear RNA in plasma after incubation (Figure 7C). Because noninvasive 

methods of detection are more ideal for screening assays in the clinic, we assessed whether 

circRNAs could be reliably detected in urine samples. Analysis of circRNAs by RT-qPCR 

showed that circRNA species could be detected in urine from prostate cancer patients 

(Figure S7E). Furthermore, we generated three libraries with exome capture RNA-seq and 

detected 1092 circRNAs in urine samples from prostate cancer patients that completely 

overlapped with circRNAs identified in PRAD tissue samples from the MiOncoCirc 

compendium (Figure 7D and Table S6). These data demonstrate that, even with low starting 

amounts of RNA (50 ng), exome capture RNA-seq of urine samples is a promising assay for 

profiling circRNAs of prostate cancer patients in a noninvasive manner.

DISCUSSION

For the research community, we have developed MiOncoCirc, an openly available circRNA 

compendium with a focus on clinical cancer samples. MiOncoCirc provides circRNAs 

characterized by our exome capture RNA-seq protocol, a poly(A)-independent RNA 

sequencing method that outperforms Ribo-Zero (Zhang et al., 2012) in terms of sensitivity 

and, unlike RNase R (Jeck et al., 2013), preserves linear transcripts. By using capture RNA-

seq and including data from clinical samples, MiOncoCirc differs from most of the currently 

available large-scale consortiums (e.g., TCGA and Genotype-Tissue Expression [GTEX]), 

which only provide data generated from poly(A)-selected RNA-seq methods.

Emerging interests in identifying and developing circRNAs for diagnostic and therapeutic 

purposes have produced several circRNA databases, including CircBase (Glazar et al., 

2014), CIRCpedia (Zhang et al., 2016), circRNAdb (Chen et al., 2016), and CSCD (Xia et 

al., 2017) (Table S1). However, MiOncoCirc is the first extensive clinical, cancer-centric 

resource of circRNAs. Importantly, our database has been largely constructed from clinical 

tumor samples (2,000+) across a plethora of disease sites, while other resources have 

characterized circRNAs from cell lines (Table S1). The transcriptional processes, and 

resulting circRNA formation, that occur in a native tumor microenvironment undoubtedly 

differ from those that occur in vitro, making MiOncoCirc a better representation of the true 

circRNA profile associated with cancer. Furthermore, MiOncoCirc presents a novel, rich 

resource containing circRNAs from primary tumors, metastases, and very rare cancer types. 
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Researchers who are interested can also query mutations and copy-number since 

MiOncoCirc samples are collected from previously published genomic papers (STAR 

Methods).

Additionally, all MiOncoCirc samples are presented in capture-sequencing RNA-seq 

libraries. The data were, therefore, uniformly processed, normalized, and ready to query for 

meta-analysis and downstream analysis. By contrast, data from circBase and circRNAdb are 

not quantitative in nature. While CIRCpedia V2 has provided a “FPM” value to quantify 

circRNA abundances and CSCD has provided the circular junction counts, data in both 

databases are presented as a mixture of Ribo-Minus, poly(A)-Minus, RNase R RNA-seq, 

and total RNA libraries (Zhang et al., 2016, Dong et al., 2018, and Xia et al., 2017). This 

mixture of multiple sequencing protocols can obstruct analysis, as performing meta-analysis 

across different sequencing protocols requires additional cross-platform statistical methods 

for normalization and the careful removal of platform-specific biases. Thus, MiOncoCirc is 

a uniformly curated and processed quantitative database constructed from the most extensive 

clinical cancer sources to-date, thus uniquely positioning it for candidate biomarker 

nomination. Indeed, studies have shown that circular RNAs are an evolving class of 

promising cancer biomarkers (Kristensen et al., 2017; Zhang et al., 2018). As we confirm 

here, circRNAs exhibit increased stability over their corresponding linear transcripts 

(Figures 7A–C), an advantage for biomarker development (Li et al., 2015, and Bahn et al., 

2016). Certain circRNAs identified in the MiOncoCirc compendium also displayed lineage- 

and cancer-specific expression. Importantly, we were able to demonstrate that our methods 

could detect prostate cancer tissue-associated circRNAs, such as circ-CPNE4 and circ-ACPP 
(Table S6 and S3), in a noninvasive urine assay for prostate cancer patients, starting with a 

low amount of RNA (50 ng).

We observed an interesting downregulation of circRNAs in proliferative cells across 

different tumor types (Figures 5B–D, S6B–C, and S7A), which could indicate that some 

circRNAs may have tumor suppressive roles but could also be explained as the dilution of 

the circRNA concentration upon cell division (Bachmayr-Heyda et al., 2015). Interestingly, 

the accumulation of circRNAs in non-proliferative cells, such as in aging nervous tissue 

(Gruner et al., 2016), supports the latter explanation. Similarly, we demonstrated that by 

slowing down cell growth with a kinase inhibitor, we could elevate the global abundance of 

circRNAs (Figure S7B). The universal downregulation of circRNAs should not discourage 

future studies exploring the use of circRNAs in translational cancer research and biomarker 

development. For example, the negative correlation we observed between total circRNA 

abundance with proliferation could help position some circRNAs as proliferation markers 

(Figure S6C). Additionally, our analysis still revealed several interesting genes that were 

upregulated in cancer, which resulted in elevated circRNAs compared to normal tissues 

(Figures 5B–C and S6B). Furthermore, some upregulated circRNAs could also be used as 

potential surrogate markers to distinguish subtypes of cancer, such as circ-AURKA in NEPC 

(Figures 6B–E), or as a potential indicator of genomic amplification, such as circ-AR in 

CRPC (Figure S7D).

MiOncoCirc allowed for a large-scale genomic analysis that characterized features 

associated with the formation and abundance of circRNAs. In Figures 3C–D and S2A, we 
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have confirmed that the baseline expression of the parent gene does not serve as an effective 

predictor of the abundance of the circRNA originating from that gene (Salzman et al., 2013). 

Furthermore, we also confirmed that the most abundant and consistently detected subset of 

circRNAs were flanked by longer introns and harbored more repetitive elements than 

genome-wide introns (Figures 3F and S2D). Long flanking introns were previously found to 

harbor more repetitive and reverse complement elements that pull two splicing sites into 

proximity and facilitate the process of backsplicing (Ivanov et al., 2015). These data 

highlight the importance of intronic architecture as the predominant contributor of circRNA 

formation rather than expression of the parental gene.

Read-through chimeric transcripts are widespread phenomena and may represent a 

mechanism for the evolution of protein complexes (Akiva et al., 2006), which may explain 

the detection of some rt-circRNA at high frequency in our consortium (Figure 4E and Table 

S3). Circularized read-through events may have several important implications. First, 

whether the process of circularization (“backsplicing”) is a co-transcriptional or post-

transcriptional process has remained an ongoing debate (Ebbesen et al., 2017; Ashwal-Fluss 

et al.,2014; Liang and Wilusz.,2014; Kramer et al., 2015; Zhang et al., 2016). However, 

recent evidence provided by Liang et al., 2017 shows that depleting CPSF3, a 3′ end 

processing endonuclease, could increase of the intergenic readthrough as well as 

circularization at one specific locus. Further, the formation of rt-circRNAs, as reported in-

depth by our study, confirms that in some pairs of genes, circularization must occur prior to 

cleavage/polyadenylation. Our data, therefore, contribute to clarifying the timing of the 

circularization process and provides evidence for the co-transcriptional model. Second, the 

backspliced reads from those resulting from RNA circularization, genomic tandem 

duplications, or some structural rearrangements in RNA-seq appear identical (Figure 4A). 

Indeed, one of our most commonly detected “backspliced” events, from exon 3 of USP9Y to 

exon 3 of TTTY15, was previously proposed to be a “fusion” or “translocation” in prostate 

cancer (see the Supplementary Figure S2 from Ren et al., 2013). Our validation via RNase R 

treatment and Sanger sequencing (Figure 4F and S4B), however, proved that it is a rt-

circRNA. The MiOncoCirc resource will thus serve as a highly valuable tool for cancer 

genomic researchers who wish to “filter” out rt-circRNA transcripts from a list of potential 

structural rearrangement candidates.

In conclusion, MiOncoCirc will serve as an important resource for scientists who wish to 

explore the lineage-specific and expression patterns of circRNAs in cancer, as well as the 

intriguing mechanism of read-through splicing. Such studies may shed light into the function 

of circRNAs and help develop the use of circRNAs in diagnostic medicine.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Arul M. Chinnaiyan (arul@med.umich.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—LNCaP, VCaP, 22Rv1 (male, prostate adenocarcinoma), and NCI-H660 (male, 

prostate epithelial neuroendocrine) cell lines were obtained from the American Type Culture 

Collection (ATCC). LNCaP and 22Rv1 cells were cultured in ATCC-formulated RPMI1640 

medium supplemented with 10% fetal bovine serum (FBS; Invitrogen). VCaP cells were 

maintained in ATCC-formulated Dulbecco’s Modified Eagle’s Medium supplemented with 

1% penicillin/streptomycin (Invitrogen) and 10% FBS (Invitrogen). NCI-H660 cells were 

maintained in ATCC-formulated RPMI-1640 medium, supplemented with 0.005 mg/mL 

insulin, 0.01 mg/mL transferrin, 30 nM sodium selenite, 10 nM hydrocortisone, 10 nM beta-

estradiol, 2 mM L-glutamine, and 5% FBS. All cell lines were genotyped to confirm their 

identity at the University of Michigan Sequencing Core. We maintained cell lines at 37°C in 

a 5% CO2 cell culture incubator and tested all cell lines routinely for Mycoplasma 

contamination.

Human subjects and patient inclusion—Sequencing of clinical samples was approved 

by the Institutional Review Board of the University of Michigan (Michigan Oncology 

Sequencing Protocol, MI-ONCOSEQ, IRB # HUM00046018, HUM00067928, and 

HUM00056496). Detailed information about patient selection and sample collection were 

described in previous studies (Mody et al., 2015, Robinson et al., 2015, and Robinson et al., 

2017). Information about additional cases in MiOncoCirc can be download directly from the 

website (https://mioncocirc.github.io/download/). All patients provided written informed 

consent to obtain fresh tumor biopsies and to perform comprehensive molecular profiling of 

tumor and germline exomes and tumor transcriptomes. Total RNA from normal tissues were 

purchased from two different commercial sources, Takara and Origene. The normal RNA 

samples profiled included bone marrow, colon, liver, spinal cord, stomach, small intestine, 

heart, placenta, spleen, brain, kidney, testis, and uterus.

METHOD DETAILS

Exome capture mRNA and Ribo-Zero sequencing—Exome capture RNA-seq was 

performed as previously described (Cieslik et al, 2015). We started with 0.1–3 μg of total 

RNA and proceeded through fragmentation, first-strand synthesis, second-strand synthesis, 

end repair, A-tailing, adapter ligation, size selection on a 3% agarose gel, and uridine 

digestion, according to Illumina’s TruSeq RNA protocol. Agilent SureSelect Human All 

Exon v4 probes, designed to target 20,965 genes and 334,378 exons, were then used to 

capture cDNA. Ribo-Zero RNA-seq followed a modified protocol described by Zhang et al., 

2012. Briefly, beginning with at least 5 μg of total RNA, we first applied the Ribo-Zero 

rRNA Removal Kit (Illumina) to remove ribosomal RNA, and then proceeded with 

fragmentation, first- and second-strand synthesis, end repair, A-tailing, adapter ligation, size 

selection, and uridine digestion. RNA integrity was measured on an Agilent 2100 

Bioanalyzer using RNA Nano reagents (Agilent Technologies). For both capture and Ribo-

Zero sequencing, the stranded RNA materials were sequenced by Illumina HiSeq 2000 or 

HiSeq 2500 with median coverage of 49 million paired reads. Illumina BaseCall software 

was used to assess the quality of reads and filter the reads before processing.
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RNase R treatment—Total RNA was isolated by TRIZOL lysis followed by purification 

using the miRNeasy Mini Kit (QIAGEN) with DNase digestion step. 2 μg of total RNA was 

either treated with 0 units (control) or 20 units of RNase R (Lucigen) in reaction buffer 

consisting 20 mM Tris-HCl (pH 8.0), 100 mM KCl, and 0.1 mM MgCl2, respectively. 

Treatment was conducted at 37°C for 1 hour, followed by RNase R inactivation at 65°C for 

20 minutes. RNA was then extracted using miRNeasy Mini Kit (QIAGEN) and eluted in 15 

μl of water. Reverse transcription was performed using SuperScript III Reverse Transcriptase 

(Invitrogen) and random primers (Invitrogen) following manufacturer’s standard protocol.

Dinaciclib treatment and sequencing—LNCaP cells were treated with DMSO 

(control) or 10 nM dinaciclib (Selleckchem) for 24 hours in triplicate for each data point. 

Total RNAs were extracted using the AllPrep DNA/RNA/miRNA kit (Qiagen), and capture 

transcriptome libraries were generated and sequenced following the protocol described 

above.

RT-qPCR and validation of circRNA—To assess relative expression of circRNA 

candidates, quantitative Real-time PCR (qRT-PCR) assays were performed using Power 

SYBR Green Master Mix (Applied Biosystems) and were carried out with the StepOne 

Real-Time PCR System (Applied Biosystems). Sequences of oligonucleotide primers were 

included in Table S7, with the following abbreviations used- li: linear RNAs; circ: circular 

RNAs; in: inward facing direction; out: outward facing direction; F: forward; R: reverse. 

Linear version of a housekeeping gene, GAPDH, were amplified as control. Expression of 

targets were calculated relative to the housekeeping gene. Fold changes following Rnase R 

treatment were calculated relative to the control untreated samples. The genomic sequence 

of qPCR products from the circRNA backspliced junction (Figure S4B) was further 

validated with Sanger Sequencing at the University of Michigan Sequencing Core.

Actinomycin D treatment—To validate the stability of RNAs, LNCaP cells were plated 

in 6-well plates and incubated for 12 hours. After incubation, cells were treated with 2.5 

μg/mL of actinomycin D (Sigma) for 0–24 hours. Cells were harvested in Qiazol at 0, 2, 4, 

8, and 24 hours post-treatment. RNA was isolated using the miRNeasy mini kit (Qiagen). 

RNA was quantified, and 1 μg of RNA was used to make cDNA using SuperScript® III 

First-Strand Synthesis System for RT-qPCR (Invitrogen) using random primers. We then 

performed RT-qPCR and analyzed data with glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) used as a normalization control.

RNA stability in blood plasma—To check the stability of various linear and circular 

transcripts in plasma, we first isolated the blood plasma from fresh blood taken from healthy 

individual (male, age 30). In short, a total of 15 ml blood was collected in a vacutainer tube 

containing EDTA as the anticoagulant and mixed well before centrifugation at 2,000 RCF 

for 20 minutes at room temperature. The plasma layer was then carefully aspirated and 

stored at −80°C in cryovials. Next, we incubated 1 μg of VCaP RNA with 100 μl of plasma 

for 0, 15, 30, 45, 60, and 75 minutes. After incubation, total RNA was isolated and various 

linear and circular transcripts were quantified using qRT-PCR. The expression of transcripts 
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at the zero-minute time point was considered as the control. Relative levels of circular and 

linear transcripts were calculated and shown.

Urine RNA extraction for RNA-seq and qRT-PCR—Post-digital rectal examination 

(Post-DRE) urine was collected from 13 prostate cancer patients presenting for diagnostic 

prostate biopsy using standardized protocols at University of Michigan Rogel Cancer Center. 

Urine was collected in an equal volume of RNA Protection Reagent and then frozen at 

−80°C until extraction of RNA was performed. Urine RNA was isolated by MagMAX™ 

mirVana™ Total RNA Isolation Kit (Invitrogen), which allows for recovery of total RNA 

(both intra- and extracellular) in urine. Capture sequencing was performed on three urine 

samples (Figure 7D), and qRT-PCR was performed on another 10 urine samples (Figure 

S7E).

QUANTIFICATION AND STATISTICAL ANALYSIS

Chimeric alignment and circRNA quantification—Reads that passed queue 

thresholds were trimmed of adaptor sequences and aligned to the GRCh38 reference 

genome. The aligner STAR 2.4 (Dobin et al., 2013) was used for alignment with the 

following settings (customized for chimeric alignment, “--outFilterType BySJout”): 

alignIntronMax: 400000; alignMatesGapMax: 400000; chimSegmentMin: 10; 

chimJunctionOverhangMin: 1; chimScoreSeparation: 0; chimScoreJunctionNonGTAG: 0; 

chimScoreDropMax: 1,000; chimScoreMin: 1.

To annotate circRNAs to genes, we employed the CIRCexplorer pipeline (Zhang et al., 

2014) on the junction files generated by the above chimeric aligning step. For the number of 

circRNA isoforms reported in Figure 3A and Table S2, we only included circRNAs called 

from backsplicing events that appeared in at least five samples. Circular RNA abundances 

were normalized by the median mapped read of all libraries in our cohort. One “normalized 

backspliced read” is thus equivalent to one backspliced read discovered per 49 million 

mapped reads of linear gene. To compare and intersect our compendium with CircBase, we 

used the tools in CrossMap (Zhao et al., 2013) to lift over the coordinates from hg19 to 

hg38. In addition, the circular-to-linear fraction (Figures 1C–D) was calculated as the ratio 

between backspliced reads and all spliced reads (linear plus circular) involving the same 

junction.

To discover circRNAs involving two genes, including rt-circRNAs, we used the pipeline 

CODAC (M.C., Y.M.W., D.R.R., and A.M.C., manuscript in preparation). CODAC was 

developed as a pipeline to call all classes of chimeric RNAs, including circRNAs and 

structural rearrangements from paired-end (PE) RNA-seq. Briefly, PE sequencing reads are 

aligned to the reference genome in two independent runs, following a step of read-merging. 

In the read-merging, PE reads are merged into a synthetic single-end (SE) read if the insert 

size of a fragment is smaller than double the sequencing length. This results in two sets of 

FASTQ files (PE and SE) that are independently aligned to the reference genome using 

STAR as described above. The resulting chimeric alignments from STAR were filtered for 

recurrent sequencing artifacts, breakpoints within repetitive regions, segmental duplications, 

and possible alignment errors. Depending on the breakpoint position, customized thresholds 
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of supporting reads were required. A comprehensive list of black-list regions, recurrent 

false-positive junctions, and problematic regions that have required increased filtering 

thresholds is included in the CODAC software. All events involving backspliced reads of 

two genes with the orientation of interest (Figures 4A–B) nominated by CODAC were 

collected as the candidate rt-circRNAs (Table S3). We further filtered out difficult-to-

interpret partners, i.e., the pair of parental genes with high degree of homology, especially 

the human leukocyte antigen (HLA) genes. Pairs of homologous/paralogous genes with 

lesser degrees of similarity were also indicated in Table S3 to inform the users about the 

possibilities of mapping artifact and false positives.

All backspliced junctions of circRNAs and rt-circRNAs, as well as normalized abundances 

of circRNAs and parental gene expression of all samples are provided on the “Download 

Data” page of the MiOncoCirc website (https://mioncocirc.github.io/). The MiOncoCirc 

“Query Data” page is a user-friendly and interactive interface built with R shiny (http://

shiny.rstudio.com/) that allows the user to browse all circular isoforms per gene and click on 

each isoform to browse the abundance (normalized circular reads) in all tissues.

Differential mRNA/circRNA analysis/clustering—All fragment quantifications were 

computed using featureCounts (Liao et al., 2013). Gene expression was measured in 

fragments per kilobase per million (FPKM). Differential mRNA and circRNA abundance 

analysis were carried out with edgeR (Robinson et al., 2010). Independent filtering was 

carried out before differential analysis to increase detection power of moderate to high 

mRNAs (or circRNAs) (Bourgon et al., 2010). For mRNA, genes with a count per million 

(CPM) <1 in more samples than the sample size of one of the groups being compared were 

filtered from the analysis. For circRNA, a detection threshold of 5-reads was applied to 

avoid “shot noises” for low read counts (Anders et al., 2010). All clustering was performed 

with a hierarchical clustering method using Manhattan Distance. For the analysis of NEPC 

vs. CRPC, the eight NEPC cases were diagnosed by the pathologists based on cell 

morphology, and the 35 cases of metastasis CRPC with the highest tumor content (> 40%) 

were selected from data provided by Robinson et al., 2015 to avoid contamination signals 

from biopsy sites.

RNA-seq reads sampling—Seqtk was used to perform down-sampling of paired-end 

RNA-seq samples (Figure 1A) using the command:

seqtk sample [seed] read_1.fq [depth] > sub_1.fq; seqtk sample [seed] read_2.fq [depth] > 
sub_2.fq.

Repetitive elements analysis—All annotated repeat sites were retrieved from the 

UCSC Genome Browser’s RepeatMasker track as a bed file, June 2018. BEDtools (Quinlan 

et al., 2010) were used to intersect the RepeatMasker bed file with all introns flanking 

circRNAs and rt-circRNAs from MiOncoCirc.

Tissue specificity analysis—Since the majority of our clinical samples were collected 

from advanced metastasized tumors (Mody et al., 2015, Robinson et al, 2015, Robinson et 

al., 2017), we “binarized” the frequency per tissue/cancer type of a circRNA (Figure 5A) 

Vo et al. Page 15

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://mioncocirc.github.io/
http://shiny.rstudio.com/
http://shiny.rstudio.com/


and rt-circRNA (Figure S5A) to enrich for tissue specificity and to avoid picking up 

contaminating signals. A circular transcript was labeled as “consistently detected” if it 

appeared in at least 30% of a cancer cohort. Similarly, a gene was labeled as “consistently 

detected” (in terms of the ability to generate circRNA) if it could generate at least one 

circRNA that could be detected in at least 30% of a cancer cohort. To calculate the tissue 

specificity of a gene (Figure S5C) or a circRNA (Figure S6A), we used the Shannon Entropy 

score as proposed by Kryuchkova-Mostacci et al. (2016). The distribution of the Shannon 

score of genes in our cohort also follows a bimodal distribution. Tissue-specfic genes 

(Figure S5C) were defined as those genes with Shannon scores >= 0.75.

Motif analysis—All introns flanking circRNAs were collected, and the 13-mers spanning 

the splicing donor and acceptor were retrieved according to hg38. The position weight 

matrix (PWM) in Figure S1E was plotted using R package seqLogo.

Proliferation analysis—The expressions of the 31 cell cycle progression (CCP) genes 

(Cuzick et al., 2011) (calculated in FPKM) were used as the proliferation markers of the 25 

matched pairs of prostate cancer. These 31 CCP genes include: FOXM1, ASPM, TK1, 
PRC1, CDC20, BUB1B, PBK, DTL, CDKN3, RRM2, ASF1B, CEP55, CDC2, DLGAP5, 
C18orf24, RAD51, KIF11, BIRC5, RAD54L, CENPM, KIAA0101, KIF20A, PTTG1, 
CDCA8, NUSAP1, PLK1, CDCA3, ORC6L, CENPF, TOP2A, and MCM10. The total 

circular RNA abundance was calculated using the sum of all detected backspliced reads, 

normalized by the total mapped read in each library.

Exome-sequencing and copy-number analysis—An in-house pipeline constructed 

for analysis of paired tumor/normal data was used to process FASTQ sequence files from 

whole exome libraries. Using Novoalign (version 3.02.08) (Novocraft) and SAMtools 

(version 0.1.19), respectively, the sequencing reads were aligned to the GRCh37 reference 

genome and converted into BAM files. Novosort (version 1.03.02) was used for the sorting, 

indexing, and duplicate marking of BAM files. Freebayes (version 1.0.1) and pindel (version 

0.2.5b9) were used to perform mutational analysis. Variants were annotated to RefSeq (via 

the UCSC genome browser) COSMIC v79, dbSNP v146, ExAC v0.3, and 1000 Genomes 

phase 3 databases using snpEff and snpSift (version 4.1g).

Using the DNAcopy (version 1.48.0) implementation of the Circular Binary Segmentation 

algorithm, exome data were analyzed for copy-number aberrations by jointly segmenting B-

allele frequencies and log2-transformed tumor/normal coverage ratios across targeted 

regions. The Expectation-Maximization Algorithm was used to jointly estimate tumor purity 

and classify regions by copy-number status. To allow for the possibility of non-diploid 

tumor genomes, additive adjustments were made to the log2-transformed coverage ratios. 

The adjustment resulting in the best fit to the data using minimum mean-squared error was 

chosen automatically and, if necessary, manually overridden.
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DATA AND SOFTWARE AVAILABILITY

All circRNAs and rt-circRNAs, as well as their expression patterns, can be found in our 

MiOncoCirc website, currently hosted at: https://mioncocirc.github.io/. The pipeline 

CODAC can be found at https://github.com/mcieslik-mctp/codac.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Use of exome capture transcriptome sequencing to compile a cancer circRNA 

landscape

• MiOncoCirc is the most comprehensive catalogue of cancer-based circRNA 

species

• MiOncoCirc contains circRNA from cancer cell lines as well as tumor 

samples

• Novel biomarkers can be nominated through MiOncoCirc
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Figure 1. Validation of the exome capture RNA-seq method for circRNA detection.
A) When compared to matched Ribo-Zero samples, capture transcriptome sequencing 

consistently detected more circular RNA (circRNA) in six paired libraries from clinical 

samples and cell lines. Capt: exome capture RNA-seq; Ribo: Ribo-Zero. Details about 

sequencing depths and the number of circRNAs stratified by detected number of backspliced 

reads can be found in Table S1. To validate that the higher numbers of detected circRNAs in 

capture sequencing libraries were not due to the differences in sequencing depth, some 

libraries were down-sampled to make sure that the sequencing depth of any capture library 

was no more than the depth of its matched Ribo-Zero library.
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B) In a VCaP cell line library, the overlap of detected circRNA species in exome capture and 

Ribo-Zero sequencing platforms was significant (Fisher exact test, P-value < 1×10−16). A 

threshold of two backspliced reads was applied.

C) In VCaP, capture sequencing retained the relative abundance of circRNAs to their linear 

counterparts, comparable to Ribo-Zero library (Spearman Rank Correlation ρ = 0.65) (see 

STAR Methods). A threshold of two backspliced reads was applied.

D) Backspliced events called from our MiOncoCirc pipeline were elevated (Mann-Whitney-

Wilcoxon < 2.2×10−16) post RNase R treatment in VCaP and 22RV1 cell lines, further 

confirming that they were true circRNAs and not ligation artifacts.

See also Table S1.
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Figure 2. Construction and overview of the MiOncoCirc compendium.
A) 868 high-depth, paired-end RNA-seq samples from previously published data sets as well 

as cell line panels and normal tissues were included. Additional details and abbreviations 

can be found in Table S1.

B) Exome capture RNA-seq protocol and the bioinformatics pipeline for creation of 

MiOncoCirc. The unmapped reads from chimeric aligner (STAR) were annotated against the 

exon junctions. CIRCexplorer was used to call circRNA transcripts, and CODAC was used 

to annotate circRNAs involving two genes. FeatureCounts was used to quantify gene 

expression.
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C) MiOncoCirc is an online database that enables querying and downloading of circRNAs 

abundance across different tissues. Additional genomic data can be retrieved from previous 

studies (STAR Methods).

See also Table S1.
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Figure 3. Features of circRNAs in MiOncoCirc and properties associated with expression.
A) The overlap of circRNA species in MiOncoCirc and CircBase was significant (Fisher 

Exact Test P-Value < 1×10−16). Only high confidence circRNAs which appeared in five or 

more samples were included in this comparison.

B) Genes can form multiple circRNA transcripts. The number of circular transcripts 

increased proportionally with the number of exons per gene (binned to 10).

C) Average expression of circRNA abundance (in normalized backspliced reads) vs. average 

expression of parental expression (in FPKM). Parent gene expression was grouped into bins 

of 50. Overall, there was no different in the mean of the bins (ANOVA P-Value = 0.12). This 

result agreed with Figure S2A in that the correlation was weak (Spearman’s ρ = 0.12).
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D) The distribution of Spearman’s rank correlation between circRNA abundance and their 

cognate parent gene expression, across all samples (gray), in prostate adenocarcinoma 

(PRAD, blue), and breast cancer (BRCA, red). Overall, the correlations were low (all 

medians < 0.28).

E) Circular RNA abundance (in normalized backspliced reads) vs. sample fraction (%). 

There was a small portion of circRNAs (<2% of all circRNAs, generated from 589 genes, 

marked as “high”) that were detected in more than 90% of all samples. They also had higher 

expression compared to the median of all circRNAs (marked as “high” in the density plot of 

Figure S2A).

F) These “high” circRNAs were flanked by significantly longer introns (Mann-Whitney-

Wilcoxon P < 2.2×10−16) than the remaining 98% of circRNAs. Genome-wide introns were 

included as the control.

See also Table S2 and Figures S1–S2.
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Figure 4. Identification of novel read-through (rt) circRNA species.
A) Schematic showing that genomic tandem duplications and circRNAs involving two genes 

can appear similar in paired-end RNA-seq. Specifically, when mates of a paired-end read 

were aligned in divergent orientation to exons of two adjacent genes, the result could be 

interpreted as either a duplication of a group of exons from two genes (Scenario 1), or a 

circularization from the downstream gene back to the upstream gene (Scenario 2).

B) Schematic depicting the circular read-through event that can be generated from two 

adjacent genes, and their genomic features.

C) The introns flanking rt-circRNAs were longer than genome-wide introns (Mann-

Whitney-Wilcoxon P < 2.2×10−16).
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D) The introns flanking rt-circRNAs harbored more repetitive elements than genome-wide 

introns (Mann-Whitney-Wilcoxon P < 3×10−9).

E) The frequency and distribution of the top 30 most abundant backspliced events involved 

neighboring genes in our compendium.

F) The circular read-through event involving exon 3 of TTTY15 and exon 3 of USP9Y was 

chosen for validation in LNCaP cells. Post RNase R treatment, only the RT-qPCR product of 

outward facing primers was resistant to exoribonuclease degradation (see STAR Methods).

See also Tables S3 and S7 and Figures S3–S5.
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Figure 5. Expression patterns and characteristics of circRNAs in cancer.
A) Tissue-specific heatmap of genes that can generate circRNAs, as demonstrated in 17 

cancer cohorts from the MiOncoCirc compendium. A gene was considered to be 

consistently detected if it generated at least one high-confidence circRNA in more than 30% 

of samples of any given lineage (see STAR Methods).

B) Volcano plot of circRNA abundances in 25 matched pairs of normal/localized prostate 

adenocarcinoma. Horizontal dash-line corresponded to FDR = 0.05. Vertical dash-line 

corresponded to fold-change > 1.5× (up-regulation) and fold-change < −1.5× (down-

regulation).

C) The correlation of log fold-change (FC) of circular RNA vs. log FC of linear expression. 

Again, circRNA abundances were downregulated overall (mean circular logFC = −0.9). We 
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further stratified genes into groups based on the relationship between the linear and circular 

fold change. Group 1 (red) were circRNAs that were upregulated in cancer because their 

parent genes were upregulated. Group 2 (purple) were those circRNAs that were 

downregulated in cancer because their parent genes were also downregulated. However, 

there was a subset of circRNAs (Group 3, blue) downregulated in cancer with no 

corresponding change in parent gene expression.

D) Total circRNA correlated with prostate cancer mRNA (“m”) proliferation markers 

calculated in FPKM (MCM10, TOP2A, MKI67, PCNA, KIAA0101, and NUSAP1). The 

size and the color scale of the dots indicate the values of pair-wise Spearman Rank 

Correlation. GAPDH mRNA expression was included as a negative control. Circular 

FBXO7, a highly abundant circRNA also showed remarkable negative correlation with 

proliferation index, even though its parental gene expression did not correlate.

See also Tables S3–S4 and Figures S6–S7.
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Figure 6. Differential circRNAs in neuroendocrine prostate.
A) NEPC cases from our cohort, classified by cell morphology from pathology assessments, 

were all characterized by the upregulation of neuroendocrine markers (SYP, CHGA, CHGB, 
NCAM1, ENO2, ASCL1, MYCN, and AURKA) and downregulation of genes in the AR 

signaling pathway (AR, AMACR, KLK3, KLK2, FKBP5, and PSCA) compared to 

castration-resistant prostate cancer (CRPC) cases.

B) The heatmap of 34 upregulated and 48 downregulated circRNAs with statistical 

significance (P < 0.01) in NEPC compared to CRPC cases.
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C) Comparing NEPC to CRPC, the most significantly upregulated circRNA was circ-

AURKA (Mann-Whitney U test P = 3.17×10−9); the most significantly downregulated 

circRNA was circ-AMACR (Mann-Whitney U test P = 0.002).

D) RT-qPCR of outward-facing primers of AURKA (backspliced from exon 6 to exon 3) in 

RNase R treated NCI-H660, a NEPC cell line, confirmed the circular structure of this 

molecule. P < 0.0001 calculated from one-way ANOVA.

E) RT-qPCR of circular and linear AURKA in prostate cancer cell lines. Both circ-AURKA 
and linear-AURKA were expressed higher in NCI-H660 than in two non-NEPC cell lines, 

LNCaP and VCaP.

See also Tables S5 and S7.
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Figure 7. Circular RNAs are more stable than cognate linear transcripts and can be detected in 
urine samples from prostate cancer patients.
A) Compared to their linear counterparts, circRNAs were resistant to RNase R degradation. 

Linear transcripts were detected by inward-facing RT-qPCR primers, while circular 

transcripts were detected by outward-facing RT-qPCR primers (**P < 0.0001, calculated 

from Student’s t test).

B) After transcription inhibition by actinomycin D in LNCaP cells, linear transcripts 

(Linear) degraded faster than their corresponding circular transcripts (Circular). Samples 

were harvested at 0, 2, 4, 8, and 24 hours post-treatment. GAPDH was used as the control. 

The fold changes were calculated relative to the starting time point. circHIPK2 was selected 

to represent “high” class circRNAs. circLUZP2 represented “low” class circRNAs but with 

elevated expression in prostate cancer compared to normal.

C) After incubating VCaP RNAs in plasma, the circular-to-linear ratio of circRNAs 

increased over time. Samples were harvested at 0, 15, 30, 45, 60, and 75 minutes.

D) Circular RNAs were detected by exome capture RNA-seq of 3 urine samples from 

prostate cancer patients. These circRNAs greatly overlapped with circRNAs identified in 

prostate cancer tissues from the MiOncoCirc cohorts.

See also Tables S6–S7 and Figure S7E.

Vo et al. Page 34

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vo et al. Page 35

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

N/A

Bacterial and Virus Strains

N/A

Biological Samples

Tumor/normal tissues from 
various cancer patients

University of Michigan MI-ONCOSEQ collection See STAR Methods Table S1, and Meta data file (meta.xlsx) at 
https://mioncocirc.github.io/download/

Bone tissues from healthy 
individuals

Origene CR559716, CR559724, CR561975

Colon tissues from healthy 
individuals

Takara 636553

Kidney tissues from healthy 
individuals

Takara 636529

Liver tissues from healthy 
individuals

Origene CR560592, CR560901, CR560916

Lung tissues from healthy 
individuals

Takara 636524

Stomach tissues from healthy 
individuals

Takara 636578

Other normal tissues Takara 636591, 636554, 636539, 636532, 636527, 636585 636535, 
636533, 636551

Chemicals, Peptides, and Recombinant Proteins

Actinomycin D Sigma-Aldrich A1410–10MG

Dinaciclib Selleckchem S2768

RNase R Lucigen RNR07250

RQ1 RNase-Free DNase Promega M6101

Superscript II Reverse 
Transcriptase

Invitrogen 18064–071

RNase H Invitrogen 18021–071

Fetal Bovine Serum Invitrogen A3160701

Dulbecco’s Modified Eagle’s 
Medium

Invitrogen 10569010

RPMI-1640 Medium ATCC ATCC® 30–2001™

Penicillin-Streptomycin Invitrogen 15140122

Power SYBR Green Master 
Mix

Applied Biosystems 4367659

DNA Polymerase I New England Biolabs M0209L

USER Enzyme New England Biolabs M5505L

Critical Commercial Assays

AllPrep DNA/RNA/miRNA 
Universal Kit

Qiagen 80224

KAPA Hyper Prep Kit for 
Illumina

Kapa Biosystems KK8504
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REAGENT or RESOURCE SOURCE IDENTIFIER

SureSelect XT Human All 
Exon V4 library

Agilent Technologies 5190–4632

SureSelectXT Reagent kit Agilent Technologies G9611B

RNA 6000 Nano kit Agilent Technologies 5067–1511

DNA 1000 kit Agilent Technologies 5067–1504

QIAGEN Multiplex PCR Kit Qiagen 206143

Ribo-Zero rRNA Removal 
Kit

Illumina MRZH11124

MagMAX mirVana Total 
RNA Isolation Kit

ThermoFisher A27828

Deposited Data

FASTQ files of mCRPC in 
Mi-Oncoseq program, 
University of Michigan 
Clinical Sequencing 
Exploratory Research 
(CSER)

Robinson et al., 2017 dbGaP (phs000673.v2.p1)

BAM files of the SU2C-PCF 
CRPC150 cohort

Robinson et al., 2015 dbGaP (phs000915.v1.p1)

FASTQ files of pediatric 
tumors in Mi-Oncoseq 
program, University of 
Michigan Clinical 
Sequencing Exploratory 
Research (CSER)

Mody et al., 2015 dbGaP (phs000673.v1.p1)

Tab-delimited files for all 
circular RNAs, their 
genomics information and 
abundances in samples 
included in this study

MiOncoCirc https://nguyenjoshvo.github.io/

Experimental Models: Cell Lines

LNCaP ATCC CRL-1740

VCaP ATCC CRL-2876

22Rv1 ATCC CRL-2505D

NCI-H660 ATCC CRL-5813

Experimental Models: Organisms/Strains

N/A

Oligonucleotides

NEBNext Multiplex Oligos 
for Illumina

New England Biolabs E7535L

NEBNext Multiplex Oligos 
for Illumina Index Set 2

New England Biolabs E7500L

Random Primers Invitrogen 48190–011

Recombinant DNA

N/A

Software and Algorithms

NCBI Multiple Sequence 
Alignment Viewer

NCBI https://www.ncbi.nlm.nih.gov/projects/msaviewer/#
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REAGENT or RESOURCE SOURCE IDENTIFIER

STAR 2.4 Dobin et al., 2013 https://github.com/alexdobin/STAR

CIRCexplorer Zhang et al., 2014 https://github.com/YangLab/CIRCexplorer

CrossMap Zhao et al., 2013 https://github.com/gantzgraf/CrossMap

featureCounts Liao et al., 2013 http://bioinf.wehi.edu.au/featureCounts/

seqtk https://github.com/lh3/seqtk https://github.com/lh3/seqtk

BEDtools Quinlan et al., 2010 https://github.com/arq5x/bedtools

seqLogo Bembom O (2018) https://bioconductor.org/packages/release/bioc/html/seqLogo.html

Comprehensive Detection 
and Analysis of Chimeras 
(CODAC)

This paper and Robinson et al., 2017 https://github.com/mcieslik-mctp/codac

ggplot2 http://ggplot2.org/book/ https://cran.r-project.org/web/packages/ggplot2/index.html

Shiny Server https://www.rstudio.com/products/shiny/shiny-server/ https://www.rstudio.com/products/shiny/shiny-server/

DNACopy Olshen et al., 2004 http://bioconductor.org/packages/release/bioc/html/DNAcopy.html

edgeR Robinson et al., 2010 http://bioconductor.org/packages/release/bioc/html/edgeR.html

Novoalign Novocraft http://www.novocraft.com/products/novoalign

Freebayes https://github.com/ekg/freebayes https://github.com/ekg/freebayes

Pindel https://github.com/genome/pindel https://github.com/genome/pindel

SnpEff http://snpeff.sourceforge.net http://snpeff.sourceforge.net

SnpSift http://snpeff.sourceforge.net/SnpSift.html http://snpeff.sourceforge.net/SnpSift.html

Other

SeqCap EZ HE-Oligo Kit A Roche 06777287001

SeqCap EZ HE-Oligo Kit B Roche 06777317001

Agencourt RNAClean XP Beckman Coulter A63987

AMPURE XP beads Beckman Coulter A63882

Dynabeads MyOne 
Streptavidin T1

Invitrogen 65602
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